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1. lim g, = o0,
k—00

2. lim a, = 0.
k=00

3. lim a; = o¢.
k—o0

4, lim a; = co.
k—o0

5. lim a, = lim
oo nscond +4° nooo3Ipl

In{l+ k2) i 2K&+ )

¢ =l paTe AL TIre
7. lim a;, =0.
k00 _ i
2 4 8. lim ay — 0.
s | ko0
. oo 1 2 ) 1 i
9. Converges absolutely — Z (F) < Z = =e
k=0 ! k=0 k! }
= | 1 © dx 1 1 |
. bsolutely. : = . . |
10. Converges absolutely g n(inn)? = 3(in3)y +/; *(nx? — 3(3p | 23y

11. Diverges by the nth term test: lim Z k=

‘f n—+00

12. Diverges. The partial sum of the first 2n terms of the series is one-half the partial sum of the
first n terms of the harmonic series.

14+Ins

-
. e 1 o _ 1
13. Converges—by the integral test: le: j-57 = 3 + fl x:57dx = + Sans?
NOTE This series can also be shown to converge via the ratio test:
_ j+l 5 j+1 1
5] _llm 7 =1 —_— 5-:{=] 5— g < 1.
* Jj—rco i Jj—roo j j=oo __)‘
2i-1 i
Furthermore, since @j.1/a; = (j +1)/57 <2/5when j > 1, Z] 5 =3
j=l j=1
j i X1 3
14. Converges—Dby the comparison test: _—< = - < -
B b Z:J“+1—1 ;14 ;ﬂ 2
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0 .
15.- Converges—by the integral test: / e dx = ﬁ/Z.
o ) o0 -0
Ze""‘ 51+/ e"‘zdx=l+ﬁ/2.
m=0 0 .

- 16. Diverges—by the comparison test:

= m I o= m? 1 md =
Zm4_7=_3+zm4—7>_3+Z;‘-=_E+Z;.
m=1 m=2 m=2 - =2
oa o had 1 ml
17. Diverges—by th t =13
1VErges Y ecomparlson est: Z:(k-[—l)’—l >§U€+l)' ;k-{-l kZ=2:k

: ee 1+1In2
18. Converges-——by the integral test: f —n-; dx = f ue “du= thn . Thus,
2 X . In2 ) 2 .

8

1+1n2 2+4+3In2
2 4

k o i
19. Converges—by the comparison test: Z k;{i—_l < E W =1+ f x M dx = 3.
1

20. The series converges absolutely by the comparison test using b = (2/7)*.

N .
S =) aj < 0.005 when N > 4 since 25/(75 +5) < 0.005. Using N = 4,
k=0
68917177
R ———— 22 ().81196.
843877260 081196
21. The series converges absolutely by the comparison test: Z m < Z %= 2,
. N
S— Zak < 0.005 when N > 5 since 1/(7 - 26) = 1/448 < 0.005. Using N = 5,
255
S~ — = 0.809375.
320 3
sinm =1
22. converges absolutely——z < Z 3 Since
m—B m=8 )
o0 oo . . oo
sinm 1 * dx 5 5 sinm
— £ = e = = it fOl] that ———— < —
> Zﬂ;m— f 5 = gt olows that - < 3750

which is (almost) the alternating

cos(nm) =, (-1
23. converges conditionally— Z z -
n

n=| n=1

harmonic series.
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= éos(mr) 1
—1<Z =—]n2<—5.

n

k

o0 K3 4 3 >0

24. Diverges —

25. Diverges by the nth term test. (Since 0 <. —e, klim K¢ = ob.)
N - OO

00 1 1 1 )
Zﬁ‘é(m)m (1n3)21—(1/ln3) (ln3)(1n3—1)

27.
o0 22 oo N 00
1 1 - 1 2 1 1 2 -1,4'129583
2(5*5) ‘Z(EJ’E*E) -_-.2(47“5**&) =375 s T 0
i=0 j=0 j=0
g = [ dx | 1
28. — )= = li 1- = 1.
Z(fk xZ) By ,.L“;o( n+1) '
k=1 k=1 . . . .
. b 2 ‘
29. Diverges by the nth term test: lim - f e X dx=Jm/2#0.
m—>00 fi]
30. Diverges by the nth term test: lim nn __1.o
. Diverges nth term im — =
fees by - In(3+n?) 2
31. No. Using the series representation of sin x and the altemating series test,
sm(l/n) > l/n - 1/6n = (6n —1)/6n® = 5/6n forall n > 1. Thus,
Zsm(l/n) > = Z - =
n-l
o . o ®© 4 ol .
32. Yes. Since 0 < sin(1/n) < 1/nforalln > 1,0 < Y =sin(1/n) < 3" . Thus, the given
n n

n=1 n=1
series converges by the comparison test. :

33. Ne. Since lirEra e Y/" = | # 0, the series diverges by the n-th term test.
34. No. Using the power series representation of ¢* and the alternating series theorem,

w11 _2n—1_2n-n
= -
n 2n? 202 T 2n?

1
)

n=1 n=]
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35.

36.

37.

38,

39.
40.
41.
42,
43.

45.
46.
47,
48.
49.

. (—oc, 00).
[-3,5).
[0, 2).
[—6, —4].
[1/2,3/2).

Cannot be true. The interval of convergence of a power series is symmetric around and
includes its base point (b = 1 in this case).

Chapter 11: Infinite Series

(@ In(n) =Inn+1In(r—=1)+In(rn —2)+---+1In2 +1n1. Thus, (since Inl = 0)1n(xr)
is a right sum approximation 5o 1" Inxdx. Since Inx is an increasing function on the
interval [1,n], in(n!) > f'Inxdx =nlnn — n + 1. Therefore,

nl > enlnn—n+1 — nnel—n‘

B (be\M1 b1 be\N |
(b) Part (a) implies that M < (Fe) . Thus, N1 < 3 when (-NE) < %. Therefore,
since g > 1,any N > be satisfies the given inequality.
(a) Forallk > 1,0 < < 1/k = kl'u'n a; = 0.
— OO

' ' ® d *d 1
b No_,l the se1‘ie§ diverges. Since ay = ﬂ —ng—_l > fk ﬁ =

= jQangy
kZakz EZE‘—‘OO
=1 k=l

o

{c) (—1)**'a, converges by the alternating series test — the terms of the series
y .

k=1
alternate in sign and are decreasing in magnitude (i.e., g1 < ag).

I+l m’ + 1 x] <1 = R 1. The interval of convergence is [—1, 1] e
= - x =1, -1,1% 3

m (m+1)2?+1 g 2
Zatl| - (n + ) .(n+1)-|x! <1 = R = 0. The interval of convergence is just &
an n %
x=0. 4

The interval of convergence is (-1/3, 1/3).
The interval of convergence is (—00, 00).

Tﬁe interval of convergence is [—1/3, 1/3).
The intervai of convergeﬁce is [-1/3,1/3].

(1, 5).
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50. May be true. (The statement is true when a; = 1/k! but it is false when a, = 1.)

51. Must be true. If the radius of convergence of the power series is 3, then the mterval of
convergence includes all values of x such that |[x — 1} < 3.

-

52. Cannet be true. The interval of convergence of this power series must be symmetric about
the point b = 1.

53. Cannot be true. The interval of convergence of the power series is the solution set of the
inequality |x — 1| < 8. Thus, the radius of convergence of the power series is 8.

s h 1 1
. li -1 li — ==
34 (a) x-l-ﬁ]‘ g ( 1) E x—Lnll“ 1 +Xx 2

(b) An infinite series converges only if the sequence defined by its partial sums bonverges.
‘ N

Since the partial sums Z (—1)* are alternately 1 and 0, the infinite series does not

k=0
converge.
1 —cosx 21 1 —cosx
' _ 1 — k+l = lim ———— = 0.
o — g ) X% &f — g%
) — - i =2.
26 — zg(ﬂc-{—l)! = M
X — arctan x —arctanx 1
7. ——— =) (-D'r— m ———— =3
3 Z( Dt 2k+3 = —133) 3 3
) Inx . In(l+w) . = k w*
. — = — — = l'
8 M T =i Hﬁ(z_:( i
x _ xn2 _ - 2y
9. X ==} o R=00
- k=0
2 _ l 2 k S k . R =
60. cos’x = (1 + cos(2x)) = 5 (1 +Z( D (2k)! ) * Z( l) (2k)' "
5+x 2 1 2 1

61. Xrx—2 x—1 x+2 1<z 21+Ga/2

=_—2ixk - % i(—n" (%)k

k=0

0 k42 k
_2(2 + (- 1))75"; R=1.
2k+1

k=l
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(3x)2k+l

. 3
62. fix) =sin’(x) = %(3 sinx — sin(3x)) = Z(— Y—e (2k T 4 Z(_ T (2k + 1)!

k+1 3%+ 3 2k+1
Z( 1) i R = 0.

4 Zk+D!
63. ! . ! Z( D¥x =2 = a = (- 1)’c+1

l1—-=x 1+ (x— 2)

64. Since f'(0) > 0, the coefficient of x in the Maclaurin series representation of f must be
positive; the coefficient of x in the series given is negative.

65. (a) No. The Maclaurin seﬁes representation of f is

F&) = £0) + £/ (O)x +f“ 2

coefficient of x? in the Maclaurm series representation of f is negative.
i 3 ¥ 1 7
®) Yes. "0 = 2(F @) ()’ - 37" (e@)’ > 0

66. (a) The following inequalities are apparent from the figures illustrating the integral test:

n+1
f a(x)dx < Ea,g < 4y +[ a(x)dx.
1

k_

-. Since f is concave down at x = 0, the

Taking a(x) = 1/x, these inequalities imply that ln(n + 1) < H, < 1 +Inn.
(b) First, observe that
1
Ay — dpy) = (H,, - lnn) — (H,,.,.; —In(n + 1)) =Iln(n+1)—Inn — pa—y Then,

n+1 1
note that xldx=In(n+1)~1lnn >
n

: since x~! is a decreasing function
n .
on the interval [n, n + 1]. Thus, a, > g.4;.

(c) The sequence a, is decreasing and bounded below by 0 (since
H, —Inn > In(n + 1) — Inn > 0). Thus, it converges.

@ [ rwd=tim [ rod=jin(f@- 1) =-fe@.
[NoTE: f(a)=ln(a+1)-— ! =1n(l+£)— ! 1
a a

a-+1 a+1
(e) Whenx > 0, F(x) fmf’('r)dt> fw a_ !
X)=— = .
¢ ' i . G+ 212
(f) Let
N -
Sy = (@ — ar1)
) k=n
= (@p — Any1) T (Gpy)l —Qny2) + -+ (@ — Ay} = Gn — AN4-
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67.

68.
69.

70.
71.

72.

73.

. oo
Since y = lim a,, E (ar = agy1) = lim Sy =a, — lim ayy1 =dn = V-
n—00 P . N—oo N—oo
=R

o0 o0
(g) Since f is a decreasing function, the integral test implies that f fx)ydx < Z Fk).
- ' n k=n

m a
Therefore, part (l?) implies that '/; fx)dx > 2(n1+ -
i 1 o
To get the upper bound on a, — ¥, note that f (k) < % (-IZ — m) (Apply the

trapezoid rule to f : * dx/x.) This ine&luali.ty‘implies that

— =171 1 1
>r0<X5(i-m) = w

k=n . k=n
. . dnt1 | . r—nj-|x . , . . .
Since lim |——| = lim I—-——I-l——l < 1if |x| < 1, the binomial series converges if
=00 | d, n—CO n+1
[x] < 1.
Letr = 1/2.
The binomial series for (1 + u)? terminates after a finite number of terms since r = 3isan

integer: (1 + u)® = 1 + 3u + 3u? + . Therefore,
fx)= (1 J!—J«:“)3 =1+3x*+3x% +x"

e(x) = V1 —x2~ 1 —x2/3 —x*/9 — 5%5/81.
2(x) = (1 + 872 a0 1 — 3x2/2 + 15x*/8 — 35x%/16.

dx
x) = arcsinx =
8 /‘vl——x2
f 1_'_xz_{’_3}«:“_!_5x6'_|_ d +x3+3x5+5x7
= — — 4 ... oy . i -
2 T8 T 16 o 6~ 40 112
u o w  u 5ut
Since vVIFaR =142 — b o= — -,
ince V1+u=1+3- ¢+~ 15
3 6 x9 5):12

\/1+x3=1+f——x—+—-—i---.Thus,

2 8 16 128

2/5 2/5 3 6 9 5 12 .
, \/1+x3dx=f (1+£——x—+x——x—:|:---)dx
v} 0

2 g 16 128

_2. 1 2)4_1 2)’_'_,1 A (2)‘3i
5 8\5 56 \5/ 160 \5 1664 \ 5

Now, since this is an alternating series (after the first term) and 27/(56 - 57) < 5 x 1074, the
value of the integral is approximated to the desired accuracy by
2/5 +24/(8 - 5%) = 252/625 = 0.4032.
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-Dr-2)---(r—n+1

" x"D_ The coefficient of x" in the series
n—1)!

74 @ f@=Y rtr

for (1 +2) £/(x) is |
rr=0D0¢-2) - (r—n+ 10 —n) +r(r—1)(r—2)---(r—n+1)

n! (n—1)!
=) -1 —2)---(r—n+1) +n-r(r—1)(r—2)---(r—-n+1)
- nl n!
_rr=Dr -2 (r-n+1)
. _ n! )
Since this is also the coefficient of x” in the series for r f(x), the result follows.
®) g'(x) = fix) B rf(x) — F'(x) . (L +x)f'(x) —o0.

(1+xy Q+x(1+x)y A+xy (Q+x)(1+xy
(c) The result in part {c) implies that g is a constant function. Since g(0) = 1, g{x) = 1
and so f(x) = (1 +x)".

75. (a) By the binomial power series,

f(x)—(1+x)r__1+Zr(r—-1)(r—2) (F—n+1)

n!

=1
Thus, g(x) = (1 — x?)"1/2 can be written as

1+ (=1/20(=3/2)(=3/2)---(1/2 —n) —x?yn

n! (

n=1

=1+Z( 1)7¢ ’1)( 2:‘3)( 5).- (1-2n)x2,,

n=1

2 1-3-5-.@2n=1) ,
=143 2-4-6..-2n)

n=1

To ﬁnish we integrate:
1-3-5--.@2n—-1) ,, 1-3-5...(2n — 1) x%+!
1 z: dx = +§:
f( P yrerss (2n) x ) = 2-4.6..-(2n) I+l

f‘ dt
- 0 +/1-—1¢2

= arcsinx.

(b) Let u = arcsinx. Then du = \—/_‘11% and sin # = x. Thus,
—-X

1 2n+l /2 it
dx = f sin udu
/o «./-'l—xi 0
2:4-6---2m
3.5-7---(2n+1)
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76.

arcsin x Varcsinx  x&t!
(©) el dx
v1—x2 x 1 — x2

~ 1-3.5--.(2n =1 1 x2t :
j; (x +§ 2-4-6---(2n) 2n+1) V1 —x? *

1 21-3-5.-. - L 2+l
=j‘ x dx + ZI 3.5...@n-1) 1 f x dx
0 V1 -~x2 - 2:4-6---(2n) 2n+1/Jy J1—-2x2

1

ad 1 N |
=1 — _— -
- ; 2k + 1)? g @k + 17
(d) Letu = arcsinx. Then du = 1/+/1 — x2dx. Thus,
' ! arcsin x f"ﬂ m?
dx = udu = —
.[o V1 —x2 o 8

(e} After writing out a few terms, it is clear that

g_z 2 e (2k+1)2 +E (2k)2

k=0

Since the summation on the left hand side is a convergent p-series, we can assign to it
some limit L. Then, the above equation can be rewritten as L = #2/8 + L/4. Solving
- 2
T
a2 ol
for L yields L = 7 */6. Thus, Zkz ==
1 X
(a) By part (¢) of the Exercise 19'in Section 9.2, R, = -—'f (x — )" fOD () dr. Let
ni Jo
F@) = (14 1t). After differentiating f a few times, it is easy to see that
ffO=rir—0Dr-2)---(r —n)1 + 1)@+, Thus
r-(r=0-r=2)---(r=—m f* (x-1t)
R, = :
n! o (14 )yrti—r

(b) Since ¢ > 0, "l‘:” <|x—1] < |xl.
(c) By parts (a) and (b),
[Rn(x)l < |r (F 1) (rn_1 2) ( n)lxn fx |(1 +f)r_l|dt
, . 0
| =I(r—-l)-(r—"'2)---(r-")1xn|(1+x)r‘_1|.

(d) If0 <x < I, then
-1 - 2
lun [Ra(x)| = l =D =2 - -n) x"{(1+x)" — 1| = 0. Thus, the
bmonual series converges to f anng the interval [0, 1).
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(e) If -1 < x <r < 0,then

—lx—t¢
X =1 el Thus,
1+

(r-1)-(r—r2)--_-(r—n)fix|,,fxl(1+:)r,1ldt
ni. [
=D =2)---r—n)

n!

|Rax)] < .

%711 — (1 + x)7].

If -1 < x <« 0, this series converges converges as # — 00, since lim, . |x|* = 0.

1 : : =L (=1
77. (a) Notice that Lim Z( ) = e¢~!. Furthermore, since E( u) is an alternating

m—od .
1" 1
series, [— — 3_0 ( k') SmIDr Therefore,
1 1) !
m! ‘_Z( ) < m 1 _
e = k! (m—i—l)r m+l

(%) ml/e = (n-m!)/m =n - (m — 1)\. Since this final expression is a product of integers,
m!/e is also an integer.

(c) Letag = m!/k!, where & is an integer such that 0 < k < m. Then,
=mm-D(m-=2)---(m-~{m—-k—1)). Sinee a; is a product of integers, it, too,
mo ok
is an integer Thus, since m! 2

k=0
mtegers the summation itself is an integer.

is the sum of alternatingly positive and negative

(d} By assumption,-m is a positive integer. Thus, 1/(m + 1) < 1/2 for all m. Since N is
the product of two non-negative integer values, it follows that N = 0.

1 & (=1)F
E_Z !

k=0

= 0. Since m! > 0, it follows that

{e) By the previous part m!

R N G VR N G VR N b,
" k=0 k' k=0 k! k=m+1
) k
(=D
Thu Z T =0. However this is false, since the terms of the summation are
k=m+1 !

both alternating and decreasing. Therefore ¢ is irrational.

78. (a) The sum of k numbers is less than or equal t0 £ times the largest summand; similarly, it
is greater than or equal to k times the smallest summand. Thus, since the sequence
{a, } is decreasing,

2m_1a2m S azmﬁl+1 -+ azm-l+2 + e 4 Lgm = 2 azm—l_'_} < 2 azm—l .
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