Math 112
 Homework 9 Solutions

Part 1

$11.2 \# 8: \frac{\pi^{4}}{90}-1-\frac{1}{2^{4}}$
$11.2 \# \mathbf{1 2}: 6+\frac{1 / 3}{1-1 / 3}=\frac{13}{2}=6.5$
$11.2 \# 14: \frac{(e / \pi)^{3}}{1-e / \pi}$
$11.2 \# 16: \frac{(2 / 3)^{10}}{1-2 / 3}$
11.2 \#18: $5 / 2+5=15 / 2$
11.2\#24: $S_{n}=\ln (n+1)$. Since $S_{n} \rightarrow \infty$ as $n \rightarrow \infty$, the series diverges.
$11.2 \# 30: \frac{2^{7 / 5^{3}}}{1-2 / 5}=128 / 75$
$11.2 \# 40: \frac{1}{1-\ln 2}$
11.2 \#42: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \neq 0$, so the series diverges by the Test for Divergence.
$11.2 \# 52: \frac{4 / 7^{10}}{1-1 / 49}=1 / 69177612$

Part 2

$11.3 \# 18$: Converges. Use the Comparison Test with the geometric series $\sum_{j=0}^{\infty} \frac{1}{e^{j}}$.
11.3 \#20: Converges. Use the Comparison Test with the p-series $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$
11.3\#22: Converges. Use the Ratio Test. $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty} \frac{1}{k+1}=0<1$.
11.3 $\#$ 31: Converges. Use the Comparison Test with the p-series $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$.
11.3 \#35: Converges. Use the Comparison Test with the p-series $\sum_{k=1}^{\infty} \frac{1}{k^{5}}$.
11.3 \#36: Converges. Use the Integral Test with the improper integral $\int_{2}^{\infty} \frac{1}{x(\ln x)^{5}}$, which converges (use the u-substitution $u=\ln x$).
11.3 \#46: Converges. Use the Comparison Test with the p-series $\sum_{m=1}^{\infty} \frac{1}{m^{2}}$.
11.3\#52: Converges. Use the Ratio Test. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{2(2 n+1)}=0<1$.

Part 3

11.4 \#8: Converges conditionally. $\sum_{k=2}^{\infty}(-1)^{k} \frac{k}{k^{2}-1}$ converges by the Alternating Series Test. $\sum_{k=2}^{\infty}\left|(-1)^{k} \frac{k}{k^{2}-1}\right|=\sum_{k=2}^{\infty} \frac{k}{\sqrt{k^{2}-1}}$ diverges by the Comparison Test with $\sum_{k=2}^{\infty} \frac{1}{k}$.
11.4 \#12: Converges absolutely. Use the Ratio Test.
11.4 \#20: Converges conditionally. $\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{\sqrt{k}}$ converges by the Alternating Series Test. $\sum_{k=1}^{\infty}\left|(-1)^{k} \frac{1}{\sqrt{k}}\right|=\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverges because $p=1 / 2<1$.
11.4\#24: Converges absolutely. Use the Ratio Test. $\lim _{m \rightarrow \infty}\left|\frac{\frac{(-1)^{m+1}(m+1)^{3}}{2^{m+1}}}{\frac{(-1)^{m} m^{3}}{2^{m}}}\right|=\frac{1}{2}<1$, so the series converges absolutely by the Ratio Test.

