Exam 1 Practice

1. Evaluate each of the following integrals.
(a) $\int \frac{x}{x^{2}-4} d x$
(b) $\int \frac{1}{x^{2}-4} d x$
(c) $\int_{1}^{e} x \ln x d x$
(d) $\int \frac{\cos (\sqrt{x})}{\sqrt{x}}$
2. Consider the integral

$$
I=\int_{0}^{1} \sin \left(x^{2}\right) d x
$$

(a) Estimate the maximum error made in approximating the value of this integral using $n=5$ left rectangular sum approximations.
(b) How many rectangles would be necessary to guarantee an error of at most $1 / 200$?
3. Suppose that you wish to estimate

$$
I=\int_{0}^{3} e^{x^{2}} d x
$$

using either midpoint or trapezoid sums. Which one would you use if you wanted to be sure to underestimate the value of the integral? Justify your answer.
4. Consider the region R in the plane bounded by the graphs of $y=x$ and $y=x^{2}$.
(a) Find the area of R.
(b) Find the volume of the solid obtained by revolving R about the x-axis.
(c) Find the volume of the solid obtained by revolving R about the line $x=1$.
(d) Write the length of the boundary of R as a sum of integrals. You do not need to evaluate the integrals.
5. Evaluate $\lim _{x \rightarrow 1} \frac{1-x+\ln x}{1+\cos (\pi x)}$.
6. The base of a solid is bounded by $y=x^{3}, x=0$, and $y=1$. Cross-sections of the solid perpendicular to the y-axis are semi-circles. Find the volume of the solid.

