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Section 1: Introduction

This report describes progress made during MPI 2000 on the problem presented by
Pat Hagan, then from Numerix, namely to devise fast, accurate methods to determine the
value of options on baskets as well as the correct associated hedges. The method employed
is a perturbation procedure based on a small volatility assumption.

This report is organized as follows: In Section 2 we give some background on the
derivation of a Black-Scholes type equation for the value of options on baskets; in Section 3
a general perturbation expansion is introduced based on a small parameter measuring
volatility; in Section 4 the method is applied to European call and put options, and to
other options that can be easily treated following those two vanilla options; Section 5 treats
digital options; in Section 6 barrier options are discussed; numerical simulation results
based on the general expansion procedure are presented in Section 7, as well as comparison
of the calculations based on the expansion procedure with numerical calculations for the
case of 1, 2 and 3 assets in the basket; and finally, Section 8 presents some conclusions and
directions for further research.



Section 2: Deriving the
Deterministic Equation

We wish to derive a deterministic equation for the price of an option on a basket
(collection) of n assets. It is assumed that each of the asset (usually stock) prices Sk
follows a geometric Brownian motion with drift coefficient µ̃k and variance parameter
(volatility) σk. (Here σk is considered known and it will be shown that the value of µ̃k will
be irrelevant in our analysis.) Thus

dSk = µ̃kSk dt+ σkSk dWk, (2.1)

where dWk is a Wiener process.
Since we are considering assets priced in other currencies, we must also consider the

foreign exchange rate Ak, defined as the number of units of a base currency (subscript
zero) per unit of currency k, which is modeled in the same way as the asset price:

dAk = νkAk dt+ bkAk dZk, (2.2)

where Zk is a Wiener process. Again νk is unknown and σk is considered known. Clearly
these variables may be correlated. Therefore, we define the correlations as follows, which
are simply rules of thumb:

dWk dZk = ρk dt, dWj dWk = ρjk dt. (2.3)

Clearly ρjj = 1. Note that we have assumed that the foreign exchange rates are indepen-
dent of one another. This assumption can be relaxed.

We now wish to determine the underlying probability distribution for Sk. We present
some heuristic arguments; more details may be found in [1]. We note from (2.3) that dWk

and dZk are roughly O(
√
dt). Therefore, we have that

df =
∂f

∂t
dt+

∂f

∂Sk
dSk +

1

2

∂2f

∂S2
k

dSk dSk + o(dt)

df =
∂f

∂t
dt+

∂f

∂Sk
dSk +

1

2

∂2f

∂S2
k

(σkSk)(σkSk) dWk dWk + o(dt) (2.4a)

=

(
∂f

∂t
+ µ̃kSk

∂f

∂Sk
+
σ2
kS

2
k

2

∂2f

∂S2
k

)
dt+

∂f

∂Sk
σkSk dWk (2.4b)

for any function f(Sk, t). Now let f = logSk. Then (2.4b) becomes

d(logSk) =

[
µ̃kSk

1

Sk
+
σ2
kS

2
k

2

(
− 1

S2
k

)]
dt+

1

Sk
σkSk dWk =

(
µ̃k −

σ2
k

2

)
dt+ σk dWk.
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Thus, logSk follows a normal distribution with standard deviation
√
t σk and mean µ̃k −

σ2
k/2. Hence, we call the probability distribution that Sk follows the lognormal distribution.

We denote the price of a European option (valued in the base currency) by ṽ. Consider
a portfolio π composed of one option and “short” (that is, owing) λk units of asset k and
qk units of currency k for each of the n assets in the basket. At any time t, the value of
this portfolio (in base currency) is

π(S(t), t) = ṽ(S, t)−
n∑
k=1

(λkSkAk + qkAk), (2.5)

where we use bold face to indicate a vector (hence S is the vector of the Sk). Note that
in the above the value of the portfolio and the option do not depend on A explicitly. This
fact can be verified, but we do not do so here.

We next wish to find the change dπ in the value of the portfolio during the next instant
dt in time. By extending the result in (2.4a) to multiple variables, we immediately obtain

df =
∂f

∂t
dt+

n∑
k=1

∂f

∂Sk
dSk +

1

2

n∑
j=1

n∑
k=1

∂2f

∂Sj∂Sk
ρjkσjSjσkSk dt+ o(dt), (2.6)

for any function f(S, t). Here the ρjk term arises from (2.3). Using (2.6) repeatedly
(sometimes using Aj instead of Sj as the independent variable), we see that in the next dt
the value of the portfolio changes by

dπ =
∂ṽ

∂t
dt+

n∑
k=1

∂ṽ

∂Sk
dSk +

1

2

n∑
j=1

n∑
k=1

∂2ṽ

∂Sj∂Sk
ρjkσjSjσkSk dt−

n∑
k=1

(λkSk + qk) dAk

−
n∑
k=1

λkAk dSk −
n∑
k=1

λkσkSkbkAkρk dt− cost of borrowing, (2.7a)

where the next-to-last term arises from the last term in (2.6), except now we are taking a
mixed partial (the only second derivative that survives) with respect to Sj and Aj . The
cost of borrowing is given by

cost of borrowing =

n∑
k=1

qkAkrk dt, (2.7b)

where rk is the risk-free interest rate for currency k. Combining equations (2.7), we obtain

dπ =

∂ṽ
∂t

+
1

2

n∑
j=1

n∑
k=1

∂2ṽ

∂Sj∂Sk
ρjkσjSjσkSk −

n∑
k=1

(qkAkrk + λkσkSkbkAkρk)

 dt
−

n∑
k=1

(λkSk + qk) dAk +
n∑
k=1

(
∂ṽ

∂Sk
− λkAk

)
dSk. (2.8)
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Equation (2.8) is stochastic only because of the last two terms. However, we note that
the number of units λk and the amount of currency qk are at our disposal and hence can
be chosen to be anything. Therefore, we choose

λk =
1

Ak

∂ṽ

∂Sk
, qk = −λkSk = − Sk

Ak

∂ṽ

∂Sk
. (2.9)

to zero out the stochastic terms (i.e., to eliminate risk). This technique is called dynamic
∆-hedging, since it requires that we continually add and subtract shares and currencies
from our portfolio depending on ∂ṽ/∂Sk. We note that we have now made an error, since
in the above analysis we assumed that both qk and λk were constant, not functions of time.
This is the Black-Scholes error, but merely adds lower-order corrections to the terms above.

Substituting (2.9) into (2.5) and (2.8), we obtain

π(S, t) = ṽ(S, t), (2.10a)

which implies the net contribution in value to the portfolio from the hedge positions is
zero. (Note this is different from the standard Black-Scholes case.) Taking the change in
value over a small time frame dt, we obtain

dπ =

∂ṽ
∂t

+
1

2

n∑
j=1

n∑
k=1

∂2ṽ

∂Sj∂Sk
ρjkσjSjσkSk +

n∑
k=1

Sk(rk − σkbkρk)
∂ṽ

∂Sk

 dt . (2.10b)

We now assume that the market is arbitrage-free; that is, no one can set up a situation
where he or she can always make money without risk. Thus, dπ must be exactly the same
whether we buy an option or whether we invest the money at the risk-free rate r0 of the
base currency. Therefore, using this fact and in (2.10), we obtain

r0πdt = r0ṽdt =

∂ṽ
∂t

+
1

2

n∑
j=1

n∑
k=1

∂2ṽ

∂Sj∂Sk
ρjkσjSjσkSk +

n∑
k=1

(rk − σkbkρk)Sk
∂ṽ

∂Sk

 dt .
(2.11)

Thus,

∂ṽ

∂t
+

1

2

n∑
j=1

n∑
k=1

∂2ṽ

∂Sj∂Sk
ρjkσjSjσkSk +

n∑
k=1

(rk − σkbkρk)Sk
∂ṽ

∂Sk
= r0ṽ , t ∈ [0, tex] ,

(2.12)
where tex is the exercise date at which the option will pay off. For the purposes of this
report, we assume that bk, µ̃k, ρk, ρjk, σk, and νk are independent of t.

From the Feynman-Kac theorem [2], [3], it can be shown that the solution ṽ(t) of
(2.12) is the following expected value:

ṽ(t) = e−r0(tex−t)E [ṽ(S(tex), tex)|S(t)] ,
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under the probability distribution given by

dSk = (rk − σkbkρk)Sk dt+ σkSk dW̃k, (2.13a)

dW̃j dW̃k = ρjk dt, (2.13b)

where dW̃k is Brownian motion. Thus, the value of the option given by the solution of (2.12)
is simply the discounted expected value in a world in which the probability distributions
evolve according to (2.13), instead of the real-world probabilities (2.1). This “new” world
is known as the risk-neutral world, and apart from the discount factor, the option price is a
martingale in this world. This is a reflection of the fundamental theorem of arbitrage-free
pricing.

We now perform several substitutions to simplify (2.12). First, due to the similarities
between (2.1) and (2.13b), we define the new parameter µk as follows:

µk = rk − σkbkρk. (2.14)

Note that in contrast to µ̃k, µk is a known quantity, as each of its component parts are
known. Also, µk is not the true drift coefficient for the asset price. It is simply the drift
coefficient for a new random process that causes the option price to behave as a martingale.

Next, conditions in the financial problem are given at tex, which is a final condition.
This is fine, as (2.12) is a backwards heat equation. However, for simplicity, we introduce
the time to expiry, τ , and the future value, v, as follows:

ṽ(S, t) = e−r0τv(S, τ), τ = tex − t. (2.15)

Substituting (2.15) into (2.12), we obtain

∂v

∂τ
=

n∑
k=1

µkSk
∂v

∂Sk
+

1

2

n∑
j=1

σjSj

n∑
k=1

ρjkσkSk
∂2v

∂Sj∂Sk
, τ ∈ [0, tex]. (2.16)

We construct a basket of the assets, giving each a weight wk in the basket. Therefore,
the value S of the basket is given by

S =
n∑
k=1

wkSk. (2.17)

The option pays off depending on how S compares with K, the strike price, which in simple
options is where the option begins to pay off. Note that the strike price is for the entire
basket. Therefore, V depends on the asset price only through the combination wkSk. We
also note that (2.16) is equidimensional in Sk, so such a substitution may be made without
difficulty. In addition, we wish to get rid of the drift term, so we let

v(S, τ) = Ṽ (x, τ), xk = eµkτwkSk. (2.18)
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Here xk is a weighted future price of the asset. Substituting (2.18) into (2.16), we obtain

∂Ṽ

∂τ
=

1

2

n∑
j=1

σjxj

n∑
k=1

ρjkσkxk
∂2Ṽ

∂xj∂xk
. (2.19)

Note that this substitution eliminates the drift term from the equation by eliminating the
growth rate of each of the individual asset prices.

We now proceed to the small vol limit by assuming that each of the volatilities is
small. Combining terms for simplicity, we let

ρjkσjσk = ε2zjk, zjk = O(1), 0 < ε� 1. (2.20)

(This is equivalent to looking at a short-time limit.) Thus (2.19) becomes

∂Ṽ

∂τ
=
ε2

2

n∑
j=1

xj

n∑
k=1

zjkxk
∂2Ṽ

∂xj∂xk
, (2.21)

and to leading order we see that the value of the option will not change. This makes sense,
as low volatility implies that the basket price will not change much from its value now to
its value at expiry (the exercise date).

However, (2.21) is a diffusion equation, and hence we see that any discontinuities in
Ṽ (x, 0) or its derivatives must be smoothed in a layer about the point of discontinuity. In
many cases, this discontinuity occurs at the strike price K. We note from (2.18) that at
expiry τ = 0,

S =

n∑
j=1

xj .

Therefore, we introduce the following transformation:

Ṽ (x, τ) = V (x, ζ, τ), ζ =
1

ε

 n∑
j=1

xj −K

 . (2.22)

Note from (2.22) that technically we have added another degree of freedom, since we have
not replaced any variables. If we replaced x1, say, with ζ, we would have to write x1 in
terms of K, the other xj , and ζ. To eliminate this algebraic complexity, we simply add
the variable ζ and keep S = K +O(ε) as a constraint.

Substituting (2.22) into (2.21), we obtain

∂V

∂τ
=

1

2

n∑
j=1

xj

n∑
k=1

zjkxk

(
∂

∂ζ
+ ε

∂

∂xj

)(
∂

∂ζ
+ ε

∂

∂xk

)
V. (2.23)

Lastly, we consider the boundary and initial conditions. First, we must match to the outer
solution:

V (x,−∞, τ) = Ṽ (S = K−, τ), V (x,∞, τ) = Ṽ (S = K+, τ). (2.24a)

For our initial condition, we note by our assumption that V must vary on the ζ scale
initally, so we have

V (x, ζ, 0) = p(x, ζ), (2.24b)

where p is the payoff function that describes what the investor will receive as a function
of the asset prices.



Section 3: General Perturbation Expansion

We now introduce a perturbation expansion in V :

V (x, ζ, τ ; ε) =

∞∑
j=0

εjVj(x, ζ, τ). (3.1)

Substituting (3.1) into (2.23) and expanding to leading three orders, we obtain

∂(V0 + εV1 + ε2V2)

∂τ
=

1

2

n∑
j=1

xj

n∑
k=1

zjkxk

(
∂

∂ζ
+ ε

∂

∂xj

)(
∂

∂ζ
+ ε

∂

∂xk

)
(V0 + εV1 + ε2V2).

Working initially with the O(1) equation, we obtain

∂V0
∂τ
− α

2

∂2V0
∂ζ2

≡ LV0 = 0, (3.2a)

α =

n∑
j=1

xj

n∑
k=1

zjkxk. (3.2b)

We note from (3.2) that x enters into the equation only through the coefficent α, and
hence our solution depends on x only parametrically. In other words, to leading order the
value of the option behaves like the value of the option on a single asset, whose price is
the weighted average of the prices of all assets in the basket. In addition, we note that we
could eliminate α from (3.2a) simply by scaling τ . Therefore, V0 can depend on τ only
through the combination ατ , so we have that

V0 = V0(ζ, ατ) =⇒ αj
∂jV0
∂αj

= τ j
∂jV0
∂τ j

. (3.3)

Proceeding to the O(ε) equation, we obtain

∂V1
∂τ
− α

2

∂2V1
∂ζ2

=
1

2

n∑
j=1

xj

n∑
k=1

zjkxk

(
∂

∂xj
+

∂

∂xk

)
∂V0
∂ζ

,

where the right-hand side term arises from the cross-terms in the derivatives. Since V0
depends on x only through α, we may rewrite the above as

∂V1
∂τ
− α

2

∂2V1
∂ζ2

=
1

2

n∑
j=1

xj

n∑
k=1

zjkxk

(
∂α

∂xj
+

∂α

∂xk

)
∂2V0
∂α∂ζ
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=
τ

2α

n∑
j=1

xj

n∑
k=1

zjkxk

(
∂α

∂xj
+

∂α

∂xk

)
∂2V0
∂τ∂ζ

= 2γτ
∂2V0
∂τ∂ζ

, (3.4a)

γ =
1

4α

n∑
j=1

xj

n∑
k=1

zjkxk

(
∂α

∂xj
+

∂α

∂xk

)
. (3.4b)

We solve the above by means of a clever trick. We note that if V0 satisfies (3.2a), so does
any derivative of V0. Therefore, motivated by the form of the right-hand side, we assume
a solution of the following form:

V1,p = f1(τ)
∂2V0
∂τ∂ζ

. (3.5)

Substituting (3.5) into (3.4a), we obtain

f ′1
∂2V0
∂τ∂ζ

+ f1L
∂2V0
∂τ∂ζ

= 2γτ
∂2V0
∂τ∂ζ

f ′1 = 2γτ

f1(τ) = γτ2 + constant

V1,p(ζ, τ) = γτ2
∂2V0
∂τ∂ζ

, (3.6)

where we have taken the constant equal to zero because this yields a homogeneous solu-
tion. Note that the α-dependence is not as simple as in (3.3), and that V1 depends on x
parametrically through both α and γ.

Lastly, we turn to the O(ε2) equation:

LV2 =
1

2

n∑
j=1

xj

n∑
k=1

zjkxkQjk,

Qjk =
∂2V0
∂xjxk

+

(
∂

∂xj
+

∂

∂xk

)
∂V1
∂ζ

=

(
∂α

∂xj

)(
∂α

∂xk

)
∂2V0
∂α2

+
∂2α

∂xj∂xk

∂V0
∂α

+

(
∂α

∂xj
+

∂α

∂xk

)
∂2V1
∂α∂ζ

+

(
∂γ

∂xj
+

∂γ

∂xk

)
∂2V1
∂ζ∂γ

. (3.7)

At this stage we make a further simplification which NEED NOT WORK IN EVERY
CASE, but which works for most of the examples we consider here. (A case which may
fail appears in section 6.) We assume that no homogeneous solution is needed for V1, so
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V1 = V1,p. Using this fact, (3.2a), (3.3), and (3.6) in (3.7), we obtain

Qjk =
τ2

α2

(
∂α

∂xj

)(
∂α

∂xk

)
∂2V0
∂τ2

+
τ

α

∂2α

∂xj∂xk

∂V0
∂τ

+ γτ2
(
∂α

∂xj
+

∂α

∂xk

)
∂4V0

∂α∂τ∂ζ2

+ τ2
(
∂γ

∂xj
+

∂γ

∂xk

)
∂3V0
∂ζ2∂τ

=
τ2

α2

(
∂α

∂xj

)(
∂α

∂xk

)
∂2V0
∂τ2

+
τ

α

∂2α

∂xj∂xk

∂V0
∂τ

+
2γτ3

α2

(
∂α

∂xj
+

∂α

∂xk

)
∂3V0
∂τ3

+
2τ2

α

(
∂γ

∂xj
+

∂γ

∂xk

)
∂2V0
∂τ2

,

LV2 = 4Q3τ
3 ∂

3V0
∂τ3

+ 3Q2τ
2 ∂

2V0
∂τ2

+ 2Q1τ
∂V0
∂τ

, (3.8)

Q1 =
1

4α

n∑
j=1

xj

n∑
k=1

zjkxk
∂2α

∂xj∂xk
, (3.9a)

Q2 =
1

6α

n∑
j=1

xj

n∑
k=1

zjkxk

[
1

α

(
∂α

∂xj

)(
∂α

∂xk

)
+ 2

(
∂γ

∂xj
+

∂γ

∂xk

)]
, (3.9b)

Q3 =
γ

4α2

n∑
j=1

xj

n∑
k=1

zjkxk

(
∂α

∂xj
+

∂α

∂xk

)
=

γ

4α2
(4αγ) =

γ2

α
. (3.9c)

Simplification of all these parameters is performed in Appendix A.
Substituting (3.9c) into (3.8), we obtain

∂V2
∂τ
− α

2

∂2V2
∂ζ2

=
4γ2

α
τ3
∂3V0
∂τ3

+ 3Q2τ
2 ∂

2V0
∂τ2

+ 2Q1τ
∂V0
∂τ

. (3.10)

Using the same technique as in (3.5) and (3.6), we easily obtain that

V2,p(ζ, τ) =
γ2

α
τ4
∂3V0
∂τ3

+Q2τ
3 ∂

2V0
∂τ2

+Q1τ
2 ∂V0
∂τ

. (3.11)

Though at this stage we have not introduced boundary conditions, we do wish to make
a brief remark. If we examine equation (2.21) for the outer solution Ṽ , we see that if we
expand Ṽ in a series as in (3.1), the first correction will come at O(ε2). Therefore, special
care must be taken when matching V2 if we have a solution where Ṽ2 6= 0. (This will not
occur in this manuscript, but should be mentioned.)

We note that once we have obtained our solution, the ∆-hedges λk and qk needed at
each stage may be calculated from (2.9).

Perturbing Parameters
Though a perturbation solution of the form described by (3.2a), (3.6), and (3.11)

would solve the problem, it would not be in the most convenient form. The forms of the
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expressions lead us to believe that Gaussian distributions, their integrals, and their deriva-
tives will be involved in our expressions. Evaluating them in each of the three solutions
over multiple time and spatial steps (to establish hedges) would be time-consuming. There-
fore, what we would like to do is establish an equivalent solution via a renormalization as
follows:

V0(ζ, τ ;α) + εV1(ζ, τ ;α) + ε2V2(ζ, τ ;α) = V0(ζ, τ ;α+ εα1 + ε2α2) +O(ε3) . (3.12)

In other words, we replace the perturbation series in V with a perturbation series in α.
Here we have suppressed the dependence of V1 and V2 on γ and the Qj . If we can

solve for the αj , then we need perform only one Gaussian computation, while performing
simple multiplies to obtain the perturbed parameter. The perturbed parameter can then
be interpreted in terms of various approximations made in the problem (see section 4).

To solve for the αi, we equate like powers of ε:

V0(ζ, τ ;α) + εV1(ζ, τ ;α) + ε2V2(ζ, τ ;α) = V0(ζ, τ ;α) + εα1
∂V0
∂α

(ζ, τ ;α)

+ ε2α2
∂V0
∂α

(ζ, τ ;α) +
ε2α2

1

2

∂2V0
∂α2

(ζ, τ ;α) +O(ε3) .

Dropping the arguments for simplicity, we obtain

α1 = V1

(
∂V0
∂α

)−1
, (3.13a)

α2 =

(
V2 −

α2
1

2

∂2V0
∂α2

)(
∂V0
∂α

)−1
. (3.13b)

Since we would like to obtain such parameter dependence no matter the initial con-
dition, at this stage we try to establish formulas for the αj in the general case. Therefore,
we must solve (3.2a) subject to a general initial condition, given by (2.24b):

V0(ζ, 0) = p(ζ), (3.14)

where we now assume (as will often be the case) that p depends on x only through ζ. The
solution to this problem is well-known [4]; it is given by

V0(ζ, τ) =
1√

2απτ

∫ ∞
−∞

p(ζ ′) exp

(
− (ζ − ζ ′)2

2ατ

)
dζ ′

=

∫ ∞
−∞

p(ζ ′)K(u′) dζ ′, (3.15a)

K(u′) =
G(u′)√
ατ

, (3.15b)

where G(u′) is the Gaussian distribution, given by

G(u′) =
e−u

′2/2

√
2π

, (3.16a)
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and u′ is defined by

u′ =
ζ − ζ ′√
ατ

. (3.16b)

Using the general differentiation formula (B.4) from Appendix B, we obtain

∂V0
∂α

=
τ

α

∂V0
∂τ

=
τ

α

∫ ∞
−∞

p(ζ ′)
∂K(u′)

∂τ
dζ ′ =

1

4τ

τ

α

∫ ∞
−∞

p(ζ ′)H2

(
u′√

2

)
K(u′) dζ ′

=
1

4α

∫ ∞
−∞

p(ζ ′)H2

(
u′√

2

)
K(u′) dζ ′, (3.17a)

V1 = γτ2
∂2V0
∂τ∂ζ

= γτ2
∫ ∞
−∞

p(ζ ′)
∂2K(u′)

∂τ∂ζ
dζ ′

= γτ2
∫ ∞
−∞

p(ζ ′)

(
− 1

4τ
√

2ατ

)
H3

(
u′√

2

)
K(u′) dζ ′

= −γ
4

√
τ

2α

∫ ∞
−∞

p(ζ ′)H3

(
u′√

2

)
K(u′) dζ ′, (3.17b)

where Hj(·) is the jth Hermite polynomial.
There is no simple relationship between equations (3.17), and thus this computation

must be done on a case-by-case basis.



Section 4: Basic Options
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Figure 4.1. Call option payoff.

We begin with the simple case of a European call option. Here the payoff is given by

pC(x) = [S −K]+ =

{
0, S < K,
S −K, S > K.

(4.1)

Therefore, we have a discontinuity in the first derivative at S = K. Rewriting the payoff
function in the ζ-coordinates, we have

pC(ζ) = [εζ]+ =

{
0, ζ < 0,
εζ, ζ > 0.

(4.2)

We note that this behavior will give rise to a corner layer, so we let

Vj+1(ζ, τ) = Cj(ζ, τ), j > 0, (4.3)

where the C denotes the call option. Thus V0 ≡ 0 and C0(ζ, 0) = [ζ]+, as shown in Figure
4.1.

Substituting p(ζ ′) = [ζ ′]+ into (3.15), we obtain

C0(ζ, τ) =

∫ ∞
0

ζ ′√
ατ
G(u′) dζ ′ =

∫ ∞
0

(
ζ√
ατ
− u′

)
G(u′) dζ ′

= ζ

∫ −∞
u

G(u′)(−du′)−
√
ατ

∫ −∞
u

u′G(u′)(−du′), (4.4a)

u =
ζ√
ατ

. (4.4b)
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Continuing to simplify (4.4a), we obtain

C0(ζ, τ) = ζN (u)−
√
ατ

∫ u

−∞
u′G(u′) du′, (4.5a)

N (u) =

∫ u

−∞
G(u′) du′ = 1− 1

2
erfc

(
u√
2

)
. (4.5b)

Note from (4.5b) that
N ′(u) = G(u). (4.6a)

To complete our solution, we need the following identity:

G′(u) = −uG(u), (4.6b)

which is easily verified from (3.16a). Substituting (4.6b) into (4.5a), we obtain

C0(ζ, τ) = ζN (u) +
√
ατ [G(u′)]

u
−∞

=
√
ατ [uN (u) + G(u)]. (4.7)

To calculate C1 and C2, we need the following derivatives:

∂C0

∂τ
=

1

2

√
α

τ
[uN (u) + G(u)] +

√
ατ [N (u) + uG(u)− uG(u)]

d

dt

(
ζ√
ατ

)
=

1

2

√
α

τ
[uN (u) + G(u)]− u

2τ

√
ατN (u) =

1

2

√
α

τ
G(u)

=
αK(u)

2
. (4.8)

Once we have the form in (4.8), then using (B.4), it is trivial to calculate the following
derivatives:

∂2C0

∂τ∂ζ
=
α

2

∂K(u)

∂ζ
=
α

2

[
− K(u)√

2ατ
H1

(
u√
2

)]
= − G(u)

2τ
√

2
H1

(
u√
2

)
, (4.9)

∂2C0

∂τ2
=
α

2

∂K(u)

∂τ
=
αK(u)

8τ
H2

(
u√
2

)
, (4.10a)

∂3C0

∂τ3
=
α

2

∂2K(u)

∂τ2
=
αK(u)

32τ2
H4

(
u√
2

)
. (4.10b)

Substituting (4.9) into (3.6), we obtain

C1(ζ, τ) = γτ2
∂2C0

∂τ∂ζ
= −γτG(u)

2
√

2
H1

(
u√
2

)
= −γτG(u)

2
√

2

(
2
u√
2

)
= −γτu

2
G(u). (4.11)
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Substituting (4.8) and (4.10) into (3.11), we obtain

C2(ζ, τ) =
γ2

α
τ4
[
αK(u)

32τ2
H4

(
u√
2

)]
+Q2τ

3

[
αK(u)

8τ
H2

(
u√
2

)]
+Q1τ

2

[
αK(u)

2

]
=
ατ2

2

[
γ2

16α
H4

(
u√
2

)
+
Q2

4
H2

(
u√
2

)
+Q1

]
K(u). (4.12)

Parameter Perturbations
To find the correct perturbation for the parameters, we use τ -derivatives in (3.13a):

α1(ζ) =
αC1

τ

(
∂C0

∂τ

)−1
= −γαu

2
G(u)

[
α

2

G(u)√
ατ

]−1
= −γu

√
ατ

= −γζ, (4.13)

where we have used (4.8) and (4.11). The usefulness of this functional dependence will
become apparent later. Note that with this dependence, however, we may need to be more
careful about calculating hedges using the perturbed-parameter approach.

Equation (4.13) has a nice interpretation in terms of the “shadow costs”. In particular,
we would expect that the perturbation could be interpreted as

αnew = α+
n∑
j=1

∂α

∂xj
〈dxj〉, (4.14)

where 〈dxj〉 is some average movement in xj . But substituting (A.3a) into (4.13), we
obtain

n∑
j=1

∂α

∂xj
〈dxj〉 = −εζ 1

2α

n∑
j=1

xj
∂α

∂xj
βj

=

n∑
j=1

[
− εζ

2α
xjβj

]
∂α

∂xj

〈dxj〉 = − εζ
2α
xjβj , (4.15)

where βj is defined in Appendix A. Note that in the above, εζ is just the deviation of the
basket price from the strike price.

Continuing to next order, we use τ -derivatives in (3.13b):

α2(ζ) =

(
C2 −

α2
1τ

2

2α2

∂2C0

∂τ2

)(
τ

α

∂C0

∂τ

)−1
=

[
τ

α

αK(u)

2

]−1{
ατ2

2

[
γ2

16α
H4

(
u√
2

)
+
Q2

4
H2

(
u√
2

)
+Q1

]
K(u)
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−γ
2ζ2τ2

2α2

αK(u)

8τ
H2

(
u√
2

)}
= ατ

[
γ2

16α
H4

(
u√
2

)
+
Q2

4
H2

(
u√
2

)
+Q1

]
− γ2ζ2τ

α2

α

8τ
H2

(
u√
2

)
= τ

{
γ2

4

[
1

4
H4

(
u√
2

)
−
(
u√
2

)2

H2

(
u√
2

)]
+
αQ2

4
H2

(
u√
2

)
+ αQ1

}
.

(4.16)

Expanding the Hermite polynomials and combining terms, we obtain

α2(ζ) = ατ

[
γ2(−5u2 + 3)

4α
+
Q2(u2 − 1)

2
+Q1

]
. (4.17)

Note that the u4 terms in the bracketed expression in (4.16) canceled out. They must
have canceled, or else our correction would have been O(ε2ζ4) = O(ε−2x) as we exited the
boundary layer.

Bullish Spread Options
Next we consider the bullish spread option, which has a payoff of the following form:

pR(x) =

{
0, S < K,
S −K, K < S < K + aε,
aε, S > K + aε,

(4.18)

where we denote the spread option by R. Rewriting the payoff function in the ζ-coordi-
nates, we have

pR(ζ) =

{
0, ζ < 0,
εζ, 0 < ζ < a,
aε, ζ > a.

(4.19)
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Figure 4.2. Bullish spread option payoff.
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The graph is shown in Figure 4.2. However, we note from the graph that

pR(ζ) = pC(ζ)− pC(ζ − a). (4.20)

Thus we have that
R(ζ, τ ;x) = C(ζ, τ ;x)− C(ζ − a, τ ;x), (4.21)

and hence we may use (4.7), (4.11), and (4.12) to obtain a perturbation expansion for R.
Equation (4.21) has a nice financial interpretation. In a spread option, you are betting
that the market will go up, but not too far up. This saves money on the option. Equation
(4.21) indicates that purchasing a spread is equivalent to purchasing a call option with
strike price K, but then selling a call option with strike price K + aε. This second call is
essentially a bet that the value of the basket will not rise above K + aε.

The parameter perturbation is slightly more subtle. Since our expressions for the
perturbations α1 and α2 depend on ζ, we see that we must perturb each term in (4.21)
individually. Thus we obtain

R(ζ, τ ;x) = C0(ζ, τ ;α+εα1(ζ)+ε2α2(ζ))−C0(ζ−a, τ ;α+εα1(ζ−a)+ε2α2(ζ−a)). (4.22)

Other Options
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Figure 4.3. Put option payoff.

We conclude this section with a brief description of other options. A put option has
a payoff which is the mirror image of the call option about S = K. Therefore, we have

pP (ζ) = [−εζ]+ =

{
−εζ, ζ < 0,
0, ζ > 0,

(4.23)

where we denote the put option by P . A graph of the payoff is shown in Figure 4.3. Since
the governing equations have symmetry about the ζ-axis, we have

P (ζ, τ) = C(−ζ, τ). (4.24)



Hagan et al. 4.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

–1.4 –1 –0.8 –0.4 0.2 0.4 0.6 0.8 1 1.2 1.4
ζ

F0(ζ, 0)

Figure 4.4. Bearish spread option payoff.

Using (4.24), we can construct a perturbation expansion or perturbed-parameter expression
for P .

Similarly, the bearish spread option has a payoff which is the mirror image of the
bullish spread option about S = K. Therefore, we have

pF (ζ) =

{
aε, ζ < −a
−εζ, −a < ζ < 0,
0, ζ > 0,

(4.25)

where we denote the bearish spread option by F . A graph of the payoff is shown in Figure
4.4. Hence

F (ζ, τ) = R(−ζ, τ). (4.26)



Section 5: Digital Options
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Figure 5.1. Digital call option payoff.

We next consider a digital call option, which pays only a fixed value. Here the payoff
is given by

pD(x) =

{
0, S < K,
1, S > K,

(5.1)

which of course is a step function. Here we assume that the payoff value is 1. But since the
problem is linear, it is a simple matter of scaling to obtain the case with general payoff.
Therefore, we have a discontinuity in the function itself at S = K. Rewriting the payoff
function in the ζ-coordinates, we have

pD(ζ) =

{
0, ζ < 0,
1, ζ > 0,

(5.2)

which is shown in Figure 5.1.
Due to the underlying linearity of our equations, we have that since

εpD =
dpC
dζ

,

we must have that

εD(ζ, τ) =
∂C

∂ζ
, (5.3)

where D is the price of the digital option.
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Using (5.3), we have that

Dn =
∂Cn
∂ζ

. (5.4)

Thus, from (4.7) we obtain

D0(ζ, τ) =
∂C0

∂ζ
=
√
ατ [N (u) + uG(u)− uG(u)]

d

dζ

(
ζ√
ατ

)
= N (u). (5.5)

In addition, we may use (B.4), (4.9), and (4.10) to obtain the needed expressions for D1

and D2:

∂D0

∂τ
=
∂2C0

∂τ∂ζ
= − G(u)

2τ
√

2
H1

(
u√
2

)
= − G(u)

2τ
√

2

(
2
u√
2

)
= −uG(u)

2τ
. (5.6a)

∂2D0

∂τ2
=
α

2

∂2K(u)

∂τ∂ζ
= − αK(u)

8τ
√

2ατ
H3

(
u√
2

)
, (5.6b)

∂3D0

∂τ3
=
α

2

∂3K(u)

∂τ2∂ζ
= − αK(u)

32τ2
√

2ατ
H5

(
u√
2

)
. (5.6c)

∂2D0

∂τ∂ζ
=
α

2

∂2K(u)

∂ζ2
=
αK(u)

4ατ
H2

(
u√
2

)
=
K(u)

4τ
H2

(
u√
2

)
, (5.7)

Substituting (5.7) into (3.6), we obtain

D1(ζ, τ) = γτ2
∂2D0

∂τ∂ζ
=
γτ

4

(
G(u)√
ατ

)
H2

(
u√
2

)
=
γ

4

√
τ

α

[
4

(
u√
2

)2

− 2

]
G(u) =

γG(u)

2

√
τ

α
(u2 − 1). (5.8)

Substituting (5.6) into (3.11), we obtain

D2(ζ, τ) =
γ2

α
τ4
[
− αK(u)

32τ2
√

2ατ
H5

(
u√
2

)]
+Q2τ

3

[
− αK(u)

8τ
√

2ατ
H3

(
u√
2

)]
+Q1τ

2
[
−K(u)

√
ατ

u

2τ

]
= −τ

3/2

2
α

[
γ2

16α
√

2
H5

(
u√
2

)
+

Q2

4
√

2
H3

(
u√
2

)
+Q1u

]
K(u).

For later purposes, it will be more convenient to write this term as a single polynomial.
Expanding the Hermite functions, we obtain

D2(ζ, τ) =
uτ

8

(
Q4 +Q5u

2 − γ2u4

α

)
G(u), (5.9)

Q4 = −15
γ2

α
+ 6Q2 − 4Q1,

Q4 = 10
γ2

α
− 2Q2.
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Parameter Perturbations

Now we attempt to do the same sort of parameter perturbation as in section 4. Using
(5.6a) in (3.13a), we obtain

α1(ζ) =
αD1

τ

(
∂D0

∂τ

)−1
=
γG(u)

2

√
α

τ
(u2 − 1)

[
−uG(u)

2τ

]−1
=
γ
√
ατ

u
(1− u2). (5.10)

But now we have a problem: α1 vanishes when ζ = 0. Why does this happen? From
(5.6a), we see that

∂D0

∂α
(0, τ) =

τ

α

∂D0

∂τ
(0, τ) = 0.

Hence we are dividing by zero. This occurs because the digital call is symmetric about
ζ = 0, always fixed at the value D0(0, τ) = 1/2.

Thus, we must be more clever. We replace (3.12) by the following:

D0(ζ, τ ;α) + εD1(ζ, τ ;α) + ε2D2(ζ, τ ;α) = D0(ζ + εζ1, τ ;α+ εα1 + ε2α2). (5.11)

We assume that ζ2 = 0, and verify this below. Expanding (5.11), we obtain

D0 + εD1 + ε2D2 = D0 + εα1
∂D0

∂α
+ εζ1

∂D0

∂ζ
+ ε2α2

∂D0

∂α
+ ε2α1ζ1

∂2D0

∂α∂ζ

+
ε2α2

1

2

∂2D0

∂α2
+
ε2ζ21

2

∂2D0

∂ζ2

D1 =
α1τ

α

∂D0

∂τ
+ ζ1

∂D0

∂ζ
, (5.12a)

D2 =

(
α2τ

α
+
ζ21
2

2

α

)
∂D0

∂τ
+
α1ζ1τ

α

∂2D0

∂τ∂ζ
+
α2
1τ

2

2α2

∂2D0

∂τ2
. (5.12b)

Thus we will need the following term:

∂D0

∂ζ
= G(u)

du

dζ
=

1√
ατ
G(u). (5.13)

We begin by solving (5.12a). To do so, we use (5.6a) and (5.13):

−γ
2

√
τ

α
(1− u2)G(u) = α1

[
− u

2α
G(u)

]
+ ζ1

[
1√
ατ
G(u)

]
−γ

2

√
τ

α
(1− u2) = −uα1

2α
+

ζ1√
ατ

.
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Previously, the divergent terms occurred because we divided the constant term (in u) on
the left by the u on the right. Now we avoid this problem by letting the ζ1 term match
the constant term:

−γ
2

√
τ

α
=

ζ1√
ατ

ζ1 = −γτ
2
, (5.14a)

which implies that

γu2

2

√
τ

α
= −uα1

2α

α1 = −uγ
√
ατ = −γζ. (5.14b)

Note that (in this formulation) the α1 here agrees with (4.13). This similarity is what led
us to guess that the general case could always be done and try the analysis in section 2.

The ζ1 term implies a drift of origin due to the fact that we are approximating a
basket of stocks as a single stock.

Next we solve (5.12b), using (5.6b), (5.7), (5.8), and (5.14):

D2 =

(
α2τ

α
+
γ2τ2

4α

)[
−uG(u)

2τ

]
+
γτζ

2α

(
γτ2

∂2D0

∂τ∂ζ

)
+
γ2ζ2τ2

2α2

[
− αK(u)

8τ
√

2ατ
H3

(
u√
2

)]
2D2 = −

(
α2 +

γ2τ

4

)
uG(u)

α
+ γu

√
τ

α
D1 −

γ2u2τ2

8
√

2ατ

G(u)√
ατ

H3

(
u√
2

)
2D2

u
= −

(
α2 +

γ2τ

4

)
G(u)

α
+ γ

√
τ

α

[
γG(u)

2

√
τ

α
(u2 − 1)

]
− γ2uτ

8α
√

2
G(u)

[
8

(
u√
2

)3

− 12

(
u√
2

)]

2αD2

uG(u)
= −

(
α2 +

γ2τ

4

)
+
γ2τ

2
(u2 − 1)− γ2u2τ

4
(u2 − 3)

α2 =
γ2τ

4
(5u2 − 3)− γ2u4τ

4
− 2α

uG(u)

[
uτ

8

(
Q4 +Q5u

2 − γ2u4

α

)
G(u)

]
=
τ

2

[
γ2

2
(5u2 − 3)− α

2
(Q4 +Q5u

2)

]
. (5.15)

Note that in this case we essentially had two degrees of freedom, as we could have intro-
duced ζ2. However, since we can obtain a nonsingular parameter perturbation with ζ2 = 0,
we do so.
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Figure 5.2. Digital put option payoff.

Other Options
As in the previous section, we can relate the digital put option to the digital call by

just reflecting about the line S = K. Therefore, we have

pL(ζ) =

{
1, ζ < 0,
0, ζ > 0,

(5.16)

where we denote the digital put option by L. A graph of the payoff is shown in Figure 5.2.
Since the governing equations have symmetry about the ζ-axis, we have

L(ζ, τ) = D(−ζ, τ). (5.17)

Using (5.17), we may construct a perturbation expansion or perturbed-parameter expres-
sion for L.



Section 6: Barrier Model Formulation

We next consider a simple model for a “down-and-out” barrier call. In such a system,
if S falls below a certain value K − yε for any τ , then the option becomes worthless.
Therefore, we have the following boundary condition:

B(S = K − yε, τ) = 0, (6.1a)

where the B stands for barrier option. Note that the domain for the problem is now

S > K − yε =⇒
n∑
j=1

e−µjτxj > K − yε. (6.1b)

This type of option is cheaper than a standard call option because if the asset price falls
below K − yε, then rises again, the option still cannot be exercised. However, for the
option to be significantly cheaper, the barrier must be close (at least in volatility terms)
to the strike price, since wide swings in asset prices are unlikely.

We note from (6.1b) that if we change to the ζ-coordinate system, we will have a
boundary that moves in time. Therefore, we make the assumption that µk is small. This
is a reasonable assumption, since interest rates vary slowly. We let µj = µ0jφ(ε), where
φ(ε) = o(1). Thus (6.1b) becomes, to leading orders,

n∑
j=1

xj −K > −yε+

n∑
j=1

µ0jxjφ(ε)τ

ζ > −y +
φ(ε)τ

ε
µ, µ =

n∑
j=1

µ0jxj . (6.2)

We note from (6.2) that we have several cases. If φ(ε) > O(ε), then the slowly-varying
limit is not appropriate. If φ(ε) = ε, then we still have an undesirable time-dependent
boundary. Therefore, we desire φ(ε) = o(ε), and for simplicity we take φ(ε) = ε2, so the
domain is given by

ζ > −y + µετ,

and (6.1a) becomes
B(ζ = −y + µετ, τ) = 0. (6.3)

Since we will work in ζ-space from now on, we will drop the ζ inside the boundary condition.
Here the payoff is given by

pB(x) = [S −K]+ =

{
0, K − y < S < K,
S −K, S > K,
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which becomes

pB(ζ) = [εζ]+ =

{
0, −y < ζ < 0,
εζ, ζ > 0,

(6.4)

and again we have
Vn+1(ζ, τ) = Bn(ζ, τ), n > 0, (6.5)

where the B denotes the barrier option. In addition, we now have the following boundary
conditions:

B(−y + µετ, τ) = 0

B0(−y, τ) + µετ
∂B0

∂ζ
(−y, τ) +B1(−y, τ) = 0

B0(−y, τ) = 0, (6.6a)

B1(−y, τ) = −µτ ∂B0

∂ζ
(−y, τ). (6.6b)

–2

–1

0

1

2

–6 –5 –4 –3 –2 –1 1 2

ζ

B0(ζ, 0)

Figure 6.1. Barrier option payoff (solid line) and extension (dotted line).

The payoff is given by the solid line in Figure 6.1. We note that the payoff is the same
as the call, except that we have the zero boundary condition (6.6a) on B0. Therefore, we
may extend the problem in an odd way about ζ = −y, as shown by the dotted line in
Figure 6.1. Thus, by the method of images we have that

B0(ζ, τ) = C0(ζ, τ)− C0(−(ζ + 2y), τ). (6.7)

However, this trick will not work at the next order due to the boundary condition (6.6b).
Substituting (6.7) into (6.6b) and using (5.5), we obtain

B1(−y, τ) = −µτ
[
∂C0

∂ζ
(−y, τ) +

∂C0

∂ζ
(−y, τ)

]
= −2µτN

(
− y√

ατ

)
. (6.8)
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The solution for B1 thus involves the following steps. First, we substitute our solution
for B0 into (3.6) in order to find a particular solution for B1. Then if this solution does
not satisfy (6.8), we must introduce a homogeneous solution to the problem. This is the
example to which we alluded after (3.7).



Section 7: Numerical Simulations

We now compare our asymptotic results to numerical simulations of (2.23). The
boundary conditions used were for a standard call option. A finite-difference scheme was
used, second-order in space, and first-order backward Euler in time, with an implicit scheme
for time advancing. At each new time level, the boundary conditions on the edge of the
domain are obtained from an explicit time-stepping scheme.

The numerical simulations were run in various dimensions, with ε = 0.1 and zjk = δjk.
We begin by examining the one-dimensional case. Here the spatial domain is taken

to be x ∈ [0, 1], with the strike price K = 5/9.

x

C0

Figure 7.1. C0 vs. x. Purple line: t = 0. Red line: t = 1/2.

First, we plot the first three terms in our asymptotic expansion for C. Figure 7.1
shows a graph of C0 vs. x for t = 0 and t = 1/2. Figure 7.2 shows a graph of C1 vs. x for
t = 1/2 and t = 2. The y-axis here is scaled by a factor of 300. Figure 7.3 shows a graph
of C1 vs. x for t = 1/2 and t = 2. The y-axis here is scaled by a factor of 1000.

Next we compare the numerical and asymptotic schemes. The time step is set at
∆t = 0.02 and four separate runs were performed with different values of ∆x. We denote
the calculation with ∆x = 1/2i−19 as “level i.”

Figures 7.4–7.6 show the convergence of the finite-difference solution to the first three
orders of the perturbation solution as ∆x decreases. Here t = 1/2 and the plotting x-range
has been truncated to [0.4, 0.7]. In each graph, the top curve is the perturbation solution.

For completeness, we present some multidimensional numerical results. In two dimen-
sions, the domain was taken to be [0, 1] × [0, 1], the weights were taken to be w1 = 1,
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x

C1 (scaled by 300)

Figure 7.2. C1 vs. x. Red line: t = 1/2. Purple line: t = 2.

x

C2 (scaled by 1000)

Figure 7.3. C2 vs. x. Red line: t = 1/2. Purple line: t = 2.

w2 = 1, and the strike price was taken to be K = 5/9. Figure 7.7 shows a graph of the
solution for t = 1/2 with ∆t = 0.02 and ∆x = 1/9. The graph is shown in red, the grid is
shown in green, and the initial condition (barely visible near the strike price) is shown in
blue.

In three dimensions, the domain was taken to be [0, 1]× [0, 1]× [0, 1], the weights were
taken to be w1 = 1, w2 = 1, w3 = 1, and the strike price was taken to be K = 5/9. Again
we take t = 1/2 with ∆t = 0.02 and ∆x = 1/9. Since the full three-dimensional solution
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x

C

Figure 7.4. Asymptotic (purple) and computational (red) solution, t = 1/2, ∆x = 1/9.

x

C

Figure 7.5. Asymptotic (purple) and computational (red) solution, t = 1/2, ∆x = 1/18.

cannot be displayed, Figures 7.8 and 7.9 show the solution for fixed values of x3. Again,
the graph is shown in red, the grid is shown in green, and the initial condition (barely
visible near the strike price) is shown in blue.
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x

C

Figure 7.6. Asymptotic (purple) and computational (red) solution, t = 1/2, ∆x = 1/72.

x1

x2

C

Figure 7.7. Two-dimensional numerical solution, t = 1/2.
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x1

x2

C

Figure 7.8. Slice of three-dimensional numerical solution, t = 1/2, x3 = 1/9.

x1

x2

C

Figure 7.9. Slice of three-dimensional numerical solution, t = 1/2, x3 = 0.
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Section 8: Conclusions and Further Research

A fast accurate method was developed to calculate approximate values of some com-
mon options on a basket, based on a general perturbation procedure and renormalization,
under the assumption of small volatility of the asset prices. The form of the payoff func-
tion is relevant to the applicability of this method, and the case of Asian options, for
example, cannot be treated without some modification. The results from some simple
numerical calculations not only show the accuracy of the asymptotic method, but also
how unwieldy calculations of the full system become as the number of assets in the basket
increases. Future research may consider the case of Asian options, and American call and
put options.



Section 9: Nomenclature

In the manuscript, boldface or the arrow notation indicates a vector where the com-
ponenets are the italic letters with subscript k. The equation number where a particular
quantity first appears is listed, if appropriate.

Ak: foreign exchange rate for currency k (2.2).
a: top of payoff range for spread option (4.18).
bk: volatility for foreign exchange Ak (2.2).

B(·, τ): value of barrier option (6.1a).
C(ζ, τ): value of call option (4.3).
D(ζ, τ): value of digital option (5.3).
dWk: Wiener process for asset price Sk (2.1).
dZk: Wiener process for foreign exchange rate Ak (2.2).

F (ζ, τ): value of bearish spread option (4.26).
f : arbitrary function, variously defined.

G(·): Gaussian (normal) probability density function (3.15b).
H(·): Hermite polynomial (3.17a).

i: indexing variable.
j: indexing variable.

K(·): diffusion kernel (3.15a).
K: strike price for option.
k: indexing variable.
L: diffusion operator (3.2a).

L(ζ, τ): value of digital put option (5.17).
M : matrix whose jkth entry is zjk (A.1a).

N (u): Gaussian probability mass (cumulative normal) function (4.5a).
n: number of options in basket (2.5).

P (ζ, τ): value of put option (4.24).
p(·): payoff function for option (2.24b).
Q: constant, variously defined.
qk: units of currency k in portfolio (2.5).

R(ζ, τ): value of spread option (4.21).
r: risk-free rate of return (2.7b).
S: asset or basket price (2.1).
s: Laplace transform variable (B.1).
t: time from option sale (2.1).
u: similarity variable for diffusion equation (3.15a).

Ṽ (x, τ): outer solution for discounted option price (2.18).
V (ζ, τ): inner solution for discounted option price (2.22).
ṽ(S, t): value of option at time t (2.5).
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v(S, τ): discounted value of option at time τ (2.15).
wk: weight of asset k in basket (2.15).
xk: weighted future price of stock k (2.18).
y: negative of the barrier value in the ζ-coordinate system (6.1).
Z: the integers.
zjk: scaled correlation parameter (2.20).
α: parameter, value xTMx (3.2a).
βj : parameter, value (Mx)j (4.15).
γ: parameter (3.4a).

δjk: Kronecker delta function.
ε: small dimensionless parameter (2.20).
ζ: scaled variable about strike price (2.22).
λk: units of asset k in portfolio (2.5).
µ̃k: unknown drift rate for asset k (2.1).
µk: known adapted “drift rate” for martingale distribution, value rk −σkbkρk (2.14).
νk: drift rate for currency rate Ak (2.2).

π(S, t): portfolio value (2.5).
ρ: correlation parameter (2.3).
σk: volatility for asset k (2.1).
τ : time variable measured backwards from the exercise date (2.15).

Other Notation

B: as a subscript on p, used to indicate a barrier option (6.4).
C: as a subscript on p, used to indicate a call option (4.1).
D: as a subscript on p, used to indicate a digital option (5.1).
F : as a subscript on p, used to indicate a bearish spread option (4.25).
ex: as a subscript, used to indicate the exercise date (2.12).
L: as a subscript on p, used to indicate a bearish spread option (5.16).

new: as a subscript on α, used to indicate a perturbed parameter (4.14).
P : as a subscript on p, used to indicate a put option (4.23).
p: as a subscript, used to indicate a particular solution (3.5).
R: as a subscript on p, used to indicate a bullish spread option (4.18).
ˆ : used to indicate the Laplace transform (B.1).
′: used to indicate a dummy variable (3.15a).

[·]+: max{·, 0} (4.1).
n ∈ Z: as a subscript, used to index over assets (2.1), currency rates (2.2), to indicate

an expansion in ε (3.1), or simply to keep track of different parameters (3.9).



Appendix A: Parameter Simplifications

We begin by simplifying α. We note that if we define the Rn×n correlation matrix M
by

M = (zjk), (A.1a)

then (3.2b) may be written in the more compact notation

α = xTMx. (A.1b)

Here M is positive definite. Unfortunately, this seems as far as the vector notation will
get us.

Next we simplify γ. We begin by deriving an expression for the partial derivative:

∂α

∂xj
=

n∑
i=1

n∑
k=1

ρik
∂(xixk)

∂xj
=

n∑
i=1

n∑
k=1

ρik(xiδjk + xkδij) = 2
n∑
k=1

zjkxk,

where δik is the Kronecker delta and in the last equation we have used the symmetry of
M . The last sum comes up often, so we define it as a new quantity:

βj =

n∑
k=1

zjkxk =⇒ ~β = Mx, (A.2a)

∂α

∂xj
= 2βj . (A.2b)

Since we are summing over both j and k, each of the partial derivatives in (3.4b) gets
counted twice, once as a particular j value and once as a particular k value. Thus, we may
rewrite (3.4b) as

γ =
1

2α

n∑
j=1

xj
∂α

∂xj

n∑
k=1

zjkxk =
1

2α

n∑
j=1

xj
∂α

∂xj
βj (A.3a)

=
1

α

n∑
j=1

xjβjβj =
1

α

n∑
j=1

xjβ
2
j , (A.3b)

where we have used (A.2). Unfortunately, there doesn’t seem to be an easy way to rewrite
this in vector notation.

Next we compute Q1, first computing an intermediate expression:

∂2α

∂xjxk
= 2

n∑
i=1

ρji
∂xi
∂xk

= 2
n∑
i=1

ρjiδik = 2zjk

Q1 =
1

2α

n∑
j=1

xj

n∑
k=1

z2jkxk, (A.4)
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where we have used (A.2).
In order to compute Q2, we need the following derivative:

∂γ

∂xj
= − 1

α2

∂α

∂xj

n∑
k=1

xkβ
2
k +

1

α

n∑
k=1

∂xk
∂xj

β2
k +

2

α

n∑
k=1

xkβk
∂βk
∂xj

= −2βj
α

(
1

α

n∑
k=1

xkβ
2
k

)
+

1

α

n∑
k=1

δkjβ
2
k +

2

α

n∑
k=1

xkβkzjk

= −2βjγ

α
+
β2
j

α
+

2

α

n∑
k=1

xkβkzjk, (A.5)

where we have used (A.2) and (A.3).
Substituting (A.2b) and (A.5) into (3.9b) and using the trick about summing twice,

we obtain

Q2 =
1

6α

n∑
j=1

xj

n∑
k=1

zjkxk

[
(2βj)(2βk)

α
+ 4

∂γ

∂xj

]

=
2

3α2

n∑
j=1

xj

n∑
k=1

zjkxk

[
βjβk − 2βjγ + β2

j + 2
n∑
i=1

xiβiρij

]

=
2

3α2

n∑
j=1

xj

{
βj

[
−2γβj + β2

j + 2
n∑
i=1

xiβiρij

]
+

n∑
k=1

zjkxkβjβk

}

= −4γ2

3α
+

2

3α2

n∑
j=1

xj

{
β3
j + 3

n∑
k=1

zjkxkβjβk

}

= −4γ2

3α
+

2

3α2

n∑
j=1

xjβj

{
β2
j + 3

n∑
k=1

zjkxkβk

}
. (A.6)



Appendix B: General
Differentiation Formulas

We would like to calculate systematically the necessary derivatives to obtain V1 and
V2. To do so, we introduce the standard concept of a Laplace transform:

f̂(ζ, s) =

∫ ∞
0

e−sτf(ζ, τ) dτ, f(ζ, τ) =

∫
C
esτ f̂(ζ, s) ds, (B.1)

where C is the Bromwich contour. A useful transform pair for our work may be found in
[5], 29.3.87:

s(j−1)/2 exp

(
−ζ
√

2s

α

)
⇐⇒ 1

2j
√
πτ j+1

exp

(
− ζ2

2ατ

)
Hj

(
ζ√
2ατ

)
(

2s

α

)(j−1)/2

exp

(
−ζ
√

2s

α

)
⇐⇒ 2(j−1)/2

2j−1/2αj/2−1τ j/2
G(u)√
ατ

Hj

(
u√
2

)
(

2s

α

)(j−1)/2

exp

(
−ζ
√

2s

α

)
⇐⇒ α

(2ατ)j/2
K(u)Hj

(
u√
2

)
. (B.2)

We note that in (3.15a) there is no dependence of V0 on ζ and τ through p. Therefore,
we need only calculate the derivatives of K, which we do using Laplace transforms. Using
the transform pair (B.2) with n = 0, we have that

K̂(u) =
1

α

(
2s

α

)(0−1)/2

exp

(
−ζ
√

2s

α

)
∂jK̂
∂τ j

(u) =
sj

α

(
2s

α

)(0−1)/2

exp

(
−ζ
√

2s

α

)
,

=
αj−1

2j

(
2s

α

)(2j−1)/2

exp

(
−ζ
√

2s

α

)
∂j+kK̂
∂τ j∂ζk

(u) = (−1)k
αj−1

2j

(
2s

α

)(2j+k−1)/2

exp

(
−ζ
√

2s

α

)
. (B.3)

Inverting (B.3), we obtain

∂j+kK
∂τ j∂ζk

= (−1)k
αj−1

2j

[
α

(2ατ)j+k/2
H2j+k

(
u√
2

)]
K(u),

=
(−1)kK(u)

(4τ)j(2ατ)k/2
H2j+k

(
u√
2

)
. (B.4)
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