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1. Sketch the phase line for the differential equation
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Identify each equilibrium point as a sink, source, or node.
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2. Find a polynomial function f(y) of degree 4 such that the autonomous DE
f—g = f(y) has a node at y = ~1, a sink at ¥ = 1, a source at y = 2, and no
other equilibrium points.
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3. Consider the differential equation
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(a) Show that
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yi(t) = ;= and y(t) = oy

are both solutions of the given differential equation.

(b) Let y(t) be any solution of the differential equation with initial condition
y(0) = yo that satisfies —1 < 3y < —%. Why are we guaranteed that such a
solution y(¢) always exists?

(c) Without explicitly solving the differential equation, find a lower and upper
bound (in terms of ¢) for y(¢). Explain how you obtained these bounds,
and if you apply any theorems, be sure that you explicitly state why those
theorems apply to this problem.

(d) Describe the behavior of y(t) as t — oo and as t — —o0.
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