Exam 2 Practice

1. Consider the differential equation

$$\frac{dy}{dx} = \frac{x}{y}.$$

- (a) Find the general solution of the differential equation.
- (b) Find the particular solution that satisfies y(2) = 1.
- 2. Determine whether each of the following improper integrals converges or diverges.

(a)
$$\int_{3}^{\infty} \frac{\ln x}{x} dx$$

(b)
$$\int_{1}^{\infty} \frac{x}{x^{5}+1} dx$$

(c)
$$\int_{0}^{4} \frac{1}{x-3} dx$$

- 3. Determine whether each of the following sequences $\{a_n\}$ converges. If the sequence converges, find its limit.
 - (a) $a_n = \frac{\ln n}{n}$ (b) $a_n = \left(\frac{1}{2}\right)^n$ (c) $a_n = n$ (d) $a_n = \left(1 + \frac{2}{n}\right)^n$
- 4. Find the sums of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

(b) $\sum_{k=0}^{\infty} \frac{2^k + 3}{5^k}$

5. Determine whether each of the following series converges.

(a)
$$\sum_{n=1}^{\infty} e^{-1/n}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{(n+3)^{3/2}}$

Math 112: Calculus B

Exam 2 Practice

(c)
$$\sum_{k=2}^{\infty} \frac{3}{k(\ln k)^4}$$

(d)
$$\sum_{k=1}^{\infty} \frac{k^2}{3^k}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^5}{n!}$$

6. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^4}$ converges conditionally, converges absolutely, or diverges.

- 7. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2/3}}$ converges conditionally, converges absolutely, or diverges.
- 8. Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\sqrt{n}}$
- 9. Find a power series representation for the function

$$f(x) = \frac{x}{1+x^4}.$$

What is the interval of convergence of the power series?

10. Explain what is wrong with the following calculation:

$$1 = 1 + 0 + 0 + 0 + \cdots$$

= 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + \cdots
= (1 + -1) + (1 + -1) + (1 + -1) + \cdots
= 0 + 0 + 0 + \cdots
= 0.

- 11. Suppose that $\{a_n\}$ is a sequence such that $\lim_{n\to\infty} a_n = 3$. Define the sequence $\{b_n\}$ by $b_n = a_n + \frac{2n-3}{5n+1}$.
 - (a) Does the sequence $\{b_n\}$ converge or diverge? If the sequence converges, find its limit.
 - (b) Does the series $\sum_{n=1}^{\infty} b_n$ converge or diverge?

Math 112: Calculus B