Math 112 Fall 2009 Indeterminate forms and L'Hopital's rule

Many limits are easy to guess by inspection. Other limits are less susceptible to intuition. Consider these:

$$\lim_{x \to \infty} \frac{x^2}{2^x}; \qquad \lim_{x \to 0} \frac{\sin 2x}{x}; \qquad \lim_{x \to \infty} x e^{-x}; \qquad \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 + 3}; \quad \lim_{x \to 0^+} x^x; \quad \lim_{x \to 1^+} x^{\frac{1}{1-x}}$$

Such limits are called indeterminate forms because, in each cas, two conflicting tendencies operate.

Determine the indeterminate type of the above examples: $\frac{\infty}{\infty}$, $\frac{0}{0}$, $\infty \cdot 0$, $\infty - \infty$, 1^{∞} , ∞^{0} , 0^{0} .

L'Hopital's rule: finding limits by differentiation

L'Hopital's rule says that **under appropriate conditions** an indeterminate form can be evaluated by differentiating the numerater and the denominator separately. In symbols:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Applying L'Hospital (blindly): Find $\lim_{x\to 0} \frac{\sin(2x)}{x}$.

Making a point: (Blindly is bad in mathematics): Find $\lim_{x\to 0} \frac{x+4}{x+1}$.

Theorem: Let f and g be differentiable functions, such that

1. as
$$x \to a$$
, either

- (a) $f(x) \to 0$ and $g(x) \to 0$; or
- (b) $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$
- 2. $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists.

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Note: $a \pm \infty$ and one sided limits are permitted.

General idea: Suppose f and g are differentiable functions, with f(a) = g(a) = 0. Around x = a let's write the linear approximations to f and g.

$$f(x) \approx f(a) + f'(a)(x-a) = f'(a)(x-a)$$

$$g(x) \approx g(a) + g'(a)(x-a) = g'(a)(x-a)$$

If $g'(a) \neq 0$ and $x \neq a$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(a)(x-a)}{g'(a)(x-a)} = \frac{f'(a)}{g'(a)}$$

This should be very intuitive. The key fact here is not that f and g both go to zero at x = a, it is how fast they go to zero, which is measured by the rate of change, namely the derivatives of this functions at x = a.

Rule of Thumb: For indeterminates of the form $\frac{0}{0}$ and $\frac{\infty}{\infty}$ apply the L'Hopital's rule directly. For other cases you must rewrite the expressions to turn them into the $\frac{0}{0}$ and $\frac{\infty}{\infty}$ cases.

For indeterminates in the form of 1^{∞} , ∞^0 and 0^0 convert to base e exponential using the rule

 $a^b = e^{b\ln(a)}$

and take the limit inside as in the following exercise.

Exercise: Find $\lim_{x\to\infty} (\ln(x))^{\frac{1}{x}}$.

 $\lim_{x \to \infty} (\ln(x))^{\frac{1}{x}} = \lim_{x \to \infty} e^{\frac{1}{x} \ln(\ln(x))} = e^{\lim_{x \to \infty} \frac{\ln(\ln(x))}{x}} = e^{\lim_{x \to \infty} \frac{1}{\ln(x)} \frac{1}{x}} = e^{0} = 1.$