Math 333 January 24, 2008 Existence and Uniqueness Theorems

The General Setup. Consider the initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0.$$

The Existence Theorem. Suppose that f(t, y) is *continuous* in a rectangle of the t, y-plane containing the initial point (t_0, y_0) . Then, there exists an $\epsilon > 0$ and a function y(t) defined for $t_0 - \epsilon < t_0 < t_0 + \epsilon$ that solves the IVP

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0.$$

In practice, this means that as long as our differential equation $\frac{dy}{dt} = f(t, y)$ is nice in a region of the initial point (t_0, y_0) , then we are guaranteed to have a solution of the initial-value problem. However, we must be careful about the domain of definition of our solution function y(t). The solution function y(t) might not be defined for all values of t.

The Uniqueness Theorem. Suppose that f(t, y) and $\frac{\partial f}{\partial y}$ (the partial derivative of f with respect to y) are *both continuous* in a rectangle of the t, y-plane containing the initial point (t_0, y_0) . Then, the solution of the IVP is unique. This means that if $y_1(t)$ and $y_2(t)$ are two functions that solve the IVP

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0$$

for all t in the interval $t_0 - \epsilon < t < t_0 + \epsilon$ (where ϵ is some positive number), then

$$y_1(t) = y_2(t).$$

In practice, this means that if we have the additional structure that both f(t, y) and $\frac{\partial f}{\partial y}$ are continuous, then we know that there is exactly one solution of the IVP

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0.$$

In class today, we'll look at some examples of situations in which we can use the Uniqueness Theorem to obtain qualitative information about solutions of IVP's.

Math 333: Diff Eq