Math 112
 Quiz 4
 Wednesday, February 13, 2008

The Error Bound Theorem Formulas

- $\left|I-L_{n}\right| \leq \frac{K_{1}(b-a)^{2}}{2 n}$ and $\left|I-R_{n}\right| \leq \frac{K_{1}(b-a)^{2}}{2 n}$
- $\left|I-M_{n}\right| \leq \frac{K_{2}(b-a)^{3}}{24 n^{2}}$ and $\left|I-T_{n}\right| \leq \frac{K_{2}(b-a)^{3}}{12 n^{2}}$

1. Let $I=\int_{0}^{1} \sin \left(x^{2}\right) d x$. Explain why the inequalities

$$
L_{7} \leq I \leq R_{4}
$$

are valid.
2. Find a value of n for which the Error Bound Theorem guarantees that L_{n} approximates the value of $I=\int_{0}^{1} \sin \left(x^{2}\right) d x$ within ± 0.005. Justify your answer. Maple is permitted for this problem (for arithmetic only).
3. Find the area of the region bounded by $y=\sqrt{x}, y=0$, and $x=4$.
4. Find the length of the curve

$$
y=\frac{x^{2}}{2}-\frac{\ln x}{4}
$$

from $x=3$ to $x=9$.

