4/28/2009

Chapter 11: Remedial Measures

 

·     What if we have Unequal Error Variances (Heteroskedasticity)? --> Weighted Least Squares

o        Model

o        Weighted least squares criterion

o        Process:

1.   Fit regression model; analyze residuals

2.   Estimate variance function or standard deviation function

3.   Use fitted values from estimated variance/SD function to obtain weights,

4.   Estimate regression coefficients using these weights:

o        Caution: R^2 no longer has clear-cut meaning!

o        Example: BP-Ch11.sas

 

·     What if we have Multicollinearity? --> Ridge Regression

o        Biased estimation: Allow estimators to be biased; pick the estimator that minimizes mean squared error.

o        Example: bodyfat-Ch11.sas

 

·     What if we have Influential Cases? --> Robust Regression

o        LAD regression

o        LMS regression

o        IRLS regression

1.   WLS with weight functions that dampen the influence of outliers

2.   Process:

1.   Choose weight function

2.   Obtain starting weights

3.   Use starting weights with WLS and obtain residuals

4.   Use these residuals to obtain revised weights

5.   Iterate until covergence

3.   Example: mathprof-Ch11.sas

 

For Thursday: Evaluations!