Math 112 Homework 10 Solutions

Part 1

11.5 #4:
$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \frac{|x|}{3}$$
. Thus, the radius of convergence is $R = 3$.
11.5 #5: $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = |x|$. Thus, the radius of convergence is $R = 1$.

11.5 #10: The radius of convergence is R = 1 and the interval of convergence is [-2, 0).

Part 2

- 11.5 **#28**: may converge
- 11.5 # 30: cannot converge
- **11.5 #32:** may converge

Part 3

11.6 #5: $f(x) = \sum_{k=0}^{\infty} (-1)^k x^{k+2}$, I = (-1, 1) (substitute z = -x and multiply by x^2) 11.6 #6: $f(x) = \sum_{k=0}^{\infty} k x^{2k}$, I = (-1, 1) (substitute $z = x^2$) 11.6 #8: $f(x) = \sum_{k=0}^{\infty} x^{4k+1}$, I = (-1, 1) (substitute $z = x^4$ and multiply by x) 11.6 #17: $f(x) = \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \left(\frac{x}{2}\right)^k = \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{2^{k+1}}$, I = (-2, 2)

Math 112: Calculus B