Basic Counting Methods, Binomial Coefficients and Identities

Some Facts and Warm-up Questions

- The sum principle: $|A \dot{\cup} B|=|A|+|B|$
- The product principle: $|A \times B|=|A| \cdot|B|$
- Show that the number subsets of an n-element set is 2^{n} using the product principle (a version of it).
- Let A be a k-element set and B be an n-element set. Find the total number of functions from A to B, and find the number of one-to-one functions from A to B.
- The bijection principle: Two sets have the same size \Leftrightarrow there is a bijection between them.
- Let $\binom{n}{k}$ (read " n choose k, and also called "binomial coefficient") denote number of k-element subsets of an n-element set. Use a counting argument to show that $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
- Give a counting argument to prove the Binomial Theorem: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$
- Let p be a prime. Show that $p\binom{p}{i}$ for $1<i<p$.

1. The powers of 2 are all even and the powers of 5 all end in 5 . Show that for any other prime p, among the first six powers of p one of these numbers must end in 1 .
2. Use the bijection principle to show that $\binom{n}{k}=\binom{n}{n-k}$.
3. Use a counting argument to prove the Pascal's relation $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.
4. Prove the formula $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$ in two ways: using a counting argument, and algebraically using the binomial theorem.
5. Consider the identity $(x+1)^{m}(x+1)^{n}=(x+1)^{n+m}$. What identity on binomial coefficients do you get by writing down the corresponding binomial identity. Then, give a counting argument for the identity you obtained.
6. Prove the formula $n\binom{n-1}{k-1}=k\binom{n}{k}$ combinatorially.
7. Prove the formula $\binom{n}{m}\binom{m}{k}=\binom{n}{k}\binom{n-k}{m-k}$ using combinatorial argument.
8. Prove the formula $\sum_{j=0}^{k}\binom{m}{j}\binom{n}{k-j}=\binom{m+n}{k}$ (of course not algebraically, but combinatorially)
9. There are 10 people in a room, none of whom is older than 60 (ages are given in whole numbers only) but each of whom is at least 1 year old. Prove that one can always find two groups of people (with no common person) the sum of whose ages is the same. Can 10 be replaced by a smaller number?
10. Prove the formula $\binom{0}{m}+\binom{1}{m}+\binom{2}{m}+\cdots+\binom{n}{m}=\binom{n+1}{m+1}$
11. Let $1 \leq t \leq k \leq n$ and $N=\{1,2, \ldots, n\}$. Classify the k-subsets of N by their $t^{t h}$ largest element to obtain an identity on binomial coefficients.
12. Give combinatorial arguments to prove each of the following identities
i) $\binom{n}{k}-\binom{n-3}{k}=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-3}{k-1}$
ii) $\sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}$ (Hint: Consider all ternary vectors (vectors whose entries are 0,1 or 2) of length n. Classify them according to a suitable criterion.)
13. Evaluate the sum $\sum_{k=2}^{n} k(k-2)\binom{n}{k}$
14. (Putnam 87) Let r, s, t be integers with $0 \leq r, s$ and $r+s \leq t$. Prove that $\sum_{i=0}^{s} \frac{\binom{s}{i}}{\binom{t}{r+i}}=\frac{t+1}{(t+1-s)\binom{t-s}{r}}$
15. (Putnam 91) Let p be an odd prime. Show that $\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} \equiv 2^{p}+1 \bmod p^{2}$ $\left(\right.$ Hint: $\left.\left.(2+x)^{p}(1+x)^{p}=((1+x)+1)^{p}(1+x)^{p}\right)\right)$
