Math 347
 Discrete Dynamical Systems of Several Equations

Example. Consider the following study of population growth. Consider a species which can be broken into three equal age groups: $0-1$ years, $1-2$ years, and $2-3$ years. Note that instead of years, we can use decades or other units as needed for a particular situation. Let $a(n)$ represent the number of individuals in the 0-1 age group in year n; let $b(n)$ represent the number of individuals in the 1-2 age group in year n; and let $c(n)$ represent the number of individuals in the 2-3 age group in year n. Suppose that we know the following information about the species:

- Half of the individuals in the 0-1 age group survive one year.
- Two-thirds of the individuals in the 1-2 age group survive to the next year.
- On average, each individual in the $0-1$ age group has 0.5 offspring.
- On average, each individual in the 1-2 age group has 5 offspring.
- On average, each individual in the 2-3 age group has 3 offspring.

We can construct a dynamical system of three equations to model this population.

Some important properties of dynamical systems of several equations:

- If $A(n+1)=R A(n)$ is a dynamical system of m equations, where R is an $m \times m$ matrix, then the solution of the dynamical system is

$$
A(n)=R^{n} A(0)
$$

- This is not a useful solution form since matrix multiplication is computationally difficult and time-consuming.
- Instead, we use eigenvalues and eigenvectors. Suppose that we have an $m \times m$ matrix R, an m-vector B, and that we wish to compute $R^{k} B$. Then we follow these four steps:

1. Find the eigenvalues of R, i.e. solve the polynomial $p(\lambda)=\operatorname{det}(R-\lambda I)=0$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ denote the eigenvalues of R.
2. Find the corresponding eigenvectors of R. Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}$ denote the eigenvectors of R.
3. Write the vector B as a linear combination of the eigenvectors of R :

$$
B=x_{1} \mathbf{v}_{\mathbf{1}}+x_{2} \mathbf{v}_{\mathbf{2}}+\ldots+x_{m} \mathbf{v}_{\mathbf{m}}
$$

4. Compute $R^{k} B$:

$$
\begin{aligned}
R^{k} B & =R^{k}\left(x_{1} \mathbf{v}_{\mathbf{1}}+x_{2} \mathbf{v}_{\mathbf{2}}+\ldots+x_{m} \mathbf{v}_{\mathbf{m}}\right) \\
& =x_{1} \lambda_{1}^{k} \mathbf{v}_{\mathbf{1}}+x_{2} \lambda_{2}^{k} \mathbf{v}_{\mathbf{2}}+\ldots+x_{m} \lambda_{m}^{k} \mathbf{v}_{\mathbf{m}}
\end{aligned}
$$

- Consider an $m \times m$ matrix R with m distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$. We define the absolute value of R to be

$$
\|R\|=\operatorname{maximum}\left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{m}\right|\right\}
$$

If $\|R\|<1$, then

$$
\lim _{k \rightarrow \infty} A(k)=\mathbf{0}
$$

where $\mathbf{0}$ means the vector with m zeros.

Problems. These problems are due on Tuesday, November 6.

1. Find the particular solution to the system of equations

$$
\begin{aligned}
a(n+1) & =a(n)+2 b(n) \\
b(n+1) & =-a(n)+4 b(n)
\end{aligned}
$$

with initival values $a(0)=1$ and $b(0)=2$. Discuss the long-term behavior of the system.
2. Find the particular solution to the system of equations

$$
\begin{aligned}
a(n+1) & =-0.5 a(n)+0.5 b(n) \\
b(n+1) & =-0.5 a(n)+0.75 b(n)
\end{aligned}
$$

with initival values $a(0)=6$ and $b(0)=6$. Discuss the long-term behavior of the system.

