Math 333 Homework 3 Solutions

Section 1.7

- 1.7 #2: The bifurcation value is a = 9/4.
- **1.7 #4:** The bifurcation value is $\alpha = 0$.
- **1.7** #8: For $\alpha < -1$, solutions are always decreasing. For $\alpha = -1$, the equilibrium point y = 0 is a node. If $1 < \alpha < 0$, then there are two equilibrium points $y = \pm \sqrt{\ln(-1/\alpha)}$. If $\alpha \ge 0$, solutions are always increasing.
- **1.7 #10:** The bifurcation value is $\alpha = -1$.
- 1.7 #13: No such f(y) is possible.
- 1.7 #14: No such g(y) is possible.
- 1.7 #17: (a) A model for the fish population that includes fishing is

$$\frac{dP}{dt} = 2P - \frac{P^2}{50} - 3L,$$

where L is the number of licenses issued. We want to find L as large as possible so that there is still an equilibrium point present. This is the bifurcation value of L, which occurs at L = 50/3. Since this value of L is not an integer, the largest number of licenses that should be allowed is 16.

- (b) Slope field or graph. If we sell 16 licenses, then any initial population grater than 40 tends to the equilibrium level P = 60.
- (c) The maximum number of licenses is $16\frac{2}{3}$. However, it is dangerous to allow this many licenses since the death of a few extra fish would push the number of fish below the equilibrium value P = 50, which would cause the fish population to die out.

Section 1.8

1.8 #2:
$$y(t) = ke^{-4t} + e^{-t}$$

1.8 #4: $y(t) = ke^{2t} - \frac{1}{4}\cos(2t) - \frac{1}{4}\sin(2t)$
1.8 #6: $y(t) = ke^{t/2} + 4te^{t/2}$
1.8 #8: $y(t) = \frac{43}{4}e^{2t} - \frac{3}{4}e^{-2t}$

Math 333: DiffEq

- **1.8 #19:** Let $y(t) = y_h(t) + y_1(t) + y_2(t)$. Then $\frac{dy}{dt} + a(t)y = 0 + b_1(t) + b_2(t)$, so y(t) is a solution of the original DE.
- **1.8 #20:** $y_p(t) = \frac{3}{2}t^2 \frac{1}{2}t \frac{1}{4}$

1.8 #21: Use the technique suggested in Exercise 19. Calculate two solutions, one for the right hand side $t^2 + 2t + 1$ and one for the right hand side e^{4t} . Then the solution of the IVP is $y(t) = \frac{-5}{12}e^{-2t} + \frac{1}{2}t^2 + \frac{1}{2}t + \frac{1}{4} + \frac{1}{6}e^{4t}$.

1.8 #33(b): $\frac{d(y_p - y_q)}{dt} = a(t)(y_p - y_q).$

Section 1.8

1.9 #2:
$$y(t) = \frac{t^6}{3} + ct^3$$

1.9 #6: $y(t) = t^2(t-1)e^t + ct^2$
1.9 #10: $y(t) = 4t4^{-t^2} + 3e^{-t^2}$
1.9 #14: $y(t) = 4e^{t^3/3} \int e^{-t^3/3} dt$
1.9 #16: $y(t) = 4e^{-1/t} \int e^{1/t} \cos t \, dt$

1.9 #20: The values of r that give solutions in terms of elementary functions are r = 0 and r = -1.