Math 112 Homework 4 Solutions

Section 6.1

- **6.1 #4:** (a). $f(x) = \cos(1/x)$ is increasing on [1,3]. (b) $f(x) = \cos(1/x)$ is concave down on [1,3].
- **6.1** #6: (a). $L_{20} \approx 0.158$; $R_{20} \approx 0.122$; $T_{20} \approx 0.14$; $M_{20} \approx 0.139$. (b). L_{20} overestimates *I*. (c). M_{20} underestimates *I*.
- **6.1 #16:** Any decreasing function will work. f(x) = 1/x is one choice.
- **6.1 #18:** Any function that is concave down on [1,5] will work. $f(x) = 1 x^2$ is one choice.
- 6.1 # 19(a): Upward concavity means that the graph sits beneath the straight line segments that define the trapezoid rule.
 - 6.1 #52: (a). The integrand is increasing until x = 1 and decreasing thereafter, so the integrals $\int_0^1 x e^{-x} dx$ and $\int_1^4 x e^{-x} dx$ can be trapped separately by left and right sums. (b). The integrand is concave down until x = 2 and concave up thereafter, so the integrals $\int_0^2 x e^{-x} dx$ and $\int_2^4 x e^{-x} dx$ can be trapped separately by trapezoid and midpoint sums.
 - **6.1** #**61:** Since f' is negative on [a, b], f is decreasing. Thus, $R_n \leq I \leq L_n$. Since f' is decreasing on [a, b], f is concave down. Thus, $T_n \leq I \leq M_n$. Finally, since T_n and M_n are more accurate than L_n and R_n , we conclude

$$R_n \le T_n \le I \le M_n \le L_n.$$

Section 6.2

- **6.2 #6:** (a) $K_1 = 24$ works. (b) $K_2 = 6$ works.
- **6.2 #12:** $K_1 = 4$ works, so any $n \ge 1600$ will do.
- **6.2 #14:** $K_1 = 1$ works, so any $n \ge 8100$ will do.
- **6.2 #16:** $K_2 = 11$ works, so any $n \ge 28$ will do.
- **6.2 #18:** $K_2 = 0.45$ works, so any $n \ge 53$ will do.
- **6.2 #28:** (a) For $\int_0^5 e^{-x^2} dx$, $K_1 = 0.86$ works, so n = 1075. (b) n = 344.

Section 7.1

- **7.1 #14:** 1/2
- **7.1 #18:** 1/3
- **7.1 #24:** 343/6
- 7.1 #44: ≈ 9.07342 (you must evaluate the integral numerically)
- **7.1 #50:** 181/9