Math 333

Exam 1 Answers

1. Find the general solution of the differential equation

$$
\frac{d y}{d x}=\frac{x-e^{-x}}{y+e^{y}} .
$$

Solution.

$$
\frac{1}{2} y^{2}+e^{y}=\frac{1}{2} x^{2}+e^{-x}+C
$$

2. Find the general solution of the differential equation

$$
\frac{d y}{d x}=-\frac{4 x+3 y}{2 x+y}
$$

Solution.

$$
|y+x||y+4 x|^{2}=C
$$

3. Find the general solution of the differential equation

$$
\frac{d y}{d t}=-3 y+e^{-2 t}+4
$$

Solution.

$$
y(t)=e^{-2 t}+C e^{-3 t}+\frac{4}{3}
$$

4. Find the general solution of the differential equation

$$
y^{\prime \prime}+\frac{y^{\prime}}{2}+\frac{y}{16}=0
$$

Solution.

$$
y(t)=k_{1} e^{-t / 4}+k_{2} t e^{-t / 4}
$$

5. Find the solution of the initial-value problem

$$
y^{\prime \prime}+6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1 .
$$

Solution.

$$
y(t)=\cos (\sqrt{6} t)-\frac{\sqrt{6}}{6} \sin (\sqrt{6} t)
$$

6. Find a differential equation of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

for which the function

$$
e^{-t}+7 e^{-2 t}
$$

is a solution, or explain why no such differential equation exists.

Solution.

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

7. Find a differential equation of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

for which the function

$$
y(t)=5+e^{-3 t}
$$

is a solution, or explain why no such differential equation exists.

Solution.

$$
y^{\prime \prime}+3 y^{\prime}=0
$$

8. Find a differential equation of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

for which the function

$$
y(t)=e^{t^{2}}
$$

is a solution, or explain why no such differential equation exists.
Solution. No such differential equation exists.
9. Bernoulli Equations. Sometimes it is possible to solve a nonlinear differential equation by making a change of the dependent variable that converts it into a linear equation. The most important such equation has the form

$$
\frac{d y}{d t}+p(t) y=q(t) y^{n}
$$

and is called a Bernoulli equation.
(a) Solve Bernoulli's equation when $n=0$.

Solution. Using the method if integrating factors,

$$
y(t)=\frac{1}{\exp \left(\int p(t) d t\right)}\left(\int \exp \left(\int p(t) d t\right) \cdot q(t) d t\right) .
$$

(b) Solve Bernoulli's equation when $n=1$.

Solution.

$$
\ln |y|=\int(q(t)-p(t)) d t
$$

(c) Show that if $n \neq 0,1$, then the substitution $v=y^{1-n}$ reduces Bernoulli's equation to a linear equation. This method of solution was found by Leibniz in 1696.

Solution.

$$
\frac{d v}{d t}+(1-n) p(t) v=(1-n) q(t)
$$

(d) Solve the differential equation

$$
t^{2} \frac{d y}{d t}+2 t y-y^{3}=0, \quad t>0
$$

using the method outlined in (a)-(c).
Solution.

$$
y(t)= \pm \sqrt{\frac{5 t}{2+5 C t^{5}}}
$$

10. Riccati Equations. The equation

$$
\frac{d y}{d t}=q_{1}(t)+q_{2}(t) y+q_{3}(t) y^{2}
$$

is known as a Riccati equation.
(a) Suppose that some particular solution y_{1} of this equation is known. A more general solution containing one arbitrary constant can be obtained through the substitution

$$
y=y_{1}(t)+\frac{1}{v(t)}
$$

where $v(t)$ is some function that must be determined. Show that $v(t)$ satisfies the first order linear equation

$$
\frac{d v}{d t}=-\left(q_{2}+2 q_{3} y_{1}\right) v-q_{3}
$$

Note that $v(t)$ will contain a single arbitrary constant.
(b) Consider the differential equation

$$
\frac{d y}{d t}=1+t^{2}-2 t y+y^{2}
$$

Show that $y_{1}=t$ is a particular solution. Find the general solution using the method outlined in (a).
Solution.

$$
y(t)=t+\frac{1}{C-t}
$$

11. Abel's Theorem. Suppose that y_{1} and y_{2} are solutions of the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Consider the Wronskian

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} .
$$

In this series of exercises, you will prove Abel's theorem:

$$
W\left(y_{1}, y_{2}\right)=c \cdot \exp \left[-\int p(t) d t\right]
$$

where c is a constant that does not depend on t.
(a) Show that

$$
\left(y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}\right)+p(t)\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)=0 .
$$

(b) Show that

$$
W^{\prime}+p(t) W=0
$$

Solution.

$$
W^{\prime}=y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}
$$

so the equation in part (a) can be rewritten as

$$
W^{\prime}+p(t) W=0
$$

(c) Conclude that

$$
W=c \cdot \exp \left[-\int p(t) d t\right]
$$

12. Consider the differential equation

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0, \quad t>0
$$

(a) Show that $y_{1}(t)=t^{-1}$ is a solution of the differential equation.
(b) Suppose that y_{2} is a second solution of the differential equation. Use Abel's theorem to write a first-order linear differential equation that must be satisfied by y_{2}.

Solution.

$$
\frac{d y_{2}}{d t}+\frac{1}{t} y_{2}=C \frac{1}{t^{2}}
$$

(c) Solve the differential equation in (b) to find a second solution y_{2} of the original differential equation.
Solution.

$$
y_{2}(t)=t^{-1} \ln t
$$

