Math 333
 Quiz 2
 Thursday, January 31, 2008

1. Sketch the phase line for the differential equation

$$
\frac{d y}{d t}=-(y-1)(y-2)(y-3) .
$$

Identify each equilibrium point as a sink, source, or node.
2. Find a polynomial function $f(y)$ of degree 4 such that the autonomous DE $\frac{d y}{d t}=f(y)$ has a node at $y=-1$, a sink at $y=1$, a source at $y=2$, and no other equilibrium points.
3. Consider the differential equation

$$
\frac{d y}{d t}=-y^{2} .
$$

(a) Show that

$$
y_{1}(t)=\frac{1}{t-1} \text { and } y_{2}(t)=\frac{1}{t-2}
$$

are both solutions of the given differential equation.
(b) Let $y(t)$ be any solution of the differential equation with initial condition $y(0)=y_{0}$ that satisfies $-1<y_{0}<-\frac{1}{2}$. Why are we guaranteed that such a solution $y(t)$ always exists?
(c) Without explicitly solving the differential equation, find a lower and upper bound (in terms of t) for $y(t)$. Explain how you obtained these bounds, and if you apply any theorems, be sure that you explicitly state why those theorems apply to this problem.
(d) Describe the behavior of $y(t)$ as $t \rightarrow \infty$ and as $t \rightarrow-\infty$.

