The problems below are fairly complicated with several steps. I expect you to show your reasoning clearly and in an organized fashion. Here is the solution of a similar problem, which should give you an idea of how to write up your solution.

Example: Use left Riemann sums to compute $\int_1^3 x dx$. Solution: $\Delta x = \frac{2}{n}$. Using left Riemann sums we get the following approximation:

$$\int_{1}^{3} x dx \approx \frac{2}{n} \sum_{k=1}^{n} \left(1 + (k-1)\frac{2}{n} \right)$$

If you are not comfortable writing the above formula, go ahead and write the areas of the first few rectangles to see the pattern.

Let f(x) = x and $\Delta x = \frac{2}{n}$.

Area of the first rectangle
$$= f(1) * \frac{2}{n}$$

Area of the second rectangle $= f(1 + \frac{2}{n}) * \frac{2}{n}$
Area of the **third** rectangle $= f(1 + 2 * \frac{2}{n}) * \frac{2}{n}$
Area of the **fourth** rectangle $= f(1 + 3 * \frac{2}{n}) * \frac{2}{n}$

Area of the
$$k$$
th rectangle = $f(1 + (\mathbf{k} - \mathbf{1}) * \frac{2}{n}) * \frac{2}{n}$

:

Now to find the exact value of the integral you have to take the limit, that is

$$\int_{1}^{3} x dx = \lim_{n \to \infty} \frac{2}{n} \sum_{k=1}^{n} \left(1 + (k-1)\frac{2}{n} \right)$$

Let us simplify the expression inside the sigma notation first.

$$\int_{1}^{3} x dx = \lim_{n \to \infty} \frac{2}{n} \sum_{k=1}^{n} \left(1 + (k-1)\frac{2}{n} \right)$$
(1)

$$= \lim_{n \to \infty} \frac{2}{n} \sum_{k=1}^{n} \frac{n+2k-2}{n}$$
(2)

$$= \lim_{n \to \infty} \frac{2}{n^2} \sum_{k=1}^n n + 2k - 2$$
(3)

$$= \lim_{n \to \infty} \frac{2}{n^2} \left(\sum_{k=1}^n n + \sum_{k=1}^n 2k - \sum_{k=1}^n 2 \right)$$
(4)

$$= \lim_{n \to \infty} \frac{2}{n^2} \left(n^2 + 2 \frac{n(n+1)}{2} - 2n \right)$$
(5)

$$= \lim_{n \to \infty} \left(\frac{2n^2}{n^2} + \frac{2n^2 + 2n}{n^2} - \frac{4n}{n^2} \right)$$
(6)

$$= 2 + 2 = 4$$
 (7)

Step 5 requires the formulas and properties of the sigma notation.

Now it is your turn to do the following problems.

- 1. Use right Riemann sums to compute the following integrals.
 - (a) $\int_{-1}^{5} x dx$
(b) $\int_{1}^{2} x^{2} dx$

- 2. Use left Riemann sums to compute the following integrals.
 - (a) $\int_{-1}^{3} x dx$
 - (b) $\int_2^4 x^2 dx$

3. Use midpoint Riemann sum to compute the following integrals.

- (a) $\int_{1}^{2} x dx$
(b) $\int_{0}^{2} x^{2} dx$

4. Use right Riemann sums to compute the following integral. $\int_{-1}^{5} 2x^2 + 3x dx$

Now we approach the problem from the other direction, namely given a limit of a Riemann sum, we will write that as a definite integral and compute the integral using FTC.

1. Evaluate $\lim_{n\to\infty} \sum_{i=1}^n \left(\frac{i}{n}\right)^3$ by expressing it as a definite integral and then evaluating this integral.

2. Evaluate $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{n+i}{n}\right)^2$ by expressing it as a definite integral and then evaluating this integral.

3. Evaluate $\lim_{n\to\infty} \frac{4}{n} \sum_{i=1}^n \sqrt{\left(\frac{2(2i-1)}{n}\right)}$ by expressing it as a definite integral and then evaluating this integral.