Math 333
 Complex Roots of the Characteristic Equation

Let's return to the second order linear homogeneous differential equation with constant coefficients:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 . \tag{1}
\end{equation*}
$$

Recall that if the roots r_{1} and r_{2} of the characteristic equation

$$
a r^{2}+b r+c=0
$$

are real and different, then the general solution of Eqn. (1) is

$$
y(t)=k_{1} e^{r_{1} t}+k_{2} e^{r_{2} t} .
$$

Suppose now that the characteristic equation

$$
a r^{2}+b r+c=0
$$

has two complex conjugate roots:

$$
r_{1}=\lambda+i \mu \text { and } r_{2}=\lambda-i \mu
$$

where λ and μ are real. Then

$$
y_{1}(t)=e^{(\lambda+i \mu) t}
$$

and

$$
y_{2}(t)=e^{(\lambda-i \mu) t}
$$

are two solutions of Eqn. (1).
Unfortunately, the solutions y_{1} and y_{2} are complex-valued functions, and in general we would like to have real-valued solutions, if possible, since the original differential equation has real coefficients. To find real-valued solutions, first recall Euler's formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

Using Euler's formula, we can rewrite the solutions y_{1} and y_{2} as

$$
y_{1}(t)=e^{\lambda t} e^{i \mu t}=e^{\lambda t}(\cos (\mu t)+i \sin (\mu t))
$$

and

$$
y_{2}(t)=e^{\lambda t} e^{-i \mu t}=e^{\lambda t}(\cos (\mu t)-i \sin (\mu t)) .
$$

Moreover, recall from the Linearity Principle that if y_{1} and y_{2} are solutions of Eqn. (1), then any linear combination of y_{1} and y_{2} is also a solution. In particular, let's form the sum and then the difference of y_{1} and y_{2}. We have:

$$
y_{1}(t)+y_{2}(t)=2 e^{\lambda t} \cos (\mu t)
$$

and

$$
y_{1}(t)-y_{2}(t)=2 i e^{\lambda t} \sin (\mu t)
$$

Next, neglecting the constant multipliers 2 and $2 i$, respectively, we have obtained a pair of real-valued solutions

$$
u(t)=e^{\lambda t} \cos (\mu t) \text { and } v(t)=e^{\lambda t} \sin (\mu t) .
$$

You should verify that $u(t)$ and $v(t)$ are indeed solutions of Eqn. (1). Note that $u(t)$ and $v(t)$ are simply the real and imaginary parts, respectively, of y_{1}.

Next, we'd like to use $u(t)$ and $v(t)$ to construct the general solution of Eqn. (1). To do this, show that the Wronskian of u and v is

$$
W(u(t), v(t))=\mu e^{2 \lambda t} .
$$

Thus, as long as $\mu \neq 0$, the Wronskian W is not zero, so u and v form a fundamental set of solutions. Of course, if $\mu=0$, then the roots of the characteristic equation are real, so the previous discussion does not apply. Thus, $W(u, v) \neq 0$, so we conclude that $u(t)$ and $v(t)$ indeed form a fundamental set of solutions for Eqn. (1). Finally, we conclude that the general solution of Eqn. (1) is

$$
y(t)=k_{1} u(t)+k_{2} v(t) .
$$

Summary. Suppose that the roots of the characteristic equation are complex numbers $\lambda \pm i \mu$ with $\mu \neq 0$. Then the general solution of Eqn. (1) is

$$
y(t)=k_{1} e^{\lambda t} \cos (\mu t)+k_{2} e^{\lambda t} \sin (\mu t)
$$

where k_{1} and k_{2} are arbitrary constants.

Examples.

1. Find the general solution of

$$
y^{\prime \prime}+y^{\prime}+y=0 .
$$

Solution. $y=k_{1} e^{-t / 2} \cos (\sqrt{3} t / 2)+k_{2} e^{-t / 2} \sin (\sqrt{3} t / 2)$
2. Find the general solution of

$$
y^{\prime \prime}+9 y=0 .
$$

Solution. $y=k_{1} \cos (3 t)+k_{2} \sin (3 t)$.
3. Find the solution of the initial-value problem

$$
16 y^{\prime \prime}-8 y^{\prime}+145 y=0, \quad y(0)=-2, \quad y^{\prime}(0)=1
$$

Solution. $y=-2 e^{t / 4} \cos (3 t)+\frac{1}{2} e^{t / 4} \sin (3 t)$

