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Euler Equations

A relatively simple differential equation that has a regular singular point is the Euler
equation,

x2y′′ + αxy′ + βy = 0, (1)

where α and β are real constants. We can check that x = 0 is a regular singular point
of Eqn. (1). Because the solution of the Euler equation is typical of the solutions
of all differential equations with a regular singular point, we’ll consider the Euler
equation in detail before we consider the general problem of finding series solutions
of a differential equation near a regular singular point.

By the Existence Theorem, we know that in any interval not containing x = 0, Eqn.
(1) has a general solution of the form y(x) = c1y1(x) + c2y2(x), where y1 and y2

are linearly independent solutions and c1 and c2 are arbitrary constants. First, we’ll
consider the interval x > 0. Later, we’ll extend our results to the interval x < 0.

Since
(xr)′ = rxr−1 and (xr)′′ = r(r − 1)xr−2,

it is natural to guess that Eqn. (1) has a solution of the form

y = xr.

Substituting y = xr into the differential equation, we obtain

xr[r(r − 1) + αr + β] = 0.

If r is a root of the quadratic equation

F (r) = r(r − 1) + αr + β = 0,

then xr[r(r − 1) + αr + β] = 0, and y = xr is a solution of Eqn. (1). The roots of
the quadratic equation F (r) are given by

r1, r2 =
−(α− 1)±

√
(α− 1)2 − 4β

2
,

and F (r) = (r − r1)(r − r2). As for second order linear equations with constant
coefficients, we must consider separately the cases in which the roots are real and
unequal, real and equal, and complex conjugates. Our discussion here will be similar
to our discussion of second order linear differential equations with constant coeffi-
cients, with erx replaced by xr (and you will have an exam question addressing this
similarity).
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Case 1: Real, distinct roots. Suppose that F (r) = 0 has real roots r1 6= r2. Then
y1(x) = xr1 and y2(x) = xr2 are solutions of Eqn. (1). Since

W (y1, y2) = (r2 − r1)x
r1+r2−1 6= 0,

it follows that the general solution of Eqn. (1) is

y = c1x
r1 + c2x

r2 , x > 0. (2)

Recall that if r is not rational, then xr is defined by xr = er ln x.

Example 1. Solve the differential equation

2x2y′′ + 3xy′ − y = 0, x > 0.

Solution. The general solution is

y = c1x
1/2 + c2x

−1, x > 0.

Case 2: Real, equal roots. Suppose that F (r) = 0 has two real roots r1 = r2.
Then we obtain only one solution of the form y1 = xr1 . We can use the method
of reduction of order to find a second solution of Eqn. (1). We guess a solution of
the form y = vy1 = vxr1 , where v is some unknown function of x. Substituting into
Eqn. (1), and using the fact that 2r1 + α = 1 since r1 = −(α − 1)/2 is a double
root of F (r) = 0, we find that v = c1 + c2 ln x, so a second solution of Eqn. (1) is
y2(x) = xr1 ln x. Since

W (y1, y2) = x2r1−1 6= 0,

xr1 and xr1 ln x form a fundamental set of solutions. Thus, the general solution of
Eqn. (1) in this case is

y(x) = (c1 + c2 ln x)xr1 . (3)

Example 2. Solve the differential equation

x2y′′ + 5xy′ + 4y = 0, x > 0.

Solution. The general solution is

y = (c1 + c2 ln x)x−2, x > 0.

Case 3: Complex Roots. Finally, suppose that the roots r1 = λ + iµ and r2 =
λ− iµ are complex conjugates with µ 6= 0. We must now consider what is meant by
xr when r is complex. Recall that xr is defined by xr = er ln x. Thus,
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xλ+iµ = e(λ+iµ) ln x

= eλ ln xeiµ ln x

= xλ[cos(µ ln x) + i sin(µ ln x)].

xλ−iµ = xλ[cos(µ ln x)− i sin(µ ln x)].

As we did in the case of second order linear differential equations with constant
coefficients, we observe that y1 = xλ cos(µ ln x) and y2 = xλ sin(µ ln x) are also
solutions of Eqn. (1). Since

W (y1, y2) = µx2λ−1 6= 0,

y1 and y2 form a fundamental set of solutions, so the general solution of Eqn. (1) in
this case is

y(x) = c1x
λ cos(µ ln x) + c2x

λ sin(µ ln x). (4)

Example 3. Solve the differential equation

x2y′′ + xy′ + y = 0, x > 0.

Solution. The general solution is

y = c1 cos(ln x) + c2 sin(ln x), x > 0.

Finally, we consider how to extend the solutions to the interval x < 0. The solutions
of the Euler equation that we have constructed for x > 0 can be shown to be valid
for x < 0, but in general they are complex-valued. For example, in the solution to
Example 1, x1/2 is imaginary for x < 0. We can construct real-valued solutions in the
interval x < 0 in a straightforward way by making the following change of variable.
Let x = −γ, where γ > 0, and let y = u(γ). Then:

dy

dx
=

du

dγ

dγ

dx

= −du

dγ

d2y

dx2
=

d

dγ

(
−du

dγ

)
dγ

dx

=
d2u

dγ2
.

Thus, for x < 0, Eqn. (1) has the form

γ2u′′ + αγu′ + βu = 0, γ > 0.
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But this is precisely the problem that we have already solved. From our previous
work, we obtain:

u(γ) =


c1γ

r1 + c2γ
r2 if r1, r2 ∈ R, r1 6= r2

(c1 + c2 ln γ)γr1 if r1, r2 ∈ R, r1 = r2

c1γ
λ cos(µ ln γ) + c2γ

λ sin(µ ln γ) if r1, r2 = λ± iµ.

To obtain u in terms of x, we replace γ by −x in the previous expressions. Finally,
we can combine the results for x > 0 and x < 0 by recalling that |x| = x when x > 0
and |x| = −x when x < 0. Thus, we need only replace x by −x in Eqns. (2), (3),
and (4) to obtain real-valued solutions valid in any interval not containing x = 0.

Summary. The general solution of the Euler equation (1)

x2y′′ + αxy′ + βy = 0

in any interval not containing x = 0 is determined by the roots r1 and r2 of the
equation

F (r) = r(r − 1) + αr + β = 0.

• If the roots r1 and r2 are real and distinct, then

y(x) = c1|x|r1 + c2|x|r2 .

• If the roots r1 and r2 are real and equal, then

y(x) = (c1 + c2 ln |x|)|x|r1 .

• If the roots r1, r2 = λ± iµ are complex conjugates, then

y(x) = |x|λ[c1 cos(µ ln |x|) + c2 sin(µ ln |x|)].
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