Math 333
 Homework 3 Solutions

Section 1.7

1.7 \#2: The bifurcation value is $a=9 / 4$.
1.7 \#4: The bifurcation value is $\alpha=0$.
1.7 \#8: For $\alpha<-1$, solutions are always decreasing. For $\alpha=-1$, the equilibrium point $y=0$ is a node. If $1<\alpha<0$, then there are two equilibrium points $y= \pm \sqrt{\ln (-1 / \alpha)}$. If $\alpha \geq 0$, solutions are always increasing.
1.7 $\# 10$: The bifurcation value is $\alpha=-1$.
1.7 \#13: No such $f(y)$ is possible.
1.7 \#14: No such $g(y)$ is possible.
1.7 \#17: (a) A model for the fish population that includes fishing is

$$
\frac{d P}{d t}=2 P-\frac{P^{2}}{50}-3 L
$$

where L is the number of licenses issued. We want to find L as large as possible so that there is still an equilibrium point present. This is the bifurcation value of L, which occurs at $L=50 / 3$. Since this value of L is not an integer, the largest number of licenses that should be allowed is 16 .
(b) Slope field or graph. If we sell 16 licenses, then any initial population grater than 40 tends to the equilibrium level $P=60$.
(c) The maximum number of licenses is $16 \frac{2}{3}$. However, it is dangerous to allow this many licenses since the death of a few extra fish would push the number of fish below the equilibrium value $P=50$, which would cause the fish population to die out.

Section 1.8

$1.8 \# \mathbf{2}: y(t)=k e^{-4 t}+e^{-t}$
$1.8 \# 4: y(t)=k e^{2 t}-\frac{1}{4} \cos (2 t)-\frac{1}{4} \sin (2 t)$
$1.8 \# \mathbf{6}: y(t)=k e^{t / 2}+4 t e^{t / 2}$
$1.8 \# 8: y(t)=\frac{43}{4} e^{2 t}-\frac{3}{4} e^{-2 t}$
1.8 \#19: Let $y(t)=y_{h}(t)+y_{1}(t)+y_{2}(t)$. Then $\frac{d y}{d t}+a(t) y=0+b_{1}(t)+b_{2}(t)$, so $y(t)$ is a solution of the original DE.
1.8 \#20: $y_{p}(t)=\frac{3}{2} t^{2}-\frac{1}{2} t-\frac{1}{4}$
1.8 \#21: Use the technique suggested in Exercise 19. Calculate two solutions, one for the right hand side $t^{2}+2 t+1$ and one for the right hand side $e^{4 t}$. Then the solution of the IVP is $y(t)=\frac{-5}{12} e^{-2 t}+\frac{1}{2} t^{2}+\frac{1}{2} t+\frac{1}{4}+\frac{1}{6} e^{4 t}$.
$1.8 \# 33(\mathbf{b}): \frac{d\left(y_{p}-y_{q}\right)}{d t}=a(t)\left(y_{p}-y_{q}\right)$.

Section 1.8

$1.9 \# \mathbf{2}: y(t)=\frac{t^{6}}{3}+c t^{3}$
$1.9 \# \mathbf{6}: y(t)=t^{2}(t-1) e^{t}+c t^{2}$
$1.9 \# 10: y(t)=4 t 4^{-t^{2}}+3 e^{-t^{2}}$
$1.9 \# 14: y(t)=4 e^{t^{3} / 3} \int e^{-t^{3} / 3} d t$
$1.9 \# 16: y(t)=4 e^{-1 / t} \int e^{1 / t} \cos t d t$
1.9 \#20: The values of r that give solutions in terms of elementary functions are $r=0$ and $r=-1$.

