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Math 333
Exam 2

• The exam is due at 11:30 am on Monday, May 5. NO LATE EXAMS WILL BE ACCEPTED.

• During the exam, you are permitted to use your textbook, your class notes, Maple (for
simulation only), and any lecture notes or other reference material that I have posted on the
course website. You may NOT use any other sources during the exam or discuss the exam
with any other students or professors.

• You must show all work to receive credit. Answers for which no work is shown will receive no
credit.

Name:

“On my honor, I have neither given nor received any unauthorized aid on this examination. I
understand that violation of this policy is against Kenyon College policy and will be prosecuted as
an academic infraction.”

Signature:

Question Score Maximum Question Score Maximum

1 10 5 15

2 10 6 10

3 15 7 20

4 10 8 10

Bonus 10 Total 100
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1. (10 points) Find the general solution of the differential equation

x2y′′ − 5xy′ + 9y = 0.

2. (10 points) Find the general solution of the differential equation

(x− 2)2y′′ + 5(x− 2)y′ + 8y = 0.

3. Transformation of an Euler Equation to a Constant Coefficient Equa-
tion. The Euler equation

x2y′′ + αxy′ + βy = 0

can be reduced to an equation with constant coefficients by a change of the
independent variable. Let x = ez, and consider the interval x > 0.

(a) (5 points) Show that the Euler equation becomes

d2y

dz2
+ (α− 1)

dy

dz
+ βy = 0.

(b) (5 points) The differential equation in part (a) is a second-order linear dif-
ferential equation with constant coefficients. Find the general solution y(z)
of the differential equation in part (a). You will need to consider separately
the cases in which the roots r1 and r2 of the characteristic polynomial are
real and distinct, real and equal, and complex conjugates.

(c) (5 points) Finally, use the substitution x = ez to find the general solution
y(x) of the Euler equation. You can check that you obtain the same general
solution that we obtained in class. Again, make sure to consider separately
the different cases for r1 and r2.

4. (10 points) Find the general solution of the differential equation

x2y′′ − 2xy′ + 2y = 3x2 + 2 ln x, x > 0.

5. Consider the differential equation

(x− 1)y′′ − xy′ + y = 0, x > 1.

(a) (5 points) Show that y1(x) = ex is a solution of the differential equation.

(b) (10 points) Find the general solution of the differential equation. Depending
on how you choose to solve this problem, you may find it useful to use
Maple to evaluate integrals that arise in your computation. The syntax for

evaluating the indefinite integral

∫
f(x) dx in Maple is int(f(x),x).

6. (10 points) Find the general solution of the differential equation

y(4) − 4y′′′ + 4y′′ = e2t + cos(t).

Math 333: Diff Eq 2 Exam 2



Kenyon College paquind@kenyon.edu

7. The Chebyshev Equation. The Chebyshev differential equation is the second-
order differential equation

(1− x2)y′′ − xy′ + α2y = 0,

where α is a constant. Note that x = 0 is an ordinary point of the differential
equation, so we can look for a power series solution centered at x0 = 0:

y(x) =
∞∑

n=0

anx
n = a0 + a1x + a2x

2 + · · · .

(a) (10 points) Compute the coefficients a2, a3, and a4 in terms of the arbitrary
constants a0 and a1. Find the general recurrence relation for the coefficients
an.

(b) (10 points) The Chebyshev polynomials are polynomial solutions Pα(x) of
the Chebyshev equation for positive integer values of α corresponding to
the following initial conditions:

• y(0) = 1 and y′(0) = 0 for even integers α.

• y(0) = 0 and y′(0) = 1 for odd integers α.

Find the Chebyshev polynomials P0(x), P1(x), P2(x), P3(x), and P4(x).
Note that you can check your work by verifying that each polynomial indeed
satisfies the differential equation.

8. (10 points) Consider the Euler equation

x2y′′ + αxy′ + βy = 0,

where α and β are real constants. Find conditions on α and β so that:

(a) All solutions approach zero as x → 0.

(b) All solutions are bounded as x → 0.

(c) All solutions approach zero as x →∞.

(d) All solutions are bounded as x →∞.

(e) All solutions are bounded both as x → 0 and as x →∞.
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Bonus: Some results on Legendre polynomials. (10 points)
Recall (from HW 11) that the Legendre polynomials are polynomial solutions Pν(x) of Legendre’s
equation

(1− x2)y′′ − 2xy′ + ν(ν + 1)y = 0

for positive integer values of ν corresponding to the following initial conditions:

• y(0) = 1 and y′(0) = 0 for even integers ν

• y(0) = 0 and y′(0) = 1 for odd integers ν.

Since Legendre’s equation is a second-order, linear, homogeneous differential equation, kPν(x) is
also a solution for any constant k. For this problem, we’ll normalize the Legendre polynomials
Pν(x) derived in HW 11 so that Pν(1) = 1 (note that this just means that we’ll multiply each
polynomial by an appropriate constant so that Pν(1) = 1).

(a) It can be shown that the general formula for Pn(x) is

Pn(x) =
1
2n

bn/2c∑
k=0

(−1)k(2n− 2k)!
k!(n− k)!(n− 2k)!

xn−2k,

where bn/2c denotes the greatest integer less than or equal to n/2 (you do not need to derive
this formula). By observing the form of Pn(x) for n even and n odd, show that

Pn(−1) = (−1)n.

(b) Show that the Legendre equation can also be written as

[(1− x2)y′]′ = −ν(ν + 1)y.

Then it follows that

[(1− x2)P ′
n(x)]′ = −n(n + 1)Pn(x) and [(1− x2)P ′

m(x)]′ = −m(m + 1)Pm(x).

(c) By multiplying the first equation by Pm(x) and the second equation by Pn(x), integrating by
parts, and then subtracting one equation from the other, show that∫ 1

−1

Pn(x)Pm(x) dx = 0 if n 6= m.

This property of the Legendre polynomials is known as the orthogonality property. If m = n,
it can be shown that the value of the integral is 2/(2n + 1).

(d) Given any polynomial f of degree n, it is possible to express f as a linear combination of
P0, P1, P2, . . . , Pn:

f(x) =
n∑

k=0

akPk(x).

Using the result of the part (c), show that

ak =
2k + 1

2

∫ 1

−1

f(x)Pk(x) dx.
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