Boyce / Di Prima

Real + distinct

HW Poblems

tor 2/12/08

lsee posted

numbers)

Section 3.1

PROBLEMS

In each of Problems 1 through 8 find the general solution of the given differential equation.

1.
$$y'' + 2y' - 3y = 0$$

$$2. y'' + 3y' + 2y = 0$$

3.
$$6y'' - y' - y = 0$$

4.
$$2y'' - 3y' + y = 0$$

5.
$$y'' + 5y' = 0$$

6.
$$4y'' - 9y = 0$$

7.
$$y'' - 9y' + 9y = 0$$

8.
$$y'' - 2y' - 2y = 0$$

In each of Problems 9 through 16 find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior as t increases.

9.
$$y'' + y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = 1$

$$y(0) = 1, \quad y'(0) = 1$$

10.
$$y'' + 4y' + 3y = 0$$
, $y(0) = 2$, $y'(0) = -1$

11.
$$6y'' - 5y' + y = 0$$
, $y(0) = 4$, $y'(0) = 0$

12.
$$y'' + 3y' = 0$$
, $y(0) = -2$, $y'(0) = 3$

13.
$$y'' + 5y' + 3y = 0$$
, $y(0) = 1$, $y'(0) = 0$

14.
$$2y'' + y' - 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$

15.
$$y'' + 8y' - 9y = 0$$
, $y(1) = 1$, $y'(1) = 0$

16.
$$4y'' - y = 0$$
, $y(-2) = 1$, $y'(-2) = -1$

- 17. Find a differential equation whose general solution is $y = c_1 e^{2t} + c_2 e^{-3t}$.
- 18. Find a differential equation whose general solution is $y = c_1 e^{-t/2} + c_2 e^{-2t}$.
- 2 19. Find the solution of the initial value problem

$$y'' - y = 0$$
, $y(0) = \frac{5}{4}$, $y'(0) = -\frac{3}{4}$.

Plot the solution for $0 \le t \le 2$ and determine its minimum value.

20. Find the solution of the initial value problem

$$2y'' - 3y' + y = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{2}$.

Then determine the maximum value of the solution and also find the point where the solution is zero.

- 21. Solve the initial value problem y'' y' 2y = 0, $y(0) = \alpha$, y'(0) = 2. Then find α so that the solution approaches zero as $t \to \infty$.
- 22. Solve the initial value problem 4y'' y = 0, y(0) = 2, $y'(0) = \beta$. Then find β so that the solution approaches zero as $t \to \infty$.

In each of Problems 23 and 24 determine the values of α , if any, for which all solutions tend to zero as $t \to \infty$; also determine the values of α , if any, for which all (nonzero) solutions become unbounded as $t \to \infty$.

23.
$$y'' - (2\alpha - 1)y' + \alpha(\alpha - 1)y = 0$$

24.
$$y'' + (3 - \alpha)y' - 2(\alpha - 1)y = 0$$

25. Consider the initial value problem

$$2y'' + 3y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = -\beta$,

where $\beta > 0$.

- (a) Solve the initial value problem.
- (b) Plot the solution when $\beta = 1$. Find the coordinates (t_0, y_0) of the minimum point of the solution in this case.
- (c) Find the smallest value of β for which the solution has no minimum point.