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Section 1: Introduction 

Single-protein solutions are often needed during the production of pharmaceuticals. 
However, with current technology, directly producing such a solution is virtually impossi­
ble. Therefore, a standard industrial goal is to separate and prepare single-protein solutions 
from mixtures of multi-component solutions. Optimally, whatever process is used should 
achieve high purification and high yield. Total purification ( the highest value of some 
measure of the purity) meaus that the solution prepared for distribution and use contains 
only the single protein of interest. Similarly, yield is a measure of the amount of the single 
protein extracted from the multi-component solution. It is easy to show that maximum 
purification and maximum yield cannot be obtained. Thus, an optimal strategy will neces­
sarily involve trade-offs. Specifying an objective function to be maximized in any generic 
situation is impractical; the qualities of each protein dictate the utility values associated 
with purity and yield. 

At Genentech Corporation, a filtration process is used, a schematic of which is shown in 
exhibit A. The solution to be filtered is recycled through the system, and additional solution 
is added to keep the volume on the retentate side coustant. The Genentech representative 
presented data and observations for the membrane separation of two-component protein • 
solutions. Two different basic situations are encountered, depending upon the length of 
time the process is run. As described in section 6, the filters become fouled. Initial 
fouling ( within a few seconds) accounts for most of the filter degradation. After this initial 
stage, fouling proceeds at a much slower rate. Thus, over short periods, where the filter 
degradation is small, the filter performance can be assumed constant. It is for this case 
that we attempted to model the data and experimental results from Genentech; the fruits 
of these efforts are presented in sectious 2-5. Genentech is also interested in longer runs 
where filter performance will change; we address this situation in section 6. 

It is straightforward to model the situation in exhibit A in either case described above. 
Even with filter fouling, the modeling is not difficult provided that the fouling mechanism 
is well-understood (either phenomenologically or physically). As a result of the study of 
the production process at Genentech, various measures of purity and yield have evolved. 
These are used here although there appear to be more natural dimensionless parameters 
in the system. Some information is derived relating the measures of purity and yield to 
the other parameters in the problem. Since both maximum purity and maximum yield 
cannot be simultaneously achieved, knowledge of dependence of these quantities on ali 
other parameters allows the selection of various optimal separation strategies. 
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Section 2: Mass Balance 

We wish to obtain expressions for the sieving coefficients by using a mass balance 
across the membrane. A typicai experimental apparatus is shown in figure 2.1. 

_ _ _ _ _ _ _ Cb (constant) _ _ _ _ _ 
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Cf (constant) 

Figure 2.1. Experimental apparatus. 
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We hypothesize that the concentration changes only in a thin boundary layer near 
the filter on the retentate side. \Ve denote this region by O < z < 5, where z = 0 denotes 
the position of the filter. In this region, there are two components to the fiux N in the 
z-direction ( that is, normal to the surface of the filter): a diffusive part and a convective 
part: 

(2.1) 

where Jv is the fiux of solvent through the membrane given in units of velocity, Cr,j is 
the concentration of protein j in the thin boundary layer near the membrane, and Dj is 
the diffusivity of the protein in the fluid. Here we use a negative sign in front of Jv since 
we take Jv to be positive even though the velocity is acting downward. In practice, Jv is 
adjusted by changing the pressure drop across the membrane. However, the permeate rate 
can also be affected by the shear rate of the flow parallel to the membrane [1]. 

In the filtrate, we assume that the concentration is maintained at a constant value, 
and hence there is only a convective flux: 

These two fluxes must be equal everywhere in z, so we have 

dC , 
1 C - JC ' D r,J 

'-'v f,j - v r,j ' j dz ; 

where we have introduced the following scaling: 
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where C,.J is the initial concentration of protein j in the retentate. 
At z = 6, we obtain the boundary condition 

(2.4) 

where C0.J is the bulk concentration in the retentate of protein j. In the context of a true 
boundary layer analysis. (2.4) would become the matching condition for the layer solution. 
Solving (2.3) subject to (2.4), we have the following: 

rJ (8 _ ) r ,., - c . re c , I v z I / vr,j - J,j .,- \ b,j - J,j} exp , D. • 
L r ' , " 

(2.5) 

Let Cw,J be the concentration of protein j in the boundary layer at z = o+, sometimes 
called the wall concentration. Then we have 

/ J 8) C =C1 +(C 0 · -C 1 ·)exp(_v_ . w ,J iJ ,J J ,J D . 
J 

(2.6) 

At this stage we introduce the actual and observed sieving coefficients Sa,j and S 0 ,1, defined 
by 

C1_· 
S ,] 

a,j=~• 
W,J 

C1 . s - __ ,J 
O,J - C . 

b,j 
(2.7) 

• 

Sa,j is called the actual sieving coefficient since it measures the actual proportion of protein • 
which makes it from one side of the membrane to the other. However, one cannot measure 
Cw,j, since the boundary layer near the membrane is so thin. Therefore, the best one can 
measure is C6,j, the bulk retentate concentration, and hence one can calculate only the 
observed sieving coefficient S 0 ,1. Since Cb,j < Cw,j, we have that S 0 ,j > Sa,j. 

Rearranging (2.6) using (2. 7), we have the following: 

S . _ Sa,J 
O,J - s ' fl s \ ( J lk ) ' a,jl\ - a,j 1 exp- v 1 j 

(2.8) 

Here the kj are mass transfer coefficients, which have units of velocity. These measure 
the effective transfer of mass through the membrane, which can be changed by adjusting 
8. This is possible since the boundary layer width varies with the cross-stream velocity in 
the bulk flow in the retentate. It is our eventual goal to track relevant quantities in the 
problem as functions of the k1. 

Next we solve the equation inside the filtering membrane, which we denote as the 
region - L < z < 0. Here each of the terms in the fiux is modified by a constant of 
proportionality 1 so we have 

where the subscript m refers to the membrane and where K 0 ,1 and Kd.J are constants . 
In practice. these constants are unknown and unmeasurable. \Ve suppose that there is 

64 
• 



• 

• 

Saksena et aL. 2.3 

some partition coefficient ¢ corresponding to the filter. This coefficient basically acts like 
a porosity. since the concentration inside the membrane is smaller than the concentration 
outside due to the presence of pores. which reduce the volume in which the proteins can 
reside. Therefore, we see that at z = -L, we have the following boundary condition: 

Equation (2.9) must also match the flux at the filter given by (2.2), so we have 

dCm.J 
dz 

(2.10) 

(2.11 l . ' 

At z = o-, we see that the concentration in the membrane must be the product of 
the partition coefficient and the wall concentration, so we have the following boundary 
condition: 

Cm,J(o-) = ¢Cw,J· 

Using (2.7) and (2.11) in (2.12) yields 

K r 
4, - c,jLi 

• J - Kd D , 
,J J 

(2.12) 

(2.L3) 

Since one cannot measure the constants K with any degree of accuracy, the values of A 
can only be estimated. 

We may combine equations (2.8) and (2.13) to yield 

1 
s =-----------. 0

'
1 1 + ~1-[l - exp(-A J )J1 exp(-J /k \ · , 1] \ J V V, JJ 
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!j = 
1 - S00 ,J 

Soo,J 
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Section 3: Yield and Purity 

Now that we have obtained expressions for our sieving coefficients, we wish to relate 
them to various experimental quantities, such as the yield and purity of our filtrate. In 
the retentate, the concentration varies only in a small region near the filter, ae described 
in section 2. Tracking the mass balance across the membrane, we have 

(3.1) 

where Am is the area of the membrane, and Vi is the volume of the bluk flow in the 
retentate, which is kept constant by addition of pure solvent through a feed stream, ae 
shown in exhibit A. 

'vVe introduce the following nondimensionalization: 

"_ JvAmt 
lY- Vi . (3.2) 

N is called the diavolume, and it baeically measures the proportion of solvent pushed 
through the filter as compared to the bulk volume. Using (3.2) in (3.1), we obtain 

dCb' .; C - dN = f,j· (3.3) 

We note from equations (2.13) and (2.14) that S0 ,j and S0 ,J are independent of time. Using 
(2. 7) and the fact that the sieving coefficients are constant, we have the following: 

dCb,j - s C 
dN - - o,j b,J 

cb,j = exp(-NSo,j). (3.4) 

If one wished, one could redefine N to include the S 0 .J, thus making the exponential in 
(3.4) simpler. However, for the purposes of the optimization we wish to do, (3.4) is more 
attractive. 

The overall mass balance for each protein for the entire system is given by 

(3.5) 

The left-hand side of (3.5) is the initial mass; the right-hand side is the sum of the mass 
m the retentate at time t and the maes in the filtrate at time i. Here V1 is the volume of 
filtrate at time l. which we normalize by Vi to yield 
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Viithout loss of generality. we select protein 1 as the one which we would like ro be 
filtered out of the retemate. Therefore, we define the integral in (3.6) for j = 1 to be the 
yield of protein 1 in filtrate. denoted by Y1 . Using (3.4) in (3.6), we obtain 

(3.7) 

Simiiarly, protein 2 is the one we would like to stay in the retentate. Therefore, we define 
the first term in the right-hand side of (3.6) for j = 2 to be the yield of protein 2 in 
retentate, denoted by Y2 . Using (3.4), we have 

(3 8' ' . ) 

The purification factor P1 for protein 1 in the filtrate is then defined by the ratio of 
Yi to the yield of protein 2 in the filtrate, which is simply 1 - Y2 : 

l-exp(-NS 0 ,i) 
1 - exp(-NSo,2) · 

Similarly, the purification factor P2 for protein 2 in the retenate is defined by 

_ exp(-NSo,2) 
- exp(-NSo,1) · 

(3.9) 

Since we have chosen protein 1 to be the one that is most easily filtered, we see that 
if we define 

(3.11) 

we may expect that !::.S > 0. However, in section 5 we will obtain the rather surprising 
result that this is not always the case. For now, we note that a !::.S near 1 would mean the 
filter excludes nearly all of protein 2 while filtering nearly all of protein 1. Using (3.11), it 
can easily be seen that (3.10) may be written as 

In addition, we see that (3.9) becomes 

1 + (Y1 - 1) exp(N t::.S). 
(3.13) 

The selectivity ,/; is given by the ratio of the sieving coefficients: 

(3.14) 

Therefore. a high value of ?/,' corresponds to a membrane which excludes much of protein 
2 while filtering much of protein 1. Using (3.14). it can be easily seen that (3.10) may be 
V'lritten as 
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Also. Ive see that (3.9) becomes 

Therefore, depending on what we wish to use for our set of parameters, we may use (3.9) 
and (3.10), /3.12) and (3.13). or (3.15) and (3.16). 

For completeness, we use (2.14) in (3.14) to construct a more useful version of ,j;: 

{3.17) . . 
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Section 4: Selectivity 

Now we endeavor to find extrema for om functions. The method is as follows: we note 
from (3.17) that i/; is a function of lv only. \Ve know from our P-Y curves (see exhibit B) 
that a higher value of i/; induces a higher yield, so we maximize i/; with respect to Jv. The 
other parameter is now considered to be N l::.S. However, we note that l::.S depends only 
on Jv. Therefore, we see from (3.2) that we may adjust i, the length of the run, to obtain 
a value of N !:::,.S which achieves a desirable balance between the yield and the purification 
factor, 

As an aside, we find the maximum of S0 ,j with respect to lv. We begin with S0 , 2 : 

1 
So,3 = l + 72 [1 - exp(-A2Jv)] exp(-Jv/k2) · 

For simplicity, we define the following variables: 

Jv 
x= -k' 

2 

( 4.1) 

(4.2) 

\Ve note that though k1 and k2 may be varied since b may change as a result of changes 
in the experimental setup, .\ must remain constant for any bulk mixture. 

It is believed that x = 0(1) in this problem. Using (4.2) in (4.1), we have 

1 
So,2 = 1 + 12(1 - e-/3,x)e-x' 

dSo,2 72 [1 - (1 + ,B2)e-/32 xJe-x 
~ - [l + 12(1 - e-/3,x)e-x]2 

Setting ( 4.4) equal to zero, we obtain 

(4.3) 

( 4.4) 

This is a slight correction to the calculation by Saksena on the handouts. However. we see 
that if 82 is small (which is true: see Appendix). then we have 

x -~ L (4.7a) 

J-u -~ k 2 , ( 4. 7b) 
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as claimed on the handouts. 
Since the problem is symmetric, we see that when we maximize S0 . 1 with respect to 

Jv. we have the following: 

-2 -1 

140 

120 

100 

1 

( 4.8a) 

'4 s· ' \ . b) 

Figure 4.1. ,f; vs. log10 lv with 'Yr = 999, 12 = 2 x 104 , ,\ = 5/7. First curve: 
/31 = 6.94 x 10- 1

, {32 = 6.94. Second curve: {31 = 6.94 x 10- 3 , {32 = 6.94 x 10- 1 . 

Next we try to solve the problem at hand: namely, maximizing ,j; with respect to lv. 
Using (4.2) in (3.17), we see that we have 

. 1 + ,2(1 - e~f32x)e-x 

1/J = 1 + 'Yl (l e~f3ix)e~!\x. ( 4.9) 

Using the numbers in the Appendix, we plotted an exact computation of ,j; as a function 
of various parameters. Figure 4.1 shows the results as 'I/J vs. log10 lv, as in the Genentech 
graph. (Here Jv is measured in LMH, which are L/(m 2 • h).) Figure 4.2 shows the results 
as 1/; vs. x. Note that the position of the maximum is highly sensitive to changes in the 
31 . as can be expected since they are exponents in the expression for ,j;. 

We begin by calculating the derivative of ( 4.9) with respect to x: 

dW 
dx 

"Y1 [l - (/3 + l )e-Pzx]e~x 
1 + A(1(l - e-f3ix)e-h 
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Figure 4.2. ,j; vs. x with 11 = 999, , 2 = 2x 104, A= 5/7. First curve: /31 = 6.94x 10-1, 
/32 = 6.94. Second curve: /31 = 6.94 x 10- 3, fh = 6.94 x 10- 2. 

Setting this expression equal to zero, we have 

1i[A (,61 + A)e-/hx][l +1"2(l-e-f 2 x)e-x] = ,2e-x[l-(.62 + l)e-f 2 xl[l +M/l (l-e-B 1 x}e-"x]. 
(4.10) 

Equation (4.10) is a complicated transcendental equation for which we would like to 
find roots as various parameters become large and small. From the Appendix we see that 
the /3J are small, while A is moderately sized. Therefore, we may asymptotically expand 
(4.10) with respect to the /3J to yield 

"/i[-/31(1- Ax)](l + ,2/32xe-x) = "/2e-x[-/32(l - x)](l + h11/31x)e->.x_ 

However, we note from the Appendix that /32,2 :::> 1, so we can neglect the 1 in the last 
set of parentheses on the left-hand side, and hence we have 

(4.11) 

However, this is still not solvable in closed form. Therefore, if one has to use a computer 
anyway, it is probably best to solve (4.10) directly. 

Figure 4.3 shows a computation of the value of J1 at which ,j; attains a maximum 
vs. k 2 for the listed parameters. Actually, the x-value of the maximum decreases with 
increasing k2 , but since J1 = xk2, the net effect is an increase in lv. This increase is 
slightly slower than linear growth. Note that .\ has been held fixed, as required. 

Figure 4.4 shows a computation of the maximum attained value of ,j; vs. k2 for the 
listed parameters. 

Another approach tried was to do a logarithmic expansion for our maximum x. Upon 
rearranging, equation (4.9) can be written as 

£ = 1 - ,\, ( 4.12) 
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Figure 4.3. Jv.max vs. k2 with ~fl= 999, "/2 = 2 X 104, A= 5/7, A;= 103 , A 2 = 104 . 
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Figure 4.4. ,Pmax vs. k2 with 1 1 = 999, ~/2 = 2 X 104, .\ = 5/7, A1 = 103 , A2 = 104 . 

Differentiating (4.12) and setting the result equal to zero yields 

(ex+ 12/J2e -/32 x) [ex+ 11 (1- e -/'iix)e'x] = { ex ..L 11 [E + (.81 - e )e -/3,xje'x }[ex+ 12 (1- e -i'i 2 x)]. 
( 4.13) 

We surmise from our calculatioru; for the week that the value of Xmax is highly sensitive to 

the parameters in the problem. Since ..\ is a fixed quantity, we see that e is as well. Though 
e = 2/7, that is still small enough to perhaps get a reasonable feel for our solution. We 
try a solution of the form 
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Using !.,1.14) in ( 4.13). we have. te leading orders 

which has a solution oniy if ~11 = 12. This constraint arises naturally from the high degree 
of symmetry in (4.12). 

However, we note from the Appendix that /32 « E. It is our hope that a solution of 
the form of ( 4.14) will work if one replaces E by /32 and then treats E as an 0(1) quantity. 
Given the form of (4.10), we may have to try something more complicated as a gauge 
function: for instance, the W function, where 

E-+ 0. (4.16) 

Note that W ( E- 1) diverges more slowly than the logarithm. 
Another problem we ran into was the expansion of the exponentials in the fractions. 

For instance, consider the function y = e-x - e- 2x, which has a maximum at log 2, which 
for the purposes of this example can be considered to be small. But we may also write 

y= ~--
l+x 

which has no extrema whatsoever. However, carrying terms to the next order, we have 

y~ 
X - x 2 /2 

1 + X - x 2/2' 

which does have an extremum. Therefore, a more careful expansion of the exponentials 
may be necessary. 
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Section 5: The Difference of the 
Sieving Coefficients 

Another question posed to the group was how to maximize Jvi:.S. This question 
naturally arises from the fact that N t:.S, which is directly reiated to Jvi:.S, is another 
important parameter in the problem. We see from (4.2) and (4.3) that we have 

(5.1) 

A graph of the behavior of this function for the old parameters from section 4 are plotted in 
Figure 5.1. (We used the old parameters since we wanted to replicate a Genentech graph. 
Once again, Jv is measured in units of LMH.) 

20 

15 

10 

5 

0 

-5 

1.2 1.4 1.6 1.8 2 2. 2 2 . 4 loglD Jv 

Figure 5.1. Jvi:.S vs. log10 Jv with All = 999, 12 = 2 x 104, A= 5/7, f31 = 6.94 x 10-1, 
,82 = 6.94. 

Note that the maximum is sharper than before, and that the graph goes negative. 
This simply corresponds to S0 , 2 > S0 , 1 , which also corresponds to ,j; < L Therefore, 
contrary to what we may expect, we may actually change the preferred protein for the 
filter by increasing the flux lv, 

Taking the derivative of (5,1) once again leads to an intractable mess. However. we 
may plot the solutions numerically, as shown in figures 5.2 and 5,3, Note that these graphs 
are the maxima using the new parameters from section 4. rather than the parameters 
which produced figure 5,1. 
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Figure 5.2. Jv,max vs. kz with ~/l = 999, ''/2 = 2 X 104, A= 5/7, A1 = 103 , A2 = 104 . 
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Figure 5.3. (Jv!:,.S)max VS. k2 with 11 = 999, 12 = 2 X 104, A = 5/7, A1 - 103 , 

A2 = 104 . 
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Section 6: Further Research 

There are several possible areas in which further research could be pursued. First, 
using the full partial differentiai equations which hold in the retentate, membrane, and fil­
trate, one could rigorously establish the presence and width of the boundary layer directlv 
above the filter surface. Once this has been completed, a careful derivation of the expres­
sions for the concentration could be obtained. These would be preferable to the current 
mass balance equations since they can then be extended to include other effects. In addi­
tion, performing asymptotics on differential equations is more standard than performing 
them on transcendental ones. 

An important additional effect in these systems is that of fouling, where protein 
molecules deposit on top of the filter, blocking pores and effectively reducing Jv. As 
the protein molecules accrete, Jv drops sharply, but then asymptotes to a steady state 
(see exhibit C). There are several ways of modeling this, each introducing a new !eve! of 
complication. 

At the most basic level, Jv can be modeled with an exponential decay curve. However, 
doing this eliminates the interpretation of many of our parameters, particularly the sieving 

• 

coefficients, as constants. Therefore, the simple exponential form of our solutions in section • 
3 is eliminated. Jv can also be modeled as following a logistic decay curve, which would 
correspond to a chemical-reaction model for the site-occupation phenomenon. Lastly, a full 
reaction-diffusion equation could be used for the site occupation. This would incorporate 
the effect that often the depth of the deposition varies as one moves along the filter, with 
the deepest layer occurring near the recycling inlet. 

In addition, Mark Hurwitz from Pall has some models for this type of process. These 
models indicate the effects of shear rate upon permeate rates [l], as well as models of 
fouling in cross-flow filtration [2]. 
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Appendix 

The vaiues of the constants S 00 are as follows, 

S -o-3 
oo,l = 1 i (A.I) 

From the definition in (2.13) it is clear that S00 is a function of the composition of the 
filter. However, it is unclear whether these values can change very much with changing 
experimental setups. Using (A.l) to compute the I parameters, we have 

1- S00 .1 1- 10- 3 

= 999, 1'1 = 
Soo.1 

-
lQ-3 (A.2a) 

1 - S00.2 1 5 X 10- 5 

=2x10 4
. 12 = 

S00,2 
-

5 X lQ-S 
(A.2b) 

For the mass transfer coefficients, we have 

35 LMH · m/s _6 . 
k 1 = 35 LMH = 1 6 LMH = 9. 72 x 10 m/s, 3.6 X cO 

(A.3a) 

25 LMH · m/s 
kz = 25 LMH = 

3
_
6 

x 106 LMH = 6.94 x 10- 5 m/s. (A.3b) 

For any given protein pair and experimental setup, these may be varied, but not indepen­
dently: their ratio must remain constant: 

(A.4) 

The only way to change Dj would be to introduce a new solvent in which the proteins are 
dissolved. 

In addition, we have the following values which relate to N: 

Vi= 103 L = 1 m 3
, 

2 
(0.305 m) 2 __ 

2 Am = 200-600 ft x 2 = 18.6-oo.8 m , 
ft 

t = 3 h = 1.08 x 104 s, 

N = 50-150. 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

The problem is very sensitive to the vaiues of the AJ. Unfortunately, it is unclear 
as to even the proper order-of~magnitude estimates for them. The new, better values are 
given by 

1 03 Q. j j 0 , , -1m·m;s -4/L'fH·-j 
A 1 = 10" s;m = ·_ 6 L'fH = 2.78 x 10 \ " ) . 3.6 X 10. i> 

(A.9ai 
' / 

77 



Saksena et ai. A.2 

4 103 c/n:1 · mis . . 
A2 = 10 s;m = 3_

6 
x 106 L1'.1:H = 2.78 x 10~0 (LMH)-". 

Csing the new values and computing our ,3 parameters, we have 

/3 - A ' - 6 94 . 0- 3 
1 - ~ -'-1 K2 - , X 1 1 

32 = A2k2 = 6.94 X 10- 2
• 

In addition, in general the following three statements are equivalent1 

Seo,! > S00 ,2, 

k1 > k2, 

A1 < Az. 

(A.9b) 

(A.lOa1 

(A.lOb) 

(A.Ila) 

(A.llb) 

(A.He) 

Since kj is proportional to Dj, it is easy to see how (A.llb) could imply (A.llc), all other 
things remaining constant. However, (A.Ha) opposes this trend, and we see from (A.I) 
and (A.4) that the ratio of the sieving coefficients is much larger than >,- 1 . Therefore, we 
see that the change in Kd,j must be large enough to counteract the change in the Kc,j 

( and hence the S=,j). This is reasonable, since the variation in the Soo,j is large, and we 
would expect both Kd,j and Kc,j to vary over the sa.,1e orders of magnitude. 

The old values of A, now in disrepute, are 

_ 5 1 
_ 103 s/m · m/s _ _2 _ 1 A1 -10 s1 m- 1 6 LMH - 2.78 x 10 (LMH) , 

3.6 x iO 

6 103 s/m · m/s _ 1 _ 1 A2 = 10 s/m = 6 LMH = 2.78 x 10 (LMH) . 3.6 X 10 l 

Using these old values and computing our /3 parameters, we have 

/31 = A1k2 = 6.94 X 10~ 1
, 

/32 = A2k2 = 6.94. 
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Nomenclature 

Variables and Parameters 

Units are listed in terms of length (L), mass (lv[), or time (T), The equation number 
where a particular quantity first appears is listed, If the same variable appea:rs with 
and without tildes, the variable with tildes has units, while the variable without tildes is 
dimensionless, 

A: dimensionless constant (2,13), 
A: area, units L 2 (3,l), 
C: concentration of protein, units M/ L 3 (2,1), 
D: diffusivity of protein through the solvent in the retentate, units L 2/T (2,l), 
J: flux of solvent through the filter, expressed in units of velocity, units L/T (2,l), 
k: mass transfer coefficient, defined as D/15, units L/T (2,8), 

K: coefficient which changes the components of the flux in the membrane, dimen-
sionless (2,9), 

L: width of the membrane, units L/T (2,10), 
N: diavolume, which plays the role of a dimensionless time variable (3,2), 
N: mass flux, units 1Vl/L2T (2,l), 
P: purification factor, dimensionless (3,9), 
S: sieving coefficient, dimensionless (2, 7), 
t: time, units T (3,l), 

V: volume of bulk stream, units L3 (3,1), 
W: that function which satisfies W(z)exp[W(z)) = z (4,16), 
x: scaled flux variable, dimensionless ( 4,2), 
y: arbitrary function, 

Y: yield factor, dimensionless (3,7), 
z: height as mea:sured from the top edge of the filter, units L ( 2, l), 
{3: dimensionless ratio, defined as Ak2 (4,2), 
T dimensionless ratio, defined as (1- S00 )/S 00 (2,14), 
/5: width of the bounda:ry layer in the retentate above the membrane, units L, 
E: dimensionless parameter, defined as 1 - A (4,12), 
,\: dimensionless ratio, defined as A2 /A 1 (4,2), 
<b: partition coefficient of the membrane, dimensionless (2, 10), 
,j;: selectivity of the membrane, dimensionless, defined as ,/J = S 0 ,i/ S 0 ,2 (3,14), 
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Other Notation 

a: as a subscript, used to indicate the actual sieving coefficient (2,7). 
b: as a subscript, used to indicate the concentration in the bulk feed stream (2A), 
c: as a subscript, used to indicate a coefficient of the convective term ( 2, 9), 
d: as a subscript, used to indicate a coefficient of the diffusive term (2,9), 
f: as a subscript, used to indicate the filtrate (2.2), 
i: as a subscript, used to indicate the initial state, 

j = l, 2: as a subscript, used to indicate either protein l or protein 2 (2.1). 
m: as a subscript, used to indicate the membrane (2,9). 

max: as a subscript, used to indicate a maximum value, 
o: as a subscript, used to indicate the observed sieving coefficient (2,7), 
r: as a subscript, denotes concentrations in the thin boundary layer in the retentate 

(2,1). 
v: as a subscript, indicates units of velocity (2,1), 
w: as a subscript, denotes the ·'wall concentration" measured at the top of the mem­

brane filter (2,6), 
ll.: denotes the difference of a quantity ( 3 .11), 
x: as a subscript, used to indicate a characteristic value of the sieving coefficient 

(2,13), 
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PROCESS DIAGRAM FOR THE PRODUCT IN THE FILTRATE 

:;.. 
't:I~ -.., ·-:;.. 

T-r 1~::s:z:·,~,· ··· l 
0.8 ,,_ 

0.6 

0.4 

=2 

-1-\-0.5- • 1 I 
\ \\ 
10 20 

0.2 ,_ \ 
·--- 1--NAS=0.1 \ II 

0 ~---'----'--'----'--'- .L.-L.L~---'----'---'---j_.L 

1 10 

Purification Factor, P 

• 

100 

-

,") 

0:) 



FXHIBI'P C 

DECAY OF ULTRAFILTRATE 
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