Exam 2 Practice Answer Key

1. Consider the differential equation

$$
\frac{d y}{d x}=\frac{x}{y}
$$

(a) $y^{2}=x^{2}+C$
(b) $y^{2}=x^{2}-3$
2. Determine whether each of the following improper integrals converges or diverges.
(a) diverges
(b) converges
(c) diverges
3. Determine whether each of the following sequences $\left\{a_{n}\right\}$ converges. If the sequence converges, find its limit.
(a) converges to 0
(b) converges to 0
(c) diverges
(d) converges to e^{2}
4. Find the sums of the following series.
(a) $3 / 4$
(b) $65 / 12$
5. Determine whether each of the following series converges.
(a) diverges
(b) converges
(c) converges
(d) converges
(e) converges
6. converges absolutely
7. converges conditionally
8. $R=1, I=(-1,1]$
9. $\sum_{n=0}^{\infty}(-1)^{n} x^{4 n+1},(-1,1)$
10. $1-1+1-1+1-1+\cdots$ is a geometric series with $r=-1$ which diverges, so any calculations involving the second line are meaningless.
11. Suppose that $\left\{a_{n}\right\}$ is a sequence such that $\lim _{n \rightarrow \infty} a_{n}=3$. Define the sequence $\left\{b_{n}\right\}$ by $b_{n}=a_{n}+\frac{2 n-3}{5 n+1}$.
(a) The sequence $\left\{b_{n}\right\}$ converges to $17 / 5$.
(b) The series diverges.

