Group Homework

Math 112, Fall 2009
Selin Kalaycioglu
The goal of this project is to prove the second part of the theorem about error bounds for approximating sums:

Theorem: Let $I=\int_{a}^{b} f(x) d x$, and let M_{n} and T_{n} denote midpoint and trapezoid sums for I, each with n equal subdivisions. Let K_{2} be a constant such that $\left|f^{\prime \prime}(x)\right| \leq K_{2}$ for all x in $[a, b]$. Then

$$
\left|I-T_{n}\right| \leq \frac{K_{2}(b-a)^{3}}{12 n^{2}} \text { and }\left|I-M_{n}\right| \leq \frac{K_{2}(b-a)^{3}}{24 n^{2}} .
$$

In the following I tried to outline the steps that will give you enough hints to prove the theorem.

1. Find a function $q(x)$ for which $\left|q^{\prime \prime}(x)\right| \leq K_{2}$ for all $x \in \mathbb{R}$.
2. Suppose $f(0)=0$ and $f^{\prime}(0)=0$. Draw a sketch of the graph of $f(x)$ and $q(x)$ on the same coordinate system. Label the interval $[a, b]$ on your graph noting the assumption that $0<a<b$.
3. The first step is to estimate how much error M_{n} and T_{n} can commit, at worst, over one subinterval. To simplify the algebra, we take $[0, h]$ as our subinterval. First compute the exact integral of $q(x)$ over $[0, h]$ and denote that by I_{h}.
4. Now compute the midpoint and trapezoid estimates over the same interval for $q(x)$ and call them M_{h} and T_{h} respectively.
5. Compute $I_{h}-M_{h}$, and $I_{h}-T_{h}$. Do these expressions convinve you that you are on the right track?
6. Now that you have found the worst-case error committed by each method over one subinterval, estimate the worst case error, over all n subintervals on $[a, b]$ for both the midpoint and the trapezoid approximations. Write a few sentences to conclude why this proves the theorem.
