Exam 2 Practice

1. Consider the differential equation

$$
\frac{d y}{d x}=\frac{x}{y} .
$$

(a) Find the general solution of the differential equation.
(b) Find the particular solution that satisfies $y(2)=1$.
2. Determine whether each of the following improper integrals converges or diverges.
(a) $\int_{3}^{\infty} \frac{\ln x}{x} d x$
(b) $\int_{1}^{\infty} \frac{x}{x^{5}+1} d x$
(c) $\int_{0}^{4} \frac{1}{x-3} d x$
3. Determine whether each of the following sequences $\left\{a_{n}\right\}$ converges. If the sequence converges, find its limit.
(a) $a_{n}=\frac{\ln n}{n}$
(b) $a_{n}=\left(\frac{1}{2}\right)^{n}$
(c) $a_{n}=n$
(d) $a_{n}=\left(1+\frac{2}{n}\right)^{n}$
4. Find the sums of the following series.
(a) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$
(b) $\sum_{k=0}^{\infty} \frac{2^{k}+3}{5^{k}}$
5. Determine whether each of the following series converges.
(a) $\sum_{n=1}^{\infty} e^{-1 / n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{(n+3)^{3 / 2}}$
(c) $\sum_{k=2}^{\infty} \frac{3}{k(\ln k)^{4}}$
(d) $\sum_{k=1}^{\infty} \frac{k^{2}}{3^{k}}$
(e) $\sum_{n=1}^{\infty} \frac{n^{5}}{n!}$
6. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{4}}$ converges conditionally, converges absolutely, or diverges.
7. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2 / 3}}$ converges conditionally, converges absolutely, or diverges.
8. Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt{n}}$
9. Find a power series representation for the function

$$
f(x)=\frac{x}{1+x^{4}} .
$$

What is the interval of convergence of the power series?
10. Explain what is wrong with the following calculation:

$$
\begin{aligned}
1 & =1+0+0+0+\cdots \\
& =1+(-1+1)+(-1+1)+(-1+1)+\cdots \\
& =(1+-1)+(1+-1)+(1+-1)+\cdots \\
& =0+0+0+\cdots \\
& =0
\end{aligned}
$$

11. Suppose that $\left\{a_{n}\right\}$ is a sequence such that $\lim _{n \rightarrow \infty} a_{n}=3$. Define the sequence $\left\{b_{n}\right\}$ by $b_{n}=a_{n}+\frac{2 n-3}{5 n+1}$.
(a) Does the sequence $\left\{b_{n}\right\}$ converge or diverge? If the sequence converges, find its limit.
(b) Does the series $\sum_{n=1}^{\infty} b_{n}$ converge or diverge?
