Section 3.4

Complex Poots

HW Problems for

2/19/08. See

numbers.

posted assignment

PROBLEMS

In each of Problems 1 through 6 use Euler's formula to write the given expression in the form a+ib.

1. $\exp(1+2i)$

2. $\exp(2 - 3i)$

3. $e^{i\pi}$

4. $e^{2-(\pi/2)i}$

5. 2^{1-i}

6. π^{-1+2i}

In each of Problems 7 through 16 find the general solution of the given differential equation.

7.
$$y'' - 2y' + 2y = 0$$

8.
$$y'' - 2y' + 6y = 0$$

9.
$$y'' + 2y' - 8y = 0$$

10.
$$y'' + 2y' + 2y = 0$$

11.
$$y'' + 6y' + 13y = 0$$

12.
$$4y'' + 9y = 0$$

13.
$$y'' + 2y' + 1.25y = 0$$

14.
$$9y'' + 9y' - 4y = 0$$

15.
$$v'' + v' + 1.25v = 0$$

16.
$$y'' + 4y' + 6.25y = 0$$

15.
$$y'' + y' + 1.25y = 0$$

16.
$$y'' + 4y' + 6.25y = 0$$

In each of Problems 17 through 22 find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior for increasing t.

17.
$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$

18.
$$y'' + 4y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 0$

19.
$$y'' - 2y' + 5y = 0$$
, $y(\pi/2) = 0$, $y'(\pi/2) = 2$

20.
$$y'' + y = 0$$
, $y(\pi/3) = 2$, $y'(\pi/3) = -4$

21.
$$y'' + y' + 1.25y = 0$$
, $y(0) = 3$, $y'(0) = 1$

22.
$$y'' + 2y' + 2y = 0$$
, $y(\pi/4) = 2$, $y'(\pi/4) = -2$

23. Consider the initial value problem

$$3u'' - u' + 2u = 0$$
, $u(0) = 2$, $u'(0) = 0$.

- (a) Find the solution u(t) of this problem.
- (b) Find the first time at which |u(t)| = 10.
- 24. Consider the initial value problem

$$5u'' + 2u' + 7u = 0$$
, $u(0) = 2$, $u'(0) = 1$.

- (a) Find the solution u(t) of this problem.
- (b) Find the smallest T such that $|u(t)| \le 0.1$ for all t > T.
- 25. Consider the initial value problem

$$y'' + 2y' + 6y = 0$$
, $y(0) = 2$, $y'(0) = \alpha \ge 0$.

- (a) Find the solution y(t) of this problem.
- (b) Find α so that y = 0 when t = 1.
- (c) Find, as a function of α , the smallest positive value of t for which y = 0.
- (d) Determine the limit of the expression found in part (c) as $\alpha \to \infty$.
- 26. Consider the initial value problem

$$y'' + 2ay' + (a^2 + 1)y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

- (a) Find the solution y(t) of this problem.
- (b) For a = 1 find the smallest T such that |y(t)| < 0.1 for t > T.
- (c) Repeat part (b) for a = 1/4, 1/2, and 2.
- (d) Using the results of parts (b) and (c), plot T versus a and describe the relation between T and a.