Math 112
 Approximating Integrals Numerically

Summary of Results. Consider the definite integral

$$
I=\int_{a}^{b} f(x) d x
$$

For any integer n, use the following notation:

- L_{n} denotes the left rectangular sum approximation using n rectangles.
- R_{n} denotes the right rectangular sum approximation using n rectangles.
- M_{n} denotes the midpoint rectangular sum approximation using n rectangles.
- T_{n} denotes the trapezoid approximation using n trapezoids.

1. Suppose $f(x)$ is increasing on $[a, b]$. Then for any integers m and n, the following bounding (or trapping) inequality is true:
2. Suppose $f(x)$ is decreasing on $[a, b]$. Then for any integers m and n, the following bounding (or trapping) inequality is true:
3. Suppose $f(x)$ is concave up on $[a, b]$. Then for any integers m and n, the following bounding (or trapping) inequality is true:
4. Suppose $f(x)$ is concave down on $[a, b]$. Then for any integers m and n, the following bounding (or trapping) inequality is true:
5. For any n, the following relationship holds among T_{n}, L_{n}, and R_{n}.
