Math 112 Fall 2009

Indeterminate forms and L'Hopital's rule

Many limits are easy to guess by inspection. Other limits are less susceptible to intuition. Consider these:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}} ; \quad \lim _{x \rightarrow 0} \frac{\sin 2 x}{x} ; \quad \lim _{x \rightarrow \infty} x e^{-x} ; \quad \lim _{x \rightarrow \infty} \frac{x^{2}+1}{2 x^{2}+3} ; \quad \lim _{x \rightarrow 0^{+}} x^{x} ; \quad \lim _{x \rightarrow 1^{+}} x^{\frac{1}{1-x}}
$$

Such limits are called indeterminate forms because, in each cas, two conflicting tendencies operate.
Determine the indeterminate type of the above examples: $\frac{\infty}{\infty}, \frac{0}{0}, \infty \cdot 0, \infty-\infty, 1^{\infty}, \infty^{0}, 0^{0}$.

L'Hopital's rule: finding limits by differentiation

L'Hopital's rule says that under appropriate conditions an indeterminate form can be evaluated by differentiating the numerater and the denominator separately. In symbols:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Applying L'Hospital (blindly): Find $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}$.

Making a point: (Blindly is bad in mathematics): Find $\lim _{x \rightarrow 0} \frac{x+4}{x+1}$.

Theorem: Let f and g be differantiable functions, such that

1. as $x \rightarrow a$, either
(a) $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$; or
(b) $f(x) \rightarrow \pm \infty$ and $g(x) \rightarrow \pm \infty$
2. $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists.

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Note: $a \pm \infty$ and one sided limits are permitted.
General idea: Suppose f and g are differentiable functions, with $f(a)=g(a)=0$. Around $x=a$ let's write the linear approximations to f and g.

$$
\begin{aligned}
& f(x) \approx f(a)+f^{\prime}(a)(x-a) \\
&=f^{\prime}(a)(x-a) \\
& g(x) \approx g(a)+g^{\prime}(a)(x-a)=g^{\prime}(a)(x-a)
\end{aligned}
$$

If $g^{\prime}(a) \neq 0$ and $x \neq a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(a)(x-a)}{g^{\prime}(a)(x-a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)} .
$$

This should be very intuitive. The key fact here is not that f and g both go to zero at $x=a$, it is how fast they go to zero, which is measured by the rate of change, namely the derivatives of this functions at $x=a$.

Rule of Thumb: For indeterminates of the form $\frac{0}{0}$ and $\frac{\infty}{\infty}$ apply the L'Hopital's rule directly. For other cases you must rewrite the expressions to turn them into the $\frac{0}{0}$ and $\frac{\infty}{\infty}$ cases.

For indeterminates in the form of $1^{\infty}, \infty^{0}$ and 0^{0} convert to base e exponential using the rule

$$
a^{b}=e^{b \ln (a)}
$$

and take the limit inside as in the following exercise.
Exercise: Find $\lim _{x \rightarrow \infty}(\ln (x))^{\frac{1}{x}}$.
$\lim _{x \rightarrow \infty}(\ln (x))^{\frac{1}{x}}=\lim _{x \rightarrow \infty} e^{\left.\frac{1}{x} \ln (\ln (x))\right)}=e^{\lim _{x \rightarrow \infty} \frac{\ln (\ln (x))}{x}}=e^{\lim _{x \rightarrow \infty} \frac{\frac{1}{\ln (x) \frac{1}{x}}}{1}}=e^{0}=1$.

