Exam 2 Practice Answer Key

1. Consider the differential equation

$$\frac{dy}{dx} = \frac{x}{y}.$$

- (a) $y^2 = x^2 + C$
- (b) $y^2 = x^2 3$
- 2. Determine whether each of the following improper integrals converges or diverges.
 - (a) diverges
 - (b) converges
 - (c) diverges
- 3. Determine whether each of the following sequences $\{a_n\}$ converges. If the sequence converges, find its limit.
 - (a) converges to 0
 - (b) converges to 0
 - (c) diverges
 - (d) converges to e^2
- 4. Find the sums of the following series.
 - (a) 3/4
 - (b) 65/12
- 5. Determine whether each of the following series converges.
 - (a) diverges
 - (b) converges
 - (c) converges
 - (d) converges
 - (e) converges
- 6. converges absolutely
- 7. converges conditionally
- 8. R = 1, I = (-1, 1]

- 9. $\sum_{n=0}^{\infty} (-1)^n x^{4n+1}, (-1,1)$
- 10. $1 1 + 1 1 + 1 1 + \cdots$ is a geometric series with r = -1 which diverges, so any calculations involving the second line are meaningless.
- 11. Suppose that $\{a_n\}$ is a sequence such that $\lim_{n\to\infty} a_n = 3$. Define the sequence $\{b_n\}$ by $b_n = a_n + \frac{2n-3}{5n+1}$.
 - (a) The sequence $\{b_n\}$ converges to 17/5.
 - (b) The series diverges.