Absolute Convergence and Alternating Series

Definition: Absolute and conditional convergence. Let Σa_k be any series. (The terms a_k may be negative or positive.)

- If $\Sigma |a_k|$ converges, then we say that Σa_k converges absolutely.
- If $\Sigma |a_k|$ diverges but Σa_k converges, then we say that Σa_k converges conditionally.

Theorem. If $\Sigma |a_k|$ converges, so does Σa_k .

Example 1. Determine whether the series $\sum_{k=1}^{\infty} \frac{\sin k}{k^2}$ converges conditionally, converges absolutely, or diverges.

Example 2. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^3 + 2k + 1}$ converges conditionally, converges absolutely, or diverges.

Definition. An **alternating series** is a series whose terms alternate in sign, i.e. a series of the form

$$\sum_{k=1}^{\infty} (-1)^{k+1} c_k = c_1 - c_2 + c_3 - c_4 + \cdots,$$

where each c_k is positive.

Alternating Series Test. Consider the alternating series

$$\sum_{k=1}^{\infty} (-1)^{k+1} c_k = c_1 - c_2 + c_3 - c_4 + \cdots$$

Suppose that the following two conditions are satisfied:

- $c_1 \ge c_2 \ge c_3 \ge \cdots 0$, i.e. $c_{n+1} \le c_n \ge 0$ for all n
- $\lim_{k \to \infty} c_k = 0$

Then
$$\sum_{k=1}^{\infty} (-1)^{k+1} c_k$$
 converges.

Example 3. Determine whether the alternating harmonic series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ converges conditionally, converges absolutely, or diverges.

Math 112: Calc B

Alternating Series

Example 4. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^4}$ converges conditionally, converges absolutely, or diverges.

Example 5. Determine whether the series $\sum_{k=5}^{\infty} \frac{(-1)^k \ln k}{k}$ converges conditionally, converges absolutely, or diverges.