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Solution Approach
We formulate a computer simulation in order to calculate operation cost

projections. The simulation produces random weekly train schedules and
evaluates these schedules with a Pascal program. The simulation has 10,000
weeks of iterations, and is supported by five submodels that aid in arriving
at the information required by the Aspen-Boulder management.

Results
1. Annual cost projection $89, 817, 000
2. Monthly demurrage projection $3, 053, 000

Recommendations to Management
• We have formulated an ideal train schedule that minimizes demurrage

costs. We recommend that this schedule be implemented in order to make
the system more cost effective.

• In order to decrease demurrage costs, use two crews if a train must wait
for the tipple to be filled.

• A third loading crew will reduce annual operating costs (cf. Submodel 2).

• This single tipple system can handle a fourth standard train every day.
However, we caution that the system will “lag” on Thursdays.

• We recommend that our simulation be verified by comparison with data.

• We recommend that our simulation be used to explore the expected value
of hypothetical scenarios.

• We recommend that our simulation be revised to model the operation
more realistically.
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The Model

Model Assumptions
• Upon arrival to the tipple system, all trains are completely empty.

• All train loading rates remain constant.

• The rate of tipple filling per crew remains constant, so adding a second
crew doubles the overall rate.

• Assume that all events are discrete (i.e., trains can arrive only on the
hour).

Model Formulation
In order to model the coal operation, we first performed a few hand

calculations to get exactly how the operation behaved. After only a few
trials, we discovered that many different arrival schedules are possible. It
would not be feasible to enumerate every possible train arrival schedule by
hand.

Another source of confusion is that the problem does not specify the
exact arrival rate of the trains. Without an arrival rate, we were not able to
construct easily an algebraic formula or linear program to model the behav-
ior of the operation. Therefore, we decided upon the simulation approach.
With the aid of an algorithm and a randomly generated train schedule, we
could evaluate every possible scenario. The simulation assists in answering
the questions of finding the expected annual costs of the tipple operation
and the expected monthly demurrage costs. To assist with answering the
other questions, we used five other submodels.

• Simulation (Main Model)

– Task 1: Random Weekly Schedule Array

– Task 2: Operation of System and Cost Evaluation

• Hand-calculated Submodels

– Submodel 1: The Ideal Scenario

∗ non-overlapping service times
∗ no high-capacity train arrives
∗ one crew fills tipple

– Submodel 2: Minimizing Tipple Loading Costs

∗ this is an algebraic optimization formula
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– Submodel 3: Minimizing Demurrage Costs

∗ look at multiple train arrivals

– Submodel 4: Four Trains?

∗ consider four standard trains arriving per day

– Submodel 5: Worst-Case Scenario

∗ look at maximized demurrage costs on a Thursday when all trains
arrive at the same time

Simulation
The algorithm of the simulation will

• produce a random weekly train schedule;

• evaluate costs for this schedule;

• repeat step (1) for n iterations; and

• tabulate the expected weekly, monthly, and annual costs.

Tasks of the Simulation Model
• generate a random weekly train schedule, and

• evaluate weekly train schedule to model operation behavior and calculate
costs.

Simulation Task 1: Random Weekly Schedule Array
Concept: Produce a random variable Y to slot train arrivals within the 168
hours of a week. Produce a random variable X to slot train arrivals of the
high-capacity train.

Model formulation: In considering different modeling alternatives, we
quickly decided upon a simulation model, because costs are based solely
upon the probabilities of trains showing up at crucial times. To a great ex-
tent, once a train shows up, the system deals with that train in an extremely
deterministic fashion. Since we have no underlying distribution, we found
that a simulation model would probably give us the best estimate for an
expected value of costs incurred.

Our first step was to determine the probabilities of trains showing up.
We decided to look at each day in a global or outside-of-time viewpoint. If
we tried to keep track of probabilities as we progressed through the hours
of the day, we found that probabilities of train arrival from hour to hour
changed, due to laws of conditional probability. However, when observed
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from the global viewpoint, in each 15-hr window of opportunity for a train
to arrive each day, there was a 1-in-15 chance that a given train would show
up within a given 1-hr window of time.

Since we decided to consider arrival probabilities on a train-by-train ba-
sis, we quickly decided that in evaluating the costs of one day’s business, it
would simplify matters greatly if we could extract all matters of probability
to the beginning of our daily cost evaluations. Another consideration we
had to take into account was that days of operation overlap, so that some-
times trains show up one day and don’t leave until the next. Therefore,
for purposes of observing costs over time, we needed to consider a longer
period of time than just one day. For this reason, we extended our schedule
length out to one week, or 168 hrs. In each hour, we needed to check to see
if any trains arrive and then perform the necessary actions in reaction to the
current state of the system. But since we wanted to extract the probabilities
to the beginning of the model, we decided to generate ahead of time, inde-
pendent of cost and time evaluations, a list of times that the trains arrive
during a one-week time period.

For each train, this was a simple matter of generating a random num-
ber between 1 and 15 and “slotting” it into the appropriate window. For
instance, for the first of three trains to arrive on day one of the week, if a 7
was generated, then a train arrived during the seventh hour after 0500, or
between 1100 and 1200 hrs. For the purposes of our simulation, we sim-
plified our model to say that any train that arrived during that time period
would arrive at 1100 on the hour. This gave us a discrete set, from which we
could run a discrete simulation. We continued this slotting until the entire
arrival schedule for a week was completed.

Random Variables:

Y = a discrete uniform random variable on 0, . . . , 14
X = a continuous uniform random variable on [0, 1]

Assumptions:

• The distribution of arrival times is unknown.

• The random number generator of Turbo Pascal is sufficiently random.

Array Production Algorithm:

• Step 1: Generate a random number Y between 0 and 14 (15 hrs is the
window of time between 5 A.M. and 8 P.M.).

• Step 2: Add 6 to Y . (We add 6 to Y because, relative to our timeline, a
train cannot arrive before the 6th hour.)

• Step 3: Add a train to the number of trains generated for that hour.
Designate a standard train with the value of 1 and a high-capacity train
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with the value of 10 (an arbitrary choice). We have “tagged” the hour
block by manipulating (6+Y ). This “tagged” slot represents the hour that
a train arrives. We must now add a value to this slot (1 for a standard
train) to signify a train arrival.

• Step 4: Repeat the last three steps three times to slot three trains for that
day.

• Steps 5–10: These steps simulate the slotting of the weekly train schedules
for the rest of the 168-hr week (we save the high-capacity arrival for Step
11).

• Step 11: Generate a random number X between 0 and 1, add 84, and slot
the arrival of the high-capacity train. (On our timeline, the high-capacity
train can either arrive during the 84th or 85th hour: evaluate any arrival
during the hour blocks at the beginning of the hour up to and including
the end of the hour.)

Simulation Task 2: Operation of System and Cost Evaluation
Concept: Evaluate the weekly random schedule in a simulation that calcu-
lates labor and demurrage costs.

Model formulation: Once we determine our random arrival schedule, we
have to evaluate the week of arrivals as it was generated. The algorithm
proceeds hour by hour.

Simplifying Assumptions:

• If trains are waiting to be serviced and a high-capacity train arrives, then
the high-capacity train will be loaded first because it has the highest
demurrage cost.

• If no trains are waiting in line and no train is being serviced, then it is
advantageous to fill the tipple with two crews.

• If you make a train wait because of an empty tipple, then it is more cost-
effective to use two crews, in order to minimize demurrage costs (refer
to Model 3 for a proof of this simplifying assumption).

Algorithm: (see Figure 1)

• Step 1: Check to see if any trains arrived at this hour. If so, how many
trains are in the system, and is one of them the high-capacity train? If the
high-capacity train arrives: Go to Step 7.

• Step 2: If three standard trains are in the system, at least two are going to
have to wait on hold and incur demurrage costs. Add $30,000 to cost for
this hour’s waiting. Go to Step 5.
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Figure 1. Algorithm for the model.
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• Step 3: If two trains are in the system, at least one will have to wait and
incur demurrage costs. Add $15,000 to costs for this hour’s waiting. Go
to Step 5.

• Step 4: If no trains are currently in the system, then let the system be idle,
except check to see if the tipple is not at full capacity. If it is not at full
capacity, then begin filling it. In 1 hr, two crews can fill one-half trainload
into the tipple. Add $11,000 to cost for working crews if they fill the tipple
during this hour. Go back and check for next hour to see if trains arrive.
Proceed to next hour. Go to Step 1.

• Step 5: By now, we must see if we can actually fill the train that is on-line
to be filled. If so, then take one-third of a trainload away from the tipple
and put it into the train. If the train is full, send it on its way and reset to
0 the load value of the current train being loaded. Otherwise, keep track
of the size of the load in the current train being loaded. Proceed to the
next hour. Go to Step 1.

• Step 6: If the tipple needs filling, we should fill it with two crews, add a
half trainload to the tipple, add $1,000 demurrage cost for this train to sit
on the tracks waiting for the tipple to load, and add $21,000 to the labor
costs for the crews at work. Proceed to next hour. Go to Step 1.

• Step 7: Now that a high-capacity train with five engines has arrived, to
prevent exorbitant demurrage costs for making this train wait in lieu of
another, we will automatically switch to service the high-capacity train.
If another train is currently being serviced, then we will put it on hold
for now.

• Step 8: If three standard trains are now waiting, all three are going to
have to wait for the high-capacity train and incur demurrage costs. Add
$45,000 to costs for this hour’s waiting.

• Step 9: If two standard trains are now waiting for the high-capacity train
to be serviced, both will have to wait and incur demurrage costs. Add
$30,000 to costs for this hour’s waiting.

• Step 10: If one standard train is now waiting for the high-capacity train
to be serviced, then the standard train will have to incur demurrage costs
for this hour. Add $15,000 to costs for this hour of waiting.

• Step 11: By now, we must see if we can actually fill the high-capacity train
that is on-line to be filled. If so, then no demurrage costs will be incurred
for this one train for this hour. If the tipple needs filling, we should fill
it with two crews, add a half trainload to the tipple, add to costs $25,000
for the high-capacity train to sit on the tracks waiting and $21,000 for the
crews at work. Proceed to the next hour and go back to Step 1 now if the
tipple was filled and the high-capacity train had to wait.
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• Step 12: If we did not need to fill the tipple, then take one-third of a
trainload away from the tipple and put it into the train. If the high-
capacity train is full, send it on its way and let the load value of the current
train being worked on go to 0 since it has now left. Otherwise, keep track
of the size of the load in the current train being serviced. Proceed to next
hour and go back to Step 1.

Figure 1 gives a graphic representation of the algorithm. Note that when
we check to see if the tipple needs refilling, we check to see if it is less
than one-sixth full. This is simply because of the nature of the fractions at
which the tipple empties itself and is refilled hour by hour. By setting our
refill value at one-sixth or less, we prevent our simulation from accidentally
dropping the tipple load value below zero.

Results: Results from the simulation are given in Table 1. Two trials may
seem insufficient, but realize that each trial models 10,000 weeks of data, for
a total of more than 384 years.

Table 1.

Results of simulation. Each trial is for 10,000 weeks.

First trial Second trial

Demurrage costs/yr 39,752,000 39,605,000
(Labor + demurrage)/yr 89,904,000 89,730,000

Error Analysis:

• Sources of Possible Error

– oversimplification of coal operation

– assumption of constant tipple fill rates

– assumption of constant train fill rates

• Computer roundoff error. Only addition was used to tabulate cumulative
costs. Since multiplication tends to magnify round-off error, we avoided
this source of error. In the final calculation of costs per week, however,
we used the formula

total costs of N iterations of weeks
N weeks

.

If N is on the order of 10,000 and the total cost on the order of magnitude
of 108, we may lose a few digits of accuracy.
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Weaknesses and Strengths

Weaknesses of the Model
• There is no comparison to a real-world data set. The final step of the

modeling process should be to verify the model against real-world data.
For our problem, real-world data are not available for comparison. This
is a major weakness.

• The assumption of discrete hours and discrete events limits the flexibility
of the model. For example, if we could calculate demurrage costs for
trains arriving at 1:15 and waiting until 1:35, the simulation cost projec-
tions would be more realistic.

• The assumption that trains arrive with empty payloads fails to consider
that a train may arrive with a fraction of a payload already loaded.

• The assumption that workers are on call at all times fails to account for
real-life situations. Can we depend on having two crews available re-
gardless of the time of day, weather conditions, or holidays? Realistically
speaking, we cannot. Our model, however, assumes that we can.

• We fail to take into account “hidden” costs. What happens to the oper-
ation if the tipple breaks down? What effects does depreciation have on
the value of the equipment used in the operation?

Strengths of the Model
• With an 80386 personal computer, a 10,000-week iteration model can be

run in less than 10 minutes.

• Our simulation takes a rather complex scenario and simplifies the coal
operation into something that is manageable and that we can use to make
predictions about the behavior of the system. Simplicity can be a power-
ful tool for understanding a complex world.

The Submodels

Submodel 1: The Ideal Scenario
If the standard trains could be scheduled to arrive at precise times, what daily
schedule would minimize loading costs?

Our simplifying assumptions are:
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• non-overlapping service times,

• no high-capacity train arrives,

• one crew fills tipple, and

• the day of the week is not Thursday.

We decided to start with the simplest of cases. This train schedule at-
tempts to fit all of the trains within the window of 5 A.M. to 8 P.M. without
multiple trains arriving at the same time. In addition, the one train that is be-
ing serviced at the tipple must remain until it is full without having another
train arrive. After the train is full, the tipple must be refilled to the level of
one trainload before another train arrives. When the next train comes, it will
also remain until it’s full without another train arrival. Again the tipple will
be filled to the level of one trainload before the last train arrives. After all
three trains have come and gone, refill the tipple to 1.5 trainloads. We have
formulated this scenario as the ideal case. It is ideal because no train ever has
to wait and therefore, no demurrage costs are incurred. The labor costs for
the tipple loading crew (one crew at $9,000/hr, not two crews at $21,000/hr)
are also minimized. If the Aspen Company has control over when trains can
arrive and it is feasible to devise the most ideal (minimized costs) scenario,
then this simple model satisfies these needs. One ideal schedule that works
is listed in Table 2.

Table 2.

An ideal schedule of train arrivals.

Time Tipple level Fill tipple?

0500 Train A arrives 1.5 —
0800 0.5 Fill 0.5
1000 Train B arrives 1.0 —
1300 0.0 Fill 1.0
1700 Train C arrives 1.0 —
2000 0.0 —
0200 1.5 —

In the ideal schedule, there is one 5-hr gap between trains (3 hrs to fill the
train, 2 hrs to fill the tipple with half a trainload) and one 7-hr gap between
trains (3 hrs to fill the train, 4 hrs to fill the tipple with one trainload).
Therefore, there are two ways for this schedule to work:

• The first time gap between trains A and B is 5 hrs (a 7-hr gap must follow
between trains B and C to fill the tipple to one trainload).

• The first gap between trains A and B is 7 hrs (a 5-hr gap must then follow
between trains B and C to fill tipple to one trainload).
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Table 3.

Two possible ideal train schedules.

A B C
Case a 0500–0800 1000–1300 1700–2000
Case b 0500–0800 1200–1500 1700–2000

Observe these two possible cases in Table 3.
In this manner, we can follow the coal operation in an ideal day (no

overlapping service times and no demurrage costs). See Table 4. For such
a day, the daily loading costs are $108,000, with no demurrage costs.

Table 4.

Minimum loading costs on a non-Thursday. Total costs: $108,000.

Time Tipple Train A Train B Train C Loading
(trainloads) crew

500 1.50
600 1.50 arrives
700 1.16
800 0.83
900 0.50 leaves

1000 0.75 $9,000
1100 1.00 arrives $9,000
1200 0.67
1300 0.33
1400 0 leaves
1500 0.25 $9,000
1600 0.50 $9,000
1700 0.75 $9,000
1800 1.00 arrives $9,000
1900 0.67
2000 0.33
2100 0 leaves
2200 0.25 $9,000
2300 0.50 $9,000
2400 0.75 $9,000

100 1.00 $9,000
200 1.25 $9,000
300 1.50 $9,000
400 1.50

We must not forget to include an analysis of the ideal scenario on Thurs-
day. On Thursday, however, there is no way to avoid demurrage costs. The
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daily loading costs for an ideal Thursday are $210,000, with daily demurrage
cost of $135,000, for a total daily cost of $345,000. See Table 5.

Table 5.

Minimum loading costs on a Thursday. Total costs: $345,000

Time Tipple Train A Train B Train C Big Train Loading
(trainloads) crew

500 1.50 arrives
600 1.16
700 0.83
800 0.50 leaves $21,000
900 1.00 arrives

1000 0.67
1100 0.33
1200 0 leaves $21,000
1300 0.50 arrives
1400 0.16
1430 0
1500 0.25 $25,000 $21,000
1600 0.75 $25,000 $21,000
1700 1.25 $25,000 $21,000
1730 1.50
1800 1.33
1900 1.00
2000 0.67 arrives
2100 0.33 $15,000
2200 0 $15,000 leaves $21,000
2300 0.50 $15,000 $21,000
2400 1.00 $15,000
100 0.67
200 0.33
300 0 leaves $21,000
400 0.50 $21,000
500 1.00 $21,000
600 1.50

Submodel 2: Minimizing Tipple Loading Costs
Would a third tipple-loading crew at $12,000/hr reduce annual operations
costs?

We derive an algebraic formula to model the cost for multiple crews. For
notation we will use
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Cost is the total cost of labor,
P is the percentage of the tipple to be filled,
c is the number of crews, and
a is the number of trains in the system.

Our approach is to define cost as a function of the number of crews, the
number of trains in the system, and the percentage of the tipple to be filled:

Cost = f(P, c, a).

If it takes any one crew 6 hrs to fill the tipple, and all crews work at this
standard rate, we know that it takes 6/c hrs to fill the tipple. The cost of the
tipple loading crew(s) is given by 12,000c− 3,000. For 1, 2, and 3 crews, the
costs are $9,000, $21,000, and $33,000.

Cost = P × hours × (labor + demurrage)

= P × 6
c
× ([12,000c − 3,000] + 15,000a)

= P

(
72,000 +

90,000a − 18,000
c

)
.

For any integer a > 0, cost will be minimized by increasing c. Even
though the second crew costs $12,000/hr, or $3,000 more than the first crew,
the two get the job done in half the time. Demurrage savings of around
$15,000 per train per hour, minus an increase of wages of $3,000, is well
worth the extra crew.

Now let us concentrate on the question: “Would a third tipple-loading
crew at $12,000/hr reduce annual operations costs?” Yes! Substitute c = 3
into the above formula. Provided the third crew is called in whenever a > 0
(a is an integer), the third crew will always reduce that cost. Therefore the
annual cost will be reduced also.

Submodel 3: Minimizing Demurrage Costs
How often should the second crew be called out?

Our simplifying assumption is that there are multiple train arrivals for
any given hour.

Our reply to the question is that if there is at least one train waiting to
be filled, it is cheaper to have two crews working to get the job done in half
the time.

What would happen if the trains had to wait for half of a trainload to be
filled into the tipple? For one crew, the demurrage cost would be 2 hrs times
$15,000, or $30,000. For two crews, there would be a demurrage cost of 1
hr times $15,000. Even for only half a trainload, the increase in demurrage
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cost is $15,000 vs. an increase of $12,000 labor cost. Using two crews would
save $3,000.

Submodel 4: A Fourth Train?
Can this tipple support a fourth standard train every day?

Adding in a fourth standard train on a non-Thursday is possible, and it
will not overload the system.

On a Thursday, however, the system will begin to get backed up. Here’s
why: Looking at the best possible scenario, two trains arrive at 8 P.M., and
the tipple is empty until it finishes with the big train at 10 P.M. Not until 5 A.M.
the next morning does the last train even begin to get filled. Assuming that
we can schedule when the trains arrive, by Saturday evening the system can
be back in line again. Therefore, since the system does not overload, it can
handle a fourth standard train. Nevertheless, having four standard trains
on Thursday will greatly increase the demurrage cost. [EDITOR’S NOTE: For
space reasons, we omit the authors’ schedules for four standard trains on
Thursday, Friday, Saturday, and Sunday.]

Submodel 5: Worst-Case Scenario
Given that our simulation model produces expected costs per week, how can
we “double-check” the results to see if the simulation output is reasonable?

We put tremendous effort into developing a flowchart and computer
code of the coal operation, so human error is great concern. Even with sub-
routine checks and debugging, we felt that we needed a method of gauging
a “ballpark” figure of expected weekly costs. Therefore, we investigated
maximized costs scenarios. From this vantage point, we get some idea of
the simulation model verification. [EDITOR’S NOTE: For space reasons, we
omit the authors’ schedules that justify the following worst-case costs.]

The two scenarios are:

• Three standard trains arrive together:

Labor Costs $117,000
Demurrage Costs $195,000
Total Costs $312,000

• Three standard trains and a high-capacity train arrive together on Thurs-
day:

Labor Costs $210,000
Demurrage Costs $655,000
Total Costs $865,000
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Conclusions and Recommendations
Using our simulation and submodels, we were able to answer success-

fully the questions listed below. We recommend to the management that
our simulation model be employed to answer “what if” questions about
expected value. Furthermore, we recommend that a third crew be added
full time to reduce costs of demurrage. Below are the bottom-line answers
to the questions posed by management.

• What is expected annual cost of the tipple’s loading operation?

Results from first 10,000 week run $89,904,000
Results from second 10,000 week run $89,730,000
Average $89,817,000

• How often should the second crew be called out?

If there is at least one train waiting to be filled, it is cheaper to have two
crews working, according to Submodel 3.

• What are the expected monthly demurrage costs?

Results from first 10,000 week run $3,058,000
Results from second 10,000 week run $3,047,000
Average $3,053,000

• If the standard trains could be scheduled to arrive at precise times, what daily
schedule would minimize loading costs?

See Tables 4 and 5.

• Would a third tipple-loading crew at $12,000/hr reduce annual operations costs?

Yes, according to Submodel 2.

• Can this tipple support a fourth standard train every day?

Yes, according to Submodel 4.
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Practitioner’s Commentary:
The Outstanding Coal-Tipple
Operations Papers
Ruth Maurer
Dept. of Mathematical and Computer Sciences
Colorado School of Mines
Golden, CO 80401

Introduction
For the system of two crews, three regular trains, and one special train,

all three of the final papers generated the same total cost (in the $87–90
million range, which is good for this stochastic situation). However, one
team considered only a five-day week, while the others used a seven-day
week.

Similar schedules for the three regular trains were achieved in the case
where those trains could be scheduled. Costs ranged from $52 million to
$59 million, again similar results given the stochastic nature of the problem.

All agreed that use a of third crew would reduce total annual costs but
disagreed significantly on the total amount of savings.

All agreed that the system could handle a fourth regular train, but Thurs-
days would be problematic and costs may soar.

Detailed Analysis
The teams will be discussed in order of performance, first to last.
The team from Cornell University had the simplest solution and the one

most amenable to sensitivity analysis. This team used an existing simulation
package to build its model, and the parameters of the model can easily be
changed to ask “What if —?” types of questions. This team’s presentation
of approach and results is probably the clearest, except for the the statistical
analysis, which is not clear.

The team from the U.S. Military Academy wrote the clearest summary of
the problem, approach, and recommendations. They wrote the most thor-
ough statement of its algorithm, having done their own programming in
Pascal; they also used spreadsheets to advantage in summarizing results. I
disagree with their assumption of train arrivals on the hour—this is just un-
realistic. They state as an assumption that “the distribution of arrival times is
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unknown” when they are actually assuming a discrete uniform distribution;
they could just as easily have used a continuous uniform distribution.

The team from the University of Alaska Fairbanks is clearly more ori-
ented in the direction of mathematical statistics, and less in the direction
of simulation, than the other teams. This team’s solution considers only
five scenarios or “rule sets” and chooses the one that minimizes cost. Their
solution to the scheduled-regular-trains part of the problem is reasonable,
but they don’t tell us how they arrived at that particular schedule. Their
answer to the four-regular-trains question is sketchy at best. The team is to
be commended, however, for testing their primary results against those of
a Pascal simulation program (which they wrote). Since the simulation was
based on the same logic as the theoretical solution, however, one would
expect the results to agree.

About the Author
Dr. Ruth Maurer is presently Associate Professor of Mathematics (Op-

erations Research/Applied Statistics) at the Colorado School of Mines. In
addition to considerable professional work as a consultant, she is former
Mayor of the city of Golden, Colorado. She also was the Consulting Energy
Economist for the First Interstate Bank of Denver and was visiting professor
of engineering at the U.S. Military Academy at West Point. For her pro bono
consulting work for the Department of the Army, she was awarded the Out-
standing Civilian Service Medal and the Commander’s Medal. She is the
co-author (with R.E.D. Woolsey) of the five books in the Useful Management
Series.
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Judge’s Commentary:
The Outstanding Coal-Tipple
Operations Papers
Jonathan P. Caulkins
Heinz School of Public Policy and Management
Carnegie Mellon University
Pittsburgh, PA 15213–3890

This problem is deceivingly difficult because it has characteristics that
are familiar (queueing, inventory, scheduling) but does not fit neatly into any
standard class of problems. As a result, even though teams tried methods
as varied as linear programming and simulated annealing, essentially every
team also used Monte Carlo simulation.

Unfortunately, many teams plunged too quickly into simulation and ne-
glected to perform supporting analyses. Indeed, several teams used Monte
Carlo methods to estimate quantities, such as the expected value of the min-
imum of independent uniform random variables, that can easily be found
exactly. These papers, even when the simulations were well constructed,
typically generated more numbers than insight.

The better papers, including all three Outstanding papers, augmented
simulations with other analysis. The U.S. Military Academy team produced
upper and lower bounds on costs to verify that the results of its simulation
were reasonable. When Thursday’s operations spill over into Friday, demur-
rage costs on Friday may be affected. However, exact analysis of the costs
of such disruptions is exceedingly difficult, and most teams simply ignored
them. The University of Alaska Fairbanks team, in contrast, attempted to
construct lower and upper bounds for those costs.

Better papers were distinguished also by a more mature treatment of
the assumptions, including performing sensitivity analysis with respect to
those assumptions. The Cornell University team stood out because they did
not jump to the conclusion that two crews can fill the coal tipple twice as
quickly as one. Using a simple graph, the team showed how demurrage
costs vary with how much a second crew speeds up the loading process.

The three outstanding papers did not monopolize insightful analysis.
For example, several teams gave careful discussions of whether or not to give
priority to a high-capacity train. One even considered preemptive priorities
and concluded that a standard train should preempt a high capacity train
when the high-capacity train is less than about 20% full. There were also
several excellent analyses of when to use one crew or two to refill the tipple,
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as a function of the amount of coal in the tipple, the time of day, and the
number of trains still to come that day.

The questions of priority and number of crews were approached at differ-
ent levels of sophistication. Some teams recommended a reasonable course
of action with little explanation. Such recommendations are of little value,
because they must be taken on faith and do not bring out general properties.
Better papers gave either insightful intuitive arguments that produced more
understanding or else mathematical proofs that were more persuasive. The
best papers gave both.

More generally, good papers had a sense of perspective. Weaker papers
worried excessively about minutiae, such as computer roundoff error and
the fact that random number generators do not produce truly random num-
bers. Better papers recognized the general structure of the problem and de-
signed their approach around it (Cornell); neatly presented and evaluated
alternative decision rules (University of Alaska Fairbanks); and distilled
their results into a concise, well-written summary (U.S. Military Academy).

When addressing a real-world modeling problem, there is no such thing
as having “finished” the problem: There are always more ways of interpret-
ing, structuring, and approaching the problem. In fact, that is the value of
publishing the Outstanding papers—reading them helps provoke contes-
tants to think in new ways about the problem that they worked on. Several
ideas that were not fully tried in any paper but occurred to the judges as po-
tentially fruitful include explicitly defining a state-space description of the
system, and using dynamic programming or Markov decision processes,
either as a solution procedure or as a way of structuring the problem.

The judges rewarded teams who used multiple methods, conducted sen-
sitivity analyses, derived and justified insightful properties of good solu-
tions, and had the perspective to understand and acknowledge the limita-
tions of their models. It is very difficult to do well in all of these dimensions;
good modeling is an art that takes considerable skill and practice for profi-
ciency. The judges are delighted that so many students have accepted the
challenge to become good modelers.
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