Math 112
 Homework 10 Solutions

Part 1

11.5 \#4: $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\frac{|x|}{3}$. Thus, the radius of convergence is $R=3$.
11.5\#5: $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=|x|$. Thus, the radius of convergence is $R=1$.
11.5 \#10: The radius of convergence is $R=1$ and the interval of convergence is $[-2,0)$.

Part 2

$11.5 \# 28$: may converge
11.5 \#30: cannot converge
$11.5 \# 32$: may converge

Part 3

11.6 \#5: $f(x)=\sum_{k=0}^{\infty}(-1)^{k} x^{k+2}, I=(-1,1)$ (substitute $z=-x$ and multiply by x^{2})
11.6 \#6: $f(x)=\sum_{k=0}^{\infty} k x^{2 k}, I=(-1,1)$ (substitute $\left.z=x^{2}\right)$
11.6 \#8: $f(x)=\sum_{k=0}^{\infty} x^{4 k+1}, I=(-1,1)$ (substitute $z=x^{4}$ and multiply by x)
11.6 \#17: $f(x)=\frac{1}{2} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{x}{2}\right)^{k}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{2^{k+1}}, I=(-2,2)$

