Math 112
 Homework 4 Solutions

Section 6.1

6.1 \#4: (a). $f(x)=\cos (1 / x)$ is increasing on $[1,3]$. (b) $f(x)=\cos (1 / x)$ is concave down on $[1,3]$.
6.1\#6: (a). $L_{20} \approx 0.158 ; R_{20} \approx 0.122 ; T_{20} \approx 0.14 ; M_{20} \approx 0.139$. (b). L_{20} overestimates I. (c). M_{20} underestimates I.
6.1 \#16: Any decreasing function will work. $f(x)=1 / x$ is one choice.
6.1 \#18: Any function that is concave down on $[1,5]$ will work. $f(x)=1-x^{2}$ is one choice.
6.1 \#19(a): Upward concavity means that the graph sits beneath the straight line segments that define the trapezoid rule.
6.1 \#52: (a). The integrand is increasing until $x=1$ and decreasing thereafter, so the integrals $\int_{0}^{1} x e^{-x} d x$ and $\int_{1}^{4} x e^{-x} d x$ can be trapped separately by left and right sums. (b). The integrand is concave down until $x=2$ and concave up thereafter, so the integrals $\int_{0}^{2} x e^{-x} d x$ and $\int_{2}^{4} x e^{-x} d x$ can be trapped separately by trapezoid and midpoint sums.
6.1 \#61: Since f^{\prime} is negative on $[a, b], f$ is decreasing. Thus, $R_{n} \leq I \leq L_{n}$. Since f^{\prime} is decreasing on $[a, b], f$ is concave down. Thus, $T_{n} \leq I \leq M_{n}$. Finally, since T_{n} and M_{n} are more accurate than L_{n} and R_{n}, we conclude

$$
R_{n} \leq T_{n} \leq I \leq M_{n} \leq L_{n}
$$

Section 6.2

6.2 \#6: (a) $K_{1}=24$ works. (b) $K_{2}=6$ works.
6.2 \#12: $K_{1}=4$ works, so any $n \geq 1600$ will do.
6.2 \#14: $K_{1}=1$ works, so any $n \geq 8100$ will do.
6.2 $\# 16: K_{2}=11$ works, so any $n \geq 28$ will do.
6.2 \#18: $K_{2}=0.45$ works, so any $n \geq 53$ will do.
6.2 \#28: (a) For $\int_{0}^{5} e^{-x^{2}} d x, K_{1}=0.86$ works, so $n=1075$. (b) $n=344$.

Section 7.1

7.1 \#14: 1/2
7.1 \#18: $1 / 3$
7.1 \#24: 343/6
7.1 \#44: ≈ 9.07342 (you must evaluate the integral numerically)
7.1 \#50: 181/9

