Absolute Convergence and Alternating Series

Definition: Absolute and conditional convergence. Let Σa_{k} be any series. (The terms a_{k} may be negative or positive.)

- If $\Sigma\left|a_{k}\right|$ converges, then we say that Σa_{k} converges absolutely.
- If $\Sigma\left|a_{k}\right|$ diverges but Σa_{k} converges, then we say that Σa_{k} converges conditionally.

Theorem. If $\Sigma\left|a_{k}\right|$ converges, so does Σa_{k}.
Example 1. Determine whether the series $\sum_{k=1}^{\infty} \frac{\sin k}{k^{2}}$ converges conditionally, converges absolutely, or diverges.

Example 2. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}+2 k+1}$ converges conditionally, converges absolutely, or diverges.

Definition. An alternating series is a series whose terms alternate in sign, i.e. a series of the form

$$
\sum_{k=1}^{\infty}(-1)^{k+1} c_{k}=c_{1}-c_{2}+c_{3}-c_{4}+\cdots
$$

where each c_{k} is positive.
Alternating Series Test. Consider the alternating series

$$
\sum_{k=1}^{\infty}(-1)^{k+1} c_{k}=c_{1}-c_{2}+c_{3}-c_{4}+\cdots
$$

Suppose that the following two conditions are satisfied:

- $c_{1} \geq c_{2} \geq c_{3} \geq \cdots 0$, i.e. $c_{n+1} \leq c_{n} \geq 0$ for all n
- $\lim _{k \rightarrow \infty} c_{k}=0$

Then $\sum_{k=1}^{\infty}(-1)^{k+1} c_{k}$ converges.
Example 3. Determine whether the alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ converges conditionally, converges absolutely, or diverges.

Example 4. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{4}}$ converges conditionally, converges absolutely, or diverges.

Example 5. Determine whether the series $\sum_{k=5}^{\infty} \frac{(-1)^{k} \ln k}{k}$ converges conditionally, converges absolutely, or diverges.

