
Derivability in the Logic of Proofs is Πp
2-complete

Robert Milnikel
Department of Mathematics

Kenyon College, Gambier, OH 43022
milnikelr@kenyon.edu

July 29, 2005

Abstract

The Logic of Proofs realizes the modalities from traditional modal log-
ics with proof polynomials, so an expression 2F becomes t : F where t is a
proof polynomial representing a proof of or evidence for F . The pioneer-
ing work on explicating the modal logic S4 is due to S. Artemov and was
extended to several subsystems by V. Brezhnev. In 2000, R. Kuznets pre-
sented a Πp

2 algorithm for deducibility in these logics; in the present paper
we will show that the deducibility problem is Πp

2-complete. (The analo-
gous problem for traditional modal logics is PSPACE-complete.) Both
Kuznets’ work and the present results make assumptions on the values of
proof constants.

1 Introduction

In a series of papers beginning in 1992, Sergei Artemov developed the Logic of
Proofs (LP), a realization of the modal logic S4 in which the modality 2 (often
interpreted as provability) is replaced with explicit terms representing proofs.
(See, for example, [1], [2], [3], and [4].) LP and its arithmetic interpretation
provide answers to questions about the intended semantics of intuitionistic logic
and S4 asked by Gödel ([5], [6]) and provide a unified semantics for modality
and the typed lambda-calculus. More recently, LP has found application as a
paradigm for the logic of knowledge. Evidence-based knowledge is a constructive
version of common knowledge, making problems involving the notion of common
knowledge amenable to automated proof search and verification ([7]).

A. Mkrytchev ([8]) showed the decidability of LP, and his algorithm for
satisfiability was adapted and shown to be in Σp2 by R. Kuznets ([9]). As the
satisfiability problem for classical S4 is PSPACE-complete ([10]), LP has a clear
advantage.

In this paper, we will show that deciding derivability in LP is Πp
2-hard by

encoding QBF-2 as a formula of LP which can be derived only if the quantified

1

boolean formula is true. This will show derivability in LP to be Πp
2-complete

(and satisfiability, of course, to be Σp2-complete).

2 Preliminaries

We will begin with a formal definition of LP and statements of some previous
results. Except as noted, the definitions and results will be drawn from [2].

2.1 The Language

Definition 2.1. The language of the Logic of Proofs (LP) contains

• the language of classical propositional logic which includes propositional
variables, truth constants >, ⊥, and boolean connectives

• proof variables x0, . . . , xn, . . ., proof constants a0, . . . , an, . . .

• function symbols: unary !, binary · and +.

• operator symbol of the type “proof polynomial: formula”.

Definition 2.2 (Proof polynomial). Proof polynomials are defined induc-
tively:

• Proof variables and proof constants are proof polynomials.

• If t1 and t2 are proof polynomials, so are !t1, t1 · t2, and t1 + t2.

In general, r · s · t . . . should be read (. . . ((r · s) · t) . . .) and similarly for
r + s+ t. Proof polynomials built up entirely of constants are called ground.

Definition 2.3 (LP Formula). Formulas are defined just as for propositional
logic, with one added inductive case for the operator :.

• Propositional letters, >, and ⊥ are formulas.

• If F1 and F2 are formulas, so are F1 → F2, F1 ∧ F2, F1 ∨ F2, ¬F1.

• If F is a formula and t is a proof polynomial, t : F is a formula.

We will generally use F , G, H for formulas in this language. The intended
semantics for t : F is “t is a proof of F”. This intended semantics is made
explicit via an arithmetic provability interpretation in [2] and a Kripke frame
interpretation in [11]. Note that proof systems for t : F are multi-conclusion
ones, so t may represent a proof of several different F ’s.

2

2.2 Syntax

Definition 2.4 (Axioms and rules of LP0). We will begin by defining the
system LP0 in the language of LP. LP0 has the following axiom schemes:

A0. A finite set of axiom schemes of classical propositional logic

A1. t : F → F reflection

A2. t : (F → G) → (s : F → (t · s) : G) application

A3. t : F →!t : (t : F) proof checker

A4. s : F → (s+ t) : F , t : F → (s+ t) : F sum

and the single rule of inference modus ponens:
F → G F

G
.

The deduction theorem Γ, A ` B ⇐⇒ Γ ` A→ B can be proven for LP0 by
an easy inductive argument.

The following lemma will see much use in the present paper:

Lemma 2.5 (Lifting Lemma). If ~s : Γ,∆ ` F , then there is a proof polyno-
mial t(~x, ~y) such that ~s : Γ, ~y : ∆ ` t(~s, ~y) : F .

While it is necessary (for reasons to be explicated in Section 2.4) to set out
a Hilbert-style axiomatization for LP, it will often be more convenient for us to
use a sequent formulation.

Definition 2.6. By a sequent we mean a pair Γ =⇒ ∆ where Γ and ∆ are
finite multisets of LP-formulas. The axioms of LPG0 are sequents of the form
Γ, F =⇒ F,∆ and Γ,⊥ =⇒ ∆. Along with the usual Gentzen sequent rules
of classical propositional logic, including the cut and contraction rules (see for
example G2c from [12]), LPG0 contains the rules

A,Γ =⇒ ∆
t : A,Γ =⇒ ∆

(:=⇒)
Γ =⇒ ∆, t : A

Γ =⇒ ∆, !t : t : A
(=⇒!)

Γ =⇒ ∆, t : A
Γ =⇒ ∆, (t+ s) : A

(=⇒ +)
Γ =⇒ ∆, t : A

Γ =⇒ ∆, (s+ t) : A
(=⇒ +)

Γ =⇒ ∆, s : (A→ B) Γ =⇒ ∆, t : A
Γ =⇒ ∆, (s · t) : B

(=⇒ ·).

By LPG−0 we will mean the corresponding system without the rule Cut.

It is a theorem from [2] that the following are equivalent:

1. LPG−0 ` Γ =⇒ ∆

2. LPG0 ` Γ =⇒ ∆

3. LP0 `
∧

Γ →
∨

∆

3

This, in conjunction with the deduction theorem, means that the deducibility
of the sequent Γ =⇒ ϕ in a cut-free sequent calculus and the statement Γ ` ϕ
about the Hilbert-style LP0 are equivalent. I will often use the latter notation
but rely on the existence of a cut-free sequent proof in arguing that if something
was provable, it could only have been because a particular other formula was
provable.

2.3 Semantics

There are several semantics for the language of LP for which the above axiom-
atization is sound and complete. In Artemov’s original work ([2]), the formulas
were interpreted as arithmetic sentences with a provably ∆1 predicate Prf(x, y)
(“x represents a proof of the formula encoded by y”) playing a central role. In
his paper proving the decidability of LP ([8]), Mkrtychev introduced a seman-
tics based on a combination of classical truth assignments and proof-theorem
assignments. This system was adapted by Kuznets ([9]) when he analyzed the
complexity of the decidability problem, and by Fitting ([11]), who expanded
it to a full Kripke-style semantics for LP. In Fitting’s framework, Mkrtychev’s
models correspond to one-world models.

Mkrtychev’s semantics is the most succinctly stated, and so we will use that
in the present paper:

Definition 2.7 (Models of LP formulas). Suppose ∗(·) is a function mapping
LP proof polynomials to sets of LP formulas. We will call ∗ a proof-theorem
assignment for LP if it satisfies the following conditions:

• If (G→ F) ∈ ∗(s) and G ∈ ∗(t) then F ∈ ∗(s · t)

• ∗(s) ∪ ∗(t) ⊆ ∗(s+ t)

A proof-theorem assignment is called transitive if in addition F ∈ ∗(t) implies
t : F ∈ ∗(!t).

A truth assignment is a mapping v from the set of propositional letters to the
set {True, False}. Given a truth assignment v and a proof-theorem assignment
∗, we define an interpretation I of the language of LP to be a triple (v, ∗,�)
where � is a truth relation on formulas:

• For any propositional variable P , � P if and only if v(P) = True

• � t : F if and only if F ∈ ∗(t)

• � is defined inductively for boolean connectives in the usual manner.

We write I � F to denote that � F holds for interpretation I. An interpre-
tation I is called reflexive if F ∈ ∗(t) implies I � F for any formula F and any
proof polynomial t.

The system LP0 enjoys soundness and completeness with respect to reflexive
and transitive interpretations in this semantics:

4

Theorem 2.8. LP0 ` F if and only if I � F for all reflexive and transitive
interpretations I of the language of LP.

2.4 Proof Constants

We turn now to proof constants, mentioned in the definition of the language of
LP and not since. It turns out that the rules and semantics of proof constants,
while simple, are “surprisingly central” ([11]). Continuing to quote Fitting,
“proof constants are intended to represent evidence for elementary truths—
those truths we know for reasons we do not further analyze.” In our context,
proof constants will represent the proofs of axioms. We will define several flavors
of constant specification and will associate these with both the syntax and the
semantics of LP.

Definition 2.9. A constant specification is a mapping C from the set of proof
constants to sets of formulas (possibly empty). A formulaX has a proof constant
with respect to C if X ∈ C(c) for some proof constant c. It is required that any
formula having a proof constant with respect to C must be valid in LP0.

A constant specification C is called:

• axiomatically appropriate if the range of C is exactly the instances of axiom
schemes A0-A4.

• injective if C associates each proof constant with either a single formula
or no formulas at all.

• schematic if each proof constant c is associated with some number (pos-
sibly zero) of axiom schemes from A0-A4 and C(c) consists of exactly the
instances of those schemes.

• schematically injective if C is schematic and no constant corresponds to
more than one axiom scheme.

• maximal if each constant is associated with all instances of all axiom
schemes A0-A4. Note that the maximal specification is both axiomatically
appropriate and schematic.

• finite if C(c) = ∅ for all but a finite number of proof constants c and
furthermore C(c) is a finite set of specific formulas for each proof constant
c.

A note on the terminology: In Artemov’s original formulation of LP [2],
“constant specification” referred to what was defined above as a finite constant
specification. The particular definitions of “constant specification” and “ax-
iomatically appropriate” just cited are Fitting’s from [11]. The term “maximal
constant specification” is from Kuznets ([9]). The use of the term “schematic”
is new in the present paper, but the idea is present in both [13] and [9]. The
notion of an “schematically injective” constant specification is new. Note that a

5

“injective” means “one formula per constant” whereas “schematically injective”
means “one axiom scheme per constant,” with the result that schematically
injective constant specifications are not injective.

Let us now incorporate constant specifications into the syntax and semantics
of LP.

The syntactic rule of necessitation from classical modal logic (from F infer
2F) is replaced in its explicit counterparts by necessitation on axioms, with the
2 operator made explicit by proof constants.

Definition 2.10 (C Axiom Necessitation). Let C be a constant specification.
Then the rule of C Axiom Necessitation is the rule

c : A
where A is an instance

of an LP axiom A0-A4 and A ∈ C(c).

If we add the rule of C Axiom Necessitation to LP0 (whose only rule of
inference, recall, is modus ponens) we get LPC . Thus, LP0 is LPE where E
is the constant specification with E(c) = ∅ for all proof constants c. We will
denote deduction in LPC by `C .

What Artemov ([1], [2], [3]), Mkrtychev ([8]), and Kuznets ([9]) refer to
simply as LP would be LPM under the present terminology, where M is the
maximal constant specification defined above.

We can also add C Axiom Necessitation to the sequent calcului LPG0 and
LPG−0 by adding the sequent rule

Γ =⇒ A,∆
Γ =⇒ c : A,∆

(=⇒ c)

where A is an instance of an LP axiom A0-A4 and A ∈ C(c). The equiva-
lences of LPC , LPGC , and LPG−C continue to hold.

To incorporate constant specifications into the semantics is equally straight-
forward.

Definition 2.11 (C Model). A reflexive and transitive interpretation I of the
language of LP is called a C-model if I � c : F for proof constant c and formula
F exactly if F ∈ C(c).

All of the previously cited results for LP0 carry over to LPC (with reasonable
restrictions on the C’s involved).

Theorem 2.12. Let C be a constant specification.

• The Deduction Theorem and Lifting Lemma (Lemma 2.5) hold for LPC.

• Assuming C is axiomatically appropriate, LPC is sound and complete for
C-models.

• Assuming C is both axiomatically appropriate and schematic, LPC is de-
cidable.

6

2.5 Subsystems of LP
Just as LP is an explicit version of the modal logic S4, there are systems closely
related to LP which realize some well-known subsystems of S4: K, T, and K41.
These explicit versions of sublogics of S4 were defined, axiomatized, and proved
sufficient to realize proofs in the corresponding modal logics by V. Brezhnev in
[13] and were provided with a Mkrtychev-style semantics by Kuznets ([9]). Of
particular interest is LP(K4), also called the Logic of Beliefs, but we will treat
K and T also.

Most definitions and results carry through for explicit versions of K, T, and
K4. Leaving aside the matter of constant specifications for the moment, let us
define the explicit versions of these logics.

Definition 2.13. We continue to work in the language of LP. Let the axiom
schemes A0-A4 and modus ponens be as in Definition 2.4.

• LP(K)0 is the system consisting of axiom schemes A0, A2, and A4, plus
the rule modus ponens.

• LP(T)0 is the system LP(K)0 plus the axiom scheme A1.

• LP(K4)0 is the system LP(K)0 plus the axiom scheme A3.

The sequent versions of these logics can also be obtained by eliminating
the rules (:=⇒), yielding LP(K4)0; (=⇒!), yielding LP(T)0; or both of the
just-mentioned rules, yielding LP(K)0.

For LP(K4), the definitions of constant specification and C-model carry
through unchanged, simply dropping references to axiom scheme A1. For LP(K)
and LP(T), we require something more:

Definition 2.14. A constant specification C is strongly LP appropriate if X ∈
C(c) if and only if one of the following two conditions is met:

• X is an instance of an axiom scheme

• X is d : Y where d is a proof constant and Y ∈ C(d).

In LP(K) and LP(T), we replace “axiomatically appropriate” with “strongly
LP appropriate” where needed, and replace C axiom necessitation with the
following recursive variant:

C-Axiom Necessitation for LP(K) and LP(T):
c : A

where A ∈ C(c) and
either A is an instance of an axiom or A can be inferred using C-Axiom Neces-
sitation.

1A very small amount of background: In addition to propositional axiom schemes, modus
ponens, and necessitation, S4 has the three axiom schemes corresponding to application
(2(A → B) → (2A → 2B)), reflection (2A → A), and proof checker (2A → 22A). The
modal logic K has only application, T has application and reflection, and K4 has application
and proof checker. For much more information see [14].

7

3 Complexity

In [9], R. Kuznets showed that the problem of derivability in LP is in Πp
2, at the

second level of the polynomial-time hierarchy. (See [15] or any standard text
on complexity theory for definitions and background.) Kuznets was working in
LPM, where M is the maximal constant specification, but his proof does not
rely on the maximality of the constant specification.

Theorem 3.1 ([9]). Given a schematic constant specification C and a formula
F in the language of LP, the problem of deciding whether `C F is in Πp

2.

Proof. The following is only a very rough outline: Kuznets worked on the dual
problem, showing that satisfiability is in Σp2. He took a semantic approach and
worked with sequents Γ ⇒ ∆ made up of both formulae and proof-theorem
assignment requirements of the form F ∈ ∗(t).

A sequent Γ ⇒ ∆ is reflexively saturated if the following four conditions are
met:

1. If A→ B ∈ Γ then either A ∈ ∆ or B ∈ Γ

2. If A→ B ∈ ∆ then A ∈ Γ and B ∈ ∆

3. If (t : A) ∈ Γ then A ∈ Γ and A ∈ ∗(t)

4. If (t : A) ∈ ∆ then either A ∈ ∆ or A ∈ ∗(t) ∈ ∆

Kuznets’ saturation algorithm starts with a sequent and non-deterministically
finds a saturated sequent which is falsifiable exactly if the original sequent was.
The algorithm operates in NP time.

The next step is to turn a sequent consisting of formulae and proof-theorem
assignment requirements into a C-model. The challenging part of this is not
the propositional valuation, but extending the set of proof-theorem assignment
requirements into a full proof-theorem assignment. Kuznets has an algorithm
for this, and by a clever use of the Robinson graph algorithm shows that the
problem of realizing whether a given sequent containing only atomic formulae
and proof-theorem assignment requirements is refutable is a co-NP problem.

The saturation and completion problems taken together show that satisfia-
bility for LPC is in Σp2.

Kuznets ([9]) also showed that derivability for the explicit versions of K, T,
and K4 is in Πp

2.
We will show that the problem of derivability in LP(K4) is Πp

2-hard for
any schematic, axiomatically appropriate constant specification, and that deriv-
ability is Πp

2-hard in full LP under any schematically injective, axiomatically
appropriate constant specification.

In both proofs, the following technical lemma about proof polynomials for a
particular form of propositional tautology will be useful.

8

Lemma 3.2. Let a propositional formula ψ in 3-CNF2 built up out of propo-
sitional variables p1,. . . , pn and an axiomatically appropriate constant speci-
fication C be given. There is a single ground proof polynomial gψ such that
`C gψ : (p̂1 → · · · → p̂n → ψ) for all assignments of the p̂i to either pi or ¬pi
which make p̂1 → · · · → p̂n → ψ a tautology. Furthermore, if C is schematic,
then gψ is of size O(n2 · |ψ|).

Of course, this presumes a relatively standard axiomatization of proposi-
tional logic. One might dream up an axiomatization of propositional logic which
would expand the size of gψ, but it would remain polynomial in the length of
ψ, which is all that matters to us for the present. (See [16] for conservation of
the lengths of proofs under different axiomatizations.)

The portion of the lemma that will be of use to us, and the only portion
that is at all surprising, is that we can lift the proofs corresponding to the
various valuations which make ψ true into the same proof polynomial in each
case if the constant specification C is schematic. If we had an injective constant
specification instead, for example, the length of gψ would be exponentially long
in the length of ψ.

Let us now work through the details of building gψ.

Proof. Let a formula ψ with m 3-clauses C1,. . . ,Cm built up out of propositional
variables p1,. . . ,pn be given. We wish to show that there is a single ground proof
term gψ of size O(n2 ·m) such that for any assignment of the p̂i’s to pi or ¬pi
such that p̂1 → · · · → p̂n → ψ, gψ : (p̂1 → · · · → p̂n → ψ)

Let us establish our propositional axiom schemes and associate proof con-
stants with them:

1. a1 : ϕ→ (ψ → ϕ)

2. a2 : (ϕ→ ψ) → (ϕ→ (ψ → θ)) → (ϕ→ θ)

3. a3 : ϕ→ (ϕ ∨ ψ)

4. a4 : ψ → (ϕ ∨ ψ)

5. a5 : ϕ→ ψ → ϕ ∧ ψ

We will begin by finding a proof term gj for a single clause Cj such that
for any assignment of the p̂i’s to pi or ¬pi such that p̂1 → · · · → p̂n → Cj ,
gj : (p̂1 → · · · → p̂n → Cj)

To simplify notation, let us assume that the clause Cj is (pj1 ∨ ¬pj2 ∨ pj3).
Identical arguments and proof constants would work with different combinations
of positives and negatives in front of the three atoms.

Let us note that in any assignment of the p̂i’s to pi or ¬pi such that p̂1 →
· · · → p̂n → Cj , at least one of p̂j1 = pj1 , p̂j2 = ¬pj2 , and p̂j3 = pj3 is true.
Assume for the moment that we could come up with proof constants gj1 , gj2 and

2A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses of the
form (L1 ∨ · · · ∨ Lm) where each Li is a literal. If m = 3 in each clause, ψ is in 3-CNF.

9

gj3 such that for any assignment of the p̂i’s to pi or ¬pi such that if p̂j1 = pj1
then gj1 : (p̂1 → · · · → p̂n → Cj) (and similarly for gj2 and gj3). Under this
assumption, the gj we are looking for will be (gj1 + gj2 + gj3).

While it is not always trivial to find an explicit proof of clearly valid propo-
sitional formulas, the task is made much simpler if an outline is given which
lists the order in which the axiom schemes and the rule modus ponens are to
be invoked without explicating the particular instances of the schemes. This is,
in effect, what explicit proof terms do under a schematically injective constant
specification.

We will attempt to balance explicitness with succinctness by presenting ex-
plicit proof terms which encode proofs of various valid schemes under the above
axiomatization/constant specification, but relegating the proofs themselves to
an appendix.

With this understanding, a few facts:

• ((a2 · a3) · (a1 · a3)) : pj1 → (pj1 ∨ ¬pj2 ∨ pj3).

• ((a2 · a4) · (a1 · a3)) : ¬pj2 → (pj1 ∨ ¬pj2 ∨ pj3).

• a3 : pj3 → (pj1 ∨ ¬pj2 ∨ pj3).

• If x : ϕ→ θ, then ((a2 · x) · (a1 · a1)) : ϕ→ ψ → θ for any ψ.

• If x : ϕ→ θ, then (a1 · x) : ψ → ϕ→ θ for any ψ.

By beginning the first of these facts and then applying the last-but-one
formula n − j1 times (with ψ = p̂i for each i > j1) and finishing with j1 − 1
applications of the final formula (with ψ = p̂i for each i < j1), we generate
exactly the desired gj1 as described above.

Note that gj1 is independent of the assignments of the p̂i’s to pi or ¬pi. (It
doesn’t even matter whether our root was pj1 or ¬pj1 . The proof outline as
encoded in the proof term will be identical.) Note also that the length of gj1 is
exactly 4 + 3(n− j1) + (j1 − 1) ≤ 3n+ 1.

Exactly parallel constructions beginning with the second and third facts gen-
erate gj2 and gj3 , each of which is also independent of the particular assignment
of the p̂i’s and which have length at most 3n+ 1 and 3n− 2 respectively. Thus,
gj has length at most 9n.

We now have m proof variables gj each of size linear in n such that gj :
(p̂1 → · · · → p̂n → Cj) is valid for all assignments of the p̂i’s to pi or ¬pi such
that p̂1 → · · · → p̂n → Cj .

Before we proceed, a last fact, this one involving a particularly ugly proof
polynomial:

• If x : (θ1 → (θ2 → ψ)) then (a2 · [a2 · [a1 · (a1 · x)] · a2] · (a1 · [a2 · (a1 · a2) ·
(a2 · a1 · (a1 · a2))])) : (ϕ→ θ1) → [(ϕ→ θ2) → (ϕ→ ψ)]

Let ϕ̂1, . . . , ϕ̂n be, as usual, some assignment such that ϕ̂1 → · · · → ϕ̂n → ψ.
Apply the above fact n times to the formula a5 : C1 → C2 → (C1 ∧ C2), with

10

ϕ as ϕ̂n, then as ˆϕn−1, etc., to obtain a ground proof polynomial of length
13n + 1, call it b2. We see that b2 : (ϕ̂1 → · · · → ϕ̂n → C1) → (ϕ̂1 → · · · →
ϕ̂n → C2) → (ϕ̂1 → · · · → ϕ̂n → (C1 ∧ C2)). Now the proof polynomial
(b2 · g1 · g2) : (ϕ̂1 → · · · → ϕ̂n → (C1 ∧ C2)). Call this proof polynomial d2 and
note that its length is at most ((13n+ 1) + 9n+ 9n).

We can repeat the above process beginning with the formula a5 : (C1∧C2) →
C3 → (C1∧C2∧C3) to obtain b3 : (ϕ̂1 → · · · → ϕ̂n → (C1∧C2)) → (ϕ̂1 → · · · →
ϕ̂n → C3) → (ϕ̂1 → · · · → ϕ̂n → (C1 ∧C2 ∧C3)). Again, b3 has length 13n+ 1.
We define d3 as b3 ·d2 ·g3 and note that d3 : (ϕ̂1 → · · · → ϕ̂n → (C1∧C2∧C3)).

Proceeding similarly, we see that dm will be the desired gψ and will have
length at most 9n+(m−1) · (22n+1) < 22nm, clearly in the promised O(n ·m)
complexity class.

3.1 The Logic of Beliefs

We will show that deducibility in the Logic of Beliefs (explicit K4) is Πp
2-hard

be encoding a ∀∃-quantified boolean formula into the language of LP so that it
is valid exactly if LP(K4) proves it. This case is much simpler than that of the
full LP and serves as a good introduction to the ideas involved.

Theorem 3.3. Given a quantified boolean formula ϕ = ∀p1 · · · ∀pn∃q1 · · · ∃qmψ
with m,n ≥ 0 and ψ a quantifier-free 3-CNF boolean combination of p1, . . . ,
pn, q1,. . . , qm, and given any axiomatically appropriate and schematic constant
specification C there is a formula F in the language of LP such that `C F in
LP(K4) exactly if ϕ is valid.

Proof. Let ϕ be as in the statement of the theorem. Let C be any schematic,
axiomatically appropriate constant specification.

Let gψ be as in Lemma 3.2 (noting that we now have propositional atoms
p1,. . . ,pn and q1,. . . ,qm) and let F be the following:

[(x1 : p1∨x1 : ¬p1)∧· · ·∧(xn : pn∨xn : ¬pn)∧(y1 : q1)∧(z1 : ¬q1)∧· · ·∧(ym :
qm)∧ (zm : ¬qm)] → (gψ ·x1 ·x2 · . . . ·xn · (y1 + z1) · (y2 + z2) · . . . · (ym+ zm)) : ψ

By the deduction theorem, we can say that LP(K4) proves F if and only if
(x1 : p1 ∨ x1 : ¬p1), · · · , (xn : pn ∨ xn : ¬pn), (y1 : q1), (z1 : ¬q1), · · · , (ym :

qm), (zm : ¬qm) `C (gψ · x1 · x2 · . . . · xn · (y1 + z1) · (y2 + z2) · . . . · (ym + zm)) : ψ
Let p̂i be either pi or ¬pi. Because propositional connectives are handled in

both the syntax and semantics in a purely classical manner, the above will hold
exactly if for each possible assignment of the p̂i’s to pi or ¬pi

(x1 : p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm) `C
(gψ · x1 · x2 · . . . · xn · (y1 + z1) · (y2 + z2) · . . . · (ym + zm)) : ψ

As the conclusion of this deduction is, propositionally speaking, an atom, the
only rules which might have been used in the last step of a sequent deduction
were the LP rules (=⇒ +), (=⇒ ·), and (=⇒!). Since the proof polynomial
involved is a product, the rule must have been (=⇒ ·). This means that there
must be some formula H so that both (x1 : p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 :
¬q1), · · · , (ym : qm), (zm : ¬qm) `C (ym + zm) : H and (x1 : p̂1), · · · , (xn :

11

p̂n), (y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm) `C (gψ · x1 · x2 · . . . · xn · (y1 +
z1) · (y2 + z2) · . . . · (ym−1 + zm−1) : H → ψ.

Let us concentrate on the former first. If our premises prove (ym + zm) : H,
the last rule used must have been (=⇒ +), and we must have a deduction either
(x1 : p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm) `C ym : H
or (x1 : p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm) `C zm :
H. Clearly H is either qm or ¬qm. Whichever one holds, call it q̂m.

Now we know that (x1 : p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 : ¬q1), · · · , (ym :
qm), (zm : ¬qm) `C (gψ ·x1 ·x2 · . . . ·xn · (y1 +z1) · (y2 +z2) · . . . · (ym−1 +zm−1)) :
q̂m → ψ.

Proceed similarly to show that (x1 : p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 :
¬q1), · · · , (ym : qm), (zm : ¬qm) `C (gψ · x1 · x2 · . . . · xn) : q̂1 → · · · → q̂m → ψ
for some assignment of the q̂j ’s to either qj or ¬qj .

Once again, the last rule used in such a deduction must have been (=⇒ ·),
so there must be a formula H such that (x1 : p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 :
¬q1), · · · , (ym : qm), (zm : ¬qm) `C xn : H and (x1 : p̂1), · · · , (xn : p̂n), (y1 :
q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm) `C (gψ · x1 · . . . · xn−1) : H → q̂1 →
· · · → q̂m → ψ. Clearly, H must be p̂n.

Again, we proceed similarly and show that if the original F was deducible,
then for each assignment of the p̂i’s to either pi or ¬pi, we know that (x1 :
p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm) `C gψ : (p̂1 →
· · · → p̂n → q̂1 → · · · q̂m → ψ) for some assignment of the q̂j ’s to either qj or
¬qj .

However, as the premises make no reference to any proof constants, this will
only be so if `C gψ : p̂1 → · · · → p̂n → q̂1 → · · · q̂m → ψ. (This is not immediate,
but follows from a disassembly of gψ into its constituent proof constants and
the fact that (x1 : p̂1), · · · , (xn : p̂n), (y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm :
¬qm) `C c : A for a purely propositional formula A only if A is an instance of a
propositional axiom scheme corresponding to the proof constant c.)

It follows that for each assignment of the p̂i’s to pi or ¬pi there is an assign-
ment of the q̂j ’s to qj or ¬qj which makes p̂1 → · · · → p̂n → q̂1 → · · · q̂m → ψ a
tautology, and ϕ is valid.

We have really tackled only one direction the proof. We have shown that if
F was deducible, then ϕ was valid. However, the proof in the other direction is
much more straightforward. If ϕ is valid, then given any assignment of the p̂i’s
to pi or ¬pi there is an assignment of the q̂j ’s to qj or ¬qj so that p̂1 → · · · →
p̂n → q̂1 → · · · q̂m → ψ is a propositional tautology. Going from this fact to a
deduction of F is simple and straightforward.

Corollary 3.4. The deducibility problem is Πp
2-complete for LP(K4) under any

schematic, axiomatically appropriate constant specification. The dual problem
of satisfiability is Σp2-complete.

A close examination of the above proof will show that it goes through for
LP)(K) as well, as long as the constant specification is strongly axiomatically
appropriate.

12

3.2 The Full Logic of Proofs

For those familiar with the Logic of Proofs or with modal logic generally, the
impossibility of using the above proof in a system with reflection (the axiom
(t : F) → F) will be clear. We had as premises both y : q and z : ¬q, and these
together with reflection axioms prove anything. Our task in bringing the above
proof to the full logic of proofs will be to insist not only that a certain formula
be provable, but that it be provable without reflection. To do that, we will
capture the proof we want as a proof polynomial, but we will need to be able
to distinguish within that proof polynomial which axioms each constant refers
to. Thus, we will specify a constant specification in which different axioms are
associated with different constants, and prove that we can encode our quantified
boolean formula under that constant specification.

Theorem 3.5. Given a quantified boolean formula ϕ = ∀p1 · · · ∀pn∃q1 · · · ∃qmψ
with m,n ≥ 0 and ψ a quantifier-free 3-CNF boolean combination of p1, . . . ,
pn, q1,. . . , qm and an axiomatically appropriate schematically injective constant
specification C, one can find a formula F in the language of LP such that `C F
exactly if ϕ is valid.

Proof. Let ϕ be as in the statement of the theorem. Let C be a schematically
injective axiomatically appropriate constant specification. We will select three
proof constants c2, cL, and cR such that:

• c2 : A exactly if A is an instance of application (axiom scheme A2)

• cL : A exactly if A is an instance of the left sum rule for proof polynomials

• cR : A exactly if A is an instance of the right sum rule for proof polynomials

The formula F will be quite long, so let us introduce one abbreviation, once
again making use of the gψ from Lemma 3.2:

We will define the proof polynomial kn built out of proof constants and the
variables x1,. . . , xn by induction. Let k0 =!gψ, and let kn = c2 · kn−1·!xn.

Let us note some facts about kn. Since gψ had length quadratic in the length
of ψ, so will kn. We know that that if p̂1 → p̂2 → · · · p̂n → q̂1 → · · · q̂m → ψ
is valid, then `C gψ : p̂1 → p̂2 → · · · p̂n → q̂1 → · · · q̂m → ψ and that x1 :
p̂1, x2 : p̂2, . . . , xn : p̂n `C gψ · x1 · x2 · . . . · xn : q̂1 → · · · → q̂m → ψ. By Lemma
2.5, we are guaranteed a proof polynomial k so that x1 : p̂1, x2 : p̂2, . . . , xn :
p̂n `C k : (gψ · x1 · x2 · . . . · xn : q̂1 → · · · → q̂m → ψ). This k which is
guaranteed is, in fact, the kn defined above. Furthermore, under the constant
specification C, it turns out that kn uniquely identifies this proof, to the extent
that if x1 : p̂1, . . . , xn : p̂n `C kn : H for some formula H, then H must be of
the form gψ · x1 · . . . xn : G, with `C gψ : p̂1 → · · · → p̂n → G.

Let us prove this assertion by induction. We will abbreviate x1 : p̂1, x2 :
p̂2, . . . xn : p̂n by Γn. Now to be more explicit about the inductive statement:
We will assert that for i ≤ n, Γn `C ki : H if and only if H is of the form
gψ · x1 · . . . · xi : G and Γn `C gψ : p̂1 → p̂2 → · · · p̂i → G. In the case i = 0, the

13

assertion simply states that Γn `C !gψ : H if and only if H is of the form gψ : G
and Γn `C gψ : G. Given that from our particular Γn no propositional rule or
use of the rule (:=⇒) could have yielded !gψ : H, it must have resulted from use
of the rule (=⇒!), and the conclusion follows.

Now let us assume that the assertion holds for i and prove it for i + 1.
Γn `C c2 · ki·!xi+1 : H. Again, there is no propositional rule or use of the rule
(:=⇒) which could yield this result, given our particular Γn, so it must have
been a result of the rule (=⇒ ·). That means that there must have been a
formula F so that Γn `C !xi+1 : F and Γn `C c2 · ki : F → H. Clearly !xi+1

is the result of an application of (=⇒!) to a formula of the form xi+1 : F ′

with Γn `C xi+1 : F ′. An examination of Γn shows us that F ′ could only
be ˆpi+1. So it must be that Γn `C c2 · ki : (xi+1 : ˆpi+1) → H. Again, this
could not have resulted from any propositional rules or use of (:=⇒) and must
be a result of (=⇒ ·). There must be a formula Hi so that Γn `C ki : Hi and
Γn `C c2 : Hi → (xi+1 : ˆpi+1 → H). By induction, we know Hi to be of the form
gψ · x1 · . . . · xi : G and that Γn `C gψ : p̂1 → p̂2 → · · · p̂i → G. Thus, we know
that Γn `C c2 : (gψ · x1 · . . . · xi : G) → (xi+1 : ˆpi+1 → H). This must mean that
(gψ ·x1 · . . . ·xi : G) → (xi+1 : ˆpi+1 → H) is an instance of axiom scheme A2, and
G must have been of the form ˆpi+1 → G′ with H of the form x1 ·. . .·xi ·xi+1 : G′.
Furthermore, since we know that Γn `C gψ : p̂1 → p̂2 → · · · p̂i → G, we know
that Γn `C gψ : p̂1 → p̂2 → · · · p̂i → ˆpi+1 → G′ because G is exactly ˆpi+1 → G′.
This completes the inductive argument about kn.

Clearly, for any assignment of p̂i’s which has a corresponding set of q̂j ’s
which make ψ true,

x1 : p̂1, . . . xn : p̂n `C ((y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm : ¬qm)) →
(gψ · x1 · x2 · . . . · xn · (y1 + z1) · (y2 + z2) · . . . · (ym + zm)) : ψ

Moreover, this can be proved in a variety of ways. One would be to make
use of reflection and the premises y1 : q1 and z1 : ¬q1. However, from our work
with the Logic of Beliefs in the previous section, we know that there is also a
proof which uses the premises “as intended” and makes no use of reflection. By
applying the Lifting Lemma we are guaranteed a proof term t (which might
refer to the xi’s) such that

x1 : p̂1, . . . xn : p̂n `C t : [((y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm : ¬qm)) →
(gψ · x1 · x2 · . . . · xn · (y1 + z1) · (y2 + z2) · . . . · (ym + zm)) : ψ]

It turns out that for the “intended” proof, one possible t is of the form

(g0 ·
m times︷ ︸︸ ︷

(cL + cR) · c2 · (cL + cR) · c2 · . . . (cL + cR) · c2) · kn where g0 is a ground
term consisting only of constants corresponding to propositional axioms and
kn is the proof polynomial discussed a few paragraphs ago. It is somewhat
surprising that we can engineer g0 to be both quadratic in the size of ψ and
independent of the particular assignment of the q̂j ’s. This is tedious but not
difficult to show, very much along the lines of Lemma 3.2.3 Let us denote the

3This is the place that the grouping into pairs of (y1 : q1 ∧ z1 : ¬q1)∧ · · · ∧ (ym : qm ∧ zm :
¬qm) comes into play. If we were to let a6 : ϕ ∧ ψ → ϕ and a7 : ϕ ∧ ψ → ψ, it turns out
that (a6 + a7) : (y1 : q1 ∧ z1 : ¬q1) → y1 : q1 and (a6 + a7) : (y1 : q1 ∧ z1 : ¬q1) → z1 : ¬q1,

14

full t by tψ. Again, the length of tψ is quadratic in the length of ψ.
Let F be the following:
[(x1 : p1∨x1 : ¬p1)∧· · ·∧(xn : pn∨xn : ¬pn)] → tψ : [((y1 : q1∧z1 : ¬q1)∧· · ·∧

(ym : qm∧zm : ¬qm)) → (gψ ·x1 ·x2 ·. . .·xn ·(y1+z1)·(y2+z2)·. . .·(ym+zm)) : ψ]
First of all, let us invoke the deduction theorem and similar arguments to

those in the case of LP(K4) to note that `C F if and only if for each possible
assignment of the p̂i’s to pi or ¬pi

x1 : p̂1, . . . , xn : p̂n `C tψ : [((y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm :
¬qm)) → (gψ · x1 · x2 · . . . · xn · (y1 + z1) · (y2 + z2) · . . . · (ym + zm)) : ψ]

This observation alone takes care of the universal quantifiers in the original
quantified boolean formula ∀p1 · · · ∀pn∃q1 · · · ∃qmψ. As before, let use abbrevi-
ate x1 : p̂1, . . . , xn : p̂n by Γn.

Now all we need to do is show that
Γn `C tψ : [((y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm : ¬qm)) → (gψ · x1 · x2 ·

. . . · xn · (y1 + z1) · (y2 + z2) · . . . · (ym + zm)) : ψ]
if and only if ψ with the pi’s replaced by truth values determined by whether

p̂i is pi or ¬pi is satisfiable.
The following lemma will get us much of the way there:

Lemma 3.6. Let C, c2, cL, cR, tψ and kn be as defined above, and let t be some
proof polynomial. Then

Γn `C tψ : [((y1 : q1 ∧ z1 : ¬q1)∧ · · · ∧ (ym : qm ∧ zm : ¬qm)) → (t · (y1 + z1) ·
(y2 + z2) · . . . · (ym + zm)) : ψ]

if and only if
Γn `C kn : t : (q̂1 → · · · → q̂m → ψ)
for some assignment of the q̂j’s to either qj or ¬qj respectively.

Proof. This is the messiest part of the argument, and for the sake of simplicity
and readability, we will restrict ourselves to the case m = 2. This approach
generalizes quite naturally.

Thus, we wish to prove that Γn `C (g0 · (cL + cR) · c2 · (cL + cR) · c2) · kn :
[((y1 : q1 ∧ z1 : ¬q1)∧ (y2 : q2 ∧ z2 : ¬q2)) → (t · (y1 + z1) · (y2 + z2)) : ψ] implies
Γn `C kn : t : (q̂2 → q̂1 → ψ) where q̂1 is either q1 or ¬q1 and q̂2 is either q2 or
¬q2. (The implication in the other direction is much more straightforward and
will be easy to reconstruct from the argument in the present direction.)

We begin with
Γn `C (g0 · (cL + cR) · c2 · (cL + cR) · c2) · kn : [((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 :

q2 ∧ z2 : ¬q2)) → (t · (y1 + z1) · (y2 + z2)) : ψ].
As the conclusion of this sequent is atomic as far as propositional logic is

concerned and no application of (:=⇒) would have been of any use, the final
rule used to obtain this sequent must have been (=⇒ ·). Thus there must be a
formula Fn with

Γn `C kn : Fn
and

so the left/right or positive/negative choices made later in the argument do not affect the
construction of g0.

15

Γn `C (g0 · (cL + cR) · c2 · (cL + cR) · c2) : (Fn → [((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 :
q2 ∧ z2 : ¬q2)) → (t · (y1 + z1) · (y2 + z2) : ψ)]).

Let us leave Γn `C kn : Fn alone for the moment and concentrate on the
latter formula. Again, it must have been proven using (=⇒ ·). Thus, there is a
formula A1 such that Γn `C c2 : A1 and Γn `C g0 ·(cL+cR)·c2 ·(cL+cR) : (A1 →
Fn → [((y1 : q1 ∧ z1 : ¬q1)∧ (y2 : q2 ∧ z2 : ¬q2)) → (t · (y1 + z1) · (y2 + z2) : ψ)]).
Again, the last step in a proof of the latter formula must have used (=⇒ ·), so
there is formula A2 so that Γn `C (cL + cR) : A2 and Γn `C g0 · (cL + cR) · c2 :
(A2 → A1 → Fn → [((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 : q2 ∧ z2 : ¬q2)) → (t · (y1 + z1) ·
(y2 + z2) : ψ)]).

If we continue in this way twice more, we see that there must also be formulas
A3 and A4 so that Γn `C c2 : A3, Γn `C (cL + cR) : A4, and Γ `C g0 : (A4 →
A3 → A2 → A1 → Fn → [((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 : q2 ∧ z2 : ¬q2)) →
(t · (y1 + z1) · (y2 + z2) : ψ)]).

Now since Γn `C c2 : A1 and Γn `C c2 : A3, it must be that both A1 and
A3 are instances of axiom scheme A2, the Application rule. Thus, each has
the form t : (F → G) → (s : F → (t · s) : G). It is also clear that, since
Γn `C (cL + cR) : A2 and Γn `C (cL + cR) : A4, each of A2 and A4 must be
instances of axiom scheme A4, the Sum rule, either the left or right version. This
leads us to four possibilities, based on two choices of cL versus cR. (In general,
of course, we would have 2m possibilities, but we are looking specifically at the
case m = 2.) For now, let us assume that A2 is of the form u : H → (u+ v) : H
and that A4 is of the form v : H → (u + v) : H. Each of the other three cases
would be dealt with essentially identically to this one.

Note that at least one of these four (in general, 2m) cases must hold, but
we have no way of knowing which. This collection of left/right decisions will
correspond to the true/false decisions of the existentially quantified qj ’s from
our original quantified boolean formula.

Now that we know the form A1, A2, A3, and A4 must take, we can restate
what we know. It must be that Γn `C kn : Fn and that

Γn `C g0 : ((v2 : H2 → (u2 + v2) : H2) → (t2 : (F2 → G2) → (s2 : F2) →
(t2 · s2) : G2) → (u1 : H1 → (u1 + v1) : H1) → (t1 : (F1 → G1) → (s1 :
F1) → (t1 · s1) : G1) → Fn → [((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 : q2 ∧ z2 : ¬q2)) →
(t · (y1 + z1) · (y2 + z2) : ψ)])

for some formulas F1, G1, F2, G2, H1, H2, and Fn and some proof polyno-
mials s1, t1, s2, t2, u1, u2, v1, and v2.

Further, since it is of the form Γn `C g0 : . . ., it must be that the formula
with the g0 stripped off is a propositional tautology. (Recall that g0 consists
entirely of proof constants corresponding to propositional axioms.) However, as
written, in contains many provisional formula and polynomial variables.

Upon close examination, we see that the formula could be rewritten as a
conjunction of the following premises

• y1 : q1

• z1 : ¬q1

16

• y2 : q2

• z2 : ¬q2

• t1 : (F1 → G1) → (s1 : F1) → (t1 · s1) : G1

• u1 : H1 → (u1 + v1) : H1

• t2 : (F2 → G2) → (s2 : F2) → (t2 · s2) : G2

• v2 : H2 → (u2 + v2) : H2

• Fn

implying the conclusion (t · (y1 + z1) · (y2 + z2)) : ψ. The task that now faces
us is a Prolog-style unification problem. We need to unify these provisional
formula and proof polynomial variables (the F ’s, G’s, H’s, s’s, t’s, u’s, and v’s)
in such a way that the desired conclusion follows tautologically from them. Note
here that the y’s, z’s, and q’s are elementary and may not be unified out. Note
as well that we have two pairs of essentially identical schemes. The choice of
which to use at a particular point in unification is arbitrary and will not affect
the outcome. (In fact, the choices might be dictated by the precise form of g0,
but that does not affect the current argument.)

One further thing to note is that from what we know about Fn, namely that
Γn `C kn : Fn, we can not unify Fn with any of the first four premises nor
with the desired conclusion at any stage of the unification before the final one.
(Otherwise, the unification would be trivial.) This is the only place in the proof
of this lemma that the premises Γn come into play.

We begin with our conclusion: (t · (y1 + z1) · (y2 + z2) : ψ). This must be
the consequence of one of our premises, and the only one that fits the bill is
t1 : (F1 → G1) → (s1 : F1) → (t1 · s1) : G1 (or its identical twin scheme). Thus,
we will unify t1 with (t · (y1 + z1)), s1 with (y2 + z2), and G1 with ψ.

We now wish to prove (t · (y1 + z1) : (F1 → ψ) and (y2 + z2) : F1 from

• y1 : q1

• z1 : ¬q1

• y2 : q2

• z2 : ¬q2

• u1 : H1 → (u1 + v1) : H1

• t2 : (F2 → G2) → (s2 : F2) → (t2 · s2) : G2

• v2 : H2 → (u2 + v2) : H2

• Fn

17

To prove (y2 + z2) : F1, we will have to unify F1 either with H1 or H2 (this
involves a left/right decision). Let us choose H2 to keep our subscripts straight.
This also unifies u2 with y2 and v2 with z2. We also pick up the subgoal of
proving z2 : H2. This clearly identifies H2 (and hence F1) with ¬q2. Our new
goal is to prove (t · (y1 + z1)) : ¬q2 → ψ propositionally from:

• y1 : q1

• z1 : ¬q1

• y2 : q2

• u1 : H1 → (u1 + v1) : H1

• t2 : (F2 → G2) → (s2 : F2) → (t2 · s2) : G2

• Fn

This step and the next are very similar to the previous two. We unify t with
t2, (y1 + z1) with s2, and G2 with ¬q2 → ψ. This creates the subgoal of proving
(y1 + z1) : F2. This can only be achieved by unifying u1 with y1, v1 with z1,
and F2 with H1. Again, we create the subgoal of proving y1 : H1, which clearly
unifies H1 (and F2) with q1.

Finally, we are left having to prove t : q1 → (¬q2) → ψ propositionally from

• z1 : ¬q1

• y2 : q2

• Fn

Clearly the only way to do this is to unify Fn with t : q1 → (¬q2) → ψ,
and at this point, we are free to do this (assuming the t is suitable). Remember
that the only criterion we had for Fn was that Γn `C kn : Fn, so we have shown
that, given the left/right choices we made Γn `C kn : t : ¬q2 → q1 → ψ. What
we have shown in general is that for some assignment of q̂1 to q1 or ¬q1 and q̂2
to q2 or ¬q2, Γ `C kn : t : q̂2 → q̂1 → ψ.

This is exactly what we wished to show, at least for the case m = 2. The
way to generalize this is clear. This completes the proof of the lemma.

Now let the assignments of p̂i to pi and ¬pi be arbitrary and the assignments
of q̂j to qj and ¬qj be those guaranteed by the above lemma in the context of
the given p̂i’s. Under these circumstances, we have reduced our task to showing
that x1 : p̂1, . . . , xn : p̂n `C kn : (gψ · x1 · . . . · xn) : q̂1 → · · · → q̂m → ψ if and
only if ψ is true under the valuation of the pi’s and qj ’s specified by the choices
of p̂i and q̂j .

Based on what we discovered about kn at the beginning of the proof, x1 :
p̂1, . . . , xn : p̂n `C kn : (gψ · x1 · . . . · xn) : q̂1 → · · · → q̂m → ψ if and only

18

if `C gψ : p̂1 → · · · → p̂n → q̂1 → · · · → q̂m → ψ. This is true only if
p̂1 → · · · → p̂n → q̂1 → · · · → q̂m → ψ is a tautology.

Thus, our task has finally been reduced to the trivial: Show that p̂1 →
· · · → p̂n → q̂1 → · · · → q̂m → ψ is a tautology if and only if ψ is true under
the valuation of the pi’s and qj ’s specified by the choices of p̂i and q̂j . Since the
choices of p̂i and q̂j specify a complete valuation as far as ψ is concerned, we
are done.

Corollary 3.7. Given a formula F in the language of LP, the problem of
whether F can be derived under a schematically injective, axiomatically appro-
priate constant specification is Πp

2-complete. The dual problem of satisfiability
is Σp2-complete.

4 Future Work

Several issues relating to the complexity of LP remain unanswered. First, does
deducibility remain Πp

2-hard if the condition of schematic injectivity is dropped?
In particular, is deducibility under the maximal constant specification Πp

2-hard?
Secondly, what is the computability-theoretic complexity of deduction from an
infinite recursive set of premises? Some further research into the complexity
of LP has already been done. It is a folk result following from [2] and [9]
that derivability in LP0 is co-NP complete, and it follows that it is also co-NP
complete for finite constant specifications (and hence for fixed injective constant
specifications, as a particular formula mentions only finitely many constants).
Kuznets has also shown that decidable constant specifications can be designed
which lead to satisfiability being undecidable. ([17])

There are many variations and extensions of LP not mentioned in the present
paper, and of course another direction for research is to pursue complexity
questions for these.

Finally, there are many Σp2-complete and Πp
2-complete problems in other

areas of computer science. (For example, the problems of credulous/skeptical
reasoning in default logic fall into this category.) Are there natural translations
between LP and structures in these other areas of study?

Acknowledgement

Thanks to Prof. Sergei Artemov and to Roman Kuznets for encouragement and
many helpful suggestions.

References

[1] Artemov, S.N., Strassen, T.: The basic logic of proofs. In Börger, E., Jäger,
G., Büning, H.K., Martini, S., Richter, M., eds.: Computer Science Logic,

19

6th Workshop, Selected Papers. Volume 702 of Lecture Notes in Computer
Science., San Miniato, Italy (1992) 14–28

[2] Artemov, S.N.: Explicit provability and constructive semantics. Bulletin
of Symbolic Logic 7 (2001) 1–36

[3] Artemov, S.N.: Unified semantics for modality and lambda-terms via proof
polynomials. In Vermulen, K., Copestake, A., eds.: Algebras, Diagrams and
Decisions in Language, Logic and Computation, Stanford, CA (2002)

[4] Artemov, S.N.: Back to the future: Explicit logic for computer science.
In Baaz, M., Makowsky, J., eds.: Computer Science Logic, Proceedings
of the 12th annual workshop. Volume 2803 of Lecture Notes in Computer
Science., Springer (2003) 43

[5] Gödel, K.: Eine interpretation des intuitionistischen aussagenkalkuls.
Ergebnisse Math. Colloq. 4 (1933) 39–40

[6] Gödel, K.: Vortrag bei zilsel, 1938. In Feferman, S., ed.: Kurt Godel
Collected Works, vol. III. Oxford University Press, Oxford (1995) 86–113

[7] Artemov, S.N.: Evidence-based common knowledge. Technical Report
TR-2004018, City University of New York (2004)

[8] Mkrtychev, A.: Models for the logic of proofs. In Adain, S., Nerode, A.,
eds.: Logical Foundations of Computer Science ’97, Berlin, Springer Verlag
(1997) 266–277 Lecture Notes in Computer Science vol. 1234.

[9] Kuznets, R.: On the complexity of explicit modal logics. In: Proceedings
of the 14th International Wokrshop on Computer Science Logic, Berlin,
Springer Verlag (2000) 371–383

[10] Ladner, R.: The computational complexity of provability in systems of
modal propositional logic. SIAM Journal of Computing 6 (1977) 467–480

[11] Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied
Logic 125 (2005) 1–25

[12] Troelstra, A., Schwichtenburg, H.: Basic Proof Theory. Cambridge Uni-
versity Press, Cambridge (1996)

[13] Brezhnev, V.: On the logic of proofs. In: Proceedings of the Sixth ESSLLI
Student Session, Helsinki. (2001) 35–46

[14] Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Rout-
ledge, Oxford (1996)

[15] Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Boston,
MA (1993)

20

[16] Pudlák, P.: The lengths of proofs. In Buss, S.R., ed.: The Handbook of
Proof Theory. Elsevier, Amsterdam (1998) 547–637

[17] Kuznets, R.: On decidability of the logic of proofs with arbitrary constant
specifications. Bulletin of the Association for Symbolic Logic 11 (2005) 114
Abstract only.

21

Appendix

As an aid to those who wish to confirm the technical details involved in the
proof terms from Lemma 3.2, here are some of the deductions alluded to in the
proof.

Proposition 4.1. ϕ→ ψ,ψ → θ ` ϕ→ θ invoking each premise only once and
invoking two axioms.

Proof. The deduction is as follows:
ψ → θ Premise
(ψ → θ) → ϕ→ (ψ → θ) Axiom 1
ϕ→ ψ → θ Modus Ponens
ϕ→ ψ Premise
(ϕ→ ψ) → (ϕ→ ψ → θ) → (ϕ→ θ) Axiom 2
(ϕ→ ψ → θ) → (ϕ→ θ) Modus Ponens
ϕ→ θ Modus Ponens

Corollary 4.2. A→ (A ∨B ∨ C) with four calls to axioms.

Apply Proposition 4.1 with premises A→ (A∨B) (Axiom 3) and (A∨B) →
(A ∨B ∨ C) (Axiom 3 again).

Corollary 4.3. B → (A ∨B ∨ C) with four calls to axioms.

Apply Proposition 4.1 with premises B → (A∨B) (Axiom 4) and (A∨B) →
(A ∨B ∨ C) (Axiom 3).

Proposition 4.4. ϕ → θ ` ϕ → ψ → θ invoking the premise only once and
invoking three axioms.

Proof. Here is the deduction:
θ → ψ → θ Axiom 1
(θ → ψ → θ) → ϕ→ (θ → ψ → θ) Axiom 1
ϕ→ θ → ψ → θ Modus Ponens
[ϕ→ θ] → [ϕ→ θ → ψ → θ] → [ϕ→ ψ → θ] Axiom 2
ϕ→ θ Premise
[ϕ→ θ → ψ → θ] → [ϕ→ ψ → θ] Modus Ponens
ϕ→ ψ → θ Modus Ponens

Proposition 4.5. ϕ → θ ` ψ → ϕ → θ invoking the premise only once and
invoking one axiom.

Proof. The deduction is as follows:
ϕ→ θ Premise
(ϕ→ θ) → ψ → (ϕ→ θ) Axiom 1
ψ → ϕ→ θ Modus Ponens

22

Proposition 4.6. A→ B → C ` B → A→ C invoking the premise only once
and invoking 6 axioms.

Proof. Here is the deduction:
(A→ B) → (A→ B → C) → (A→ C) Axiom 2
[(A→ B) → (A→ B → C) → (A→ C)] →

B → [(A→ B) → (A→ B → C) → (A→ C)] Axiom 1
B → (A→ B) → (A→ B → C) → (A→ C) Modus Ponens
B → (A→ B) Axiom 1
[B → (A→ B)] →

[B → (A→ B) → (A→ B → C) → (A→ C)] →
[B → (A→ B → C) → (A→ C)] Axiom 2

[B → (A→ B) → (A→ B → C) → (A→ C)] →
[B → (A→ B → C) → (A→ C)] Modus Ponens

B → (A→ B → C) → (A→ C) Modus Ponens
A→ B → C Premise
(A→ B → C) → B → (A→ B → C) Axiom 1
B → (A→ B → C) Modus Ponens
[B → (A→ B → C)] →

[B → (A→ B → C) → (A→ C)] →
[B → A→ C] Axiom 2

[B → (A→ B → C) → (A→ C)] → [B → A→ C] Modus Ponens
B → A→ C Modus Ponens

Corollary 4.7. [ϕ → (θ2 → ψ)] → [(ϕ → θ2) → (ϕ → ψ)] can be proved with
seven axiom invocations.

Proof. Proposition 4.6 with Axiom 2 as premise.

Proposition 4.8. θ1 → θ2 → ψ ` (ϕ → θ1) → (ϕ → θ2) → (ϕ → ψ) invoking
the premise only once and invoking 13 axioms.

Proof. Here is the deduction:
θ1 → (θ2 → ψ) Premise
(θ1 → (θ2 → ψ)) → ϕ→ (θ1 → (θ2 → ψ)) Axiom 1
ϕ→ θ1 → (θ2 → ψ) Mod. Pon.
(ϕ→ θ1 → (θ2 → ψ)) → (ϕ→ θ1) → (ϕ→ θ1 → (θ2 → ψ)) Axiom 1
(ϕ→ θ1) → (ϕ→ θ1 → (θ2 → ψ)) Mod. Pon.
(ϕ→ θ1) → (ϕ→ θ1 → (θ2 → ψ)) → (ϕ→ (θ2 → ψ)) Axiom 2
[(ϕ→ θ1) → (ϕ→ θ1 → (θ2 → ψ))]

→ [(ϕ→ θ1) → (ϕ→ θ1 → (θ2 → ψ)) → (ϕ→ (θ2 → ψ))]
→ [(ϕ→ θ1) → (ϕ→ (θ2 → ψ))] Axiom 2

[(ϕ→ θ1) → (ϕ→ θ1 → (θ2 → ψ)) → (ϕ→ (θ2 → ψ))]
→ [(ϕ→ θ1) → (ϕ→ (θ2 → ψ))] Mod. Pon.

(ϕ→ θ1) → (ϕ→ (θ2 → ψ)) Mod. Pon.
[ϕ→ (θ2 → ψ)] → [(ϕ→ θ2) → (ϕ→ ψ)] Cor. 4.7
(ϕ→ θ1) → (ϕ→ θ2) → (ϕ→ ψ) Prop. 4.1

23

Note that the use of Corollary 4.7 adds seven axiom invocations and the use
of Proposition 4.1 adds two.

24

