
A Mathematical Model for Trapping Skinning in
Polymers

By Da¨id A. Edwards

When saturated polymer films are desorbed, a thin skin of glassy polymer
can form at the exposed surface, inhibiting desorption. In addition, trapping
skinning, in which an increase in the force driving the desorption decreases
the accumulated flux, can also occur. These behaviors cannot be described
by the simple Fickian diffusion equation. The mathematical model pre-
sented for the system is a moving boundary-value problem with a set of
coupled partial differential equations that cannot be solved by similarity
variables. Therefore, integral equation techniques are used to obtain asymp-
totic estimates for the solution. It is shown that although increasing the
driving force will increase the instantaneous flux, the time of accumulation
will decrease, thus reducing the overall flux. In addition, the model is shown
to exhibit sharp fronts moving with constant speed, another distinctive
feature of non-Fickian polymer-penetrant systems.

1. Introduction

Over the last several decades, much work, both experimental and theoreti-
cal, has been devoted to the study of polymer-penetrant systems. One
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anomalous feature of such systems is a change of state in the polymer from
Ž .a rubbery state denoted by sub- and superscripts r when the polymer is

Ž .nearly saturated, to a glassy state denoted by sub- and superscripts g when
the polymer is nearly dry. When a saturated polymer film or fiber is
desorbed, often a glassy region develops at the exposed surface. Since the
polymer is now in two states}the glassy skin and the deeper rubbery

w xmaterial}this phenomenon is called literal skinning 1]3 . Because the
diffusion coefficient in the glassy region is much lower than in the rubbery

w xregion, this skin will slow the desorption process 4 .
This skinning process can be desirable for such processes as membrane

w x w xproduction by phase inversion 5 or spray-drying operations 6 . In addition,
the glassy skin can aid in the production of more effective protective

w xclothing, equipment, or sealants 7]9 . However, polymer skinning is unde-
sirable in coating processes due to nonuniformities in the polymer coating

w xand a decrease in the drying rates 3 .
An even more unusual phenomenon, called trapping skinning, can also

occur. In trapping skinning, an increase in the force driving the desorption
will actually decrease the accumulated flux through the boundary! This
behavior cannot be described solely by the lower diffusion coefficient in the

w xglassy region; other effects must be included 2, 3, 10 . Although all the
physical mechanisms for such behavior are not known, most scientists agree
that one dominant factor is a viscoelastic stress in the polymer. This stress is
related to the relaxation time, which measures the time it takes one portion
of the polymer entaglement network to react to changes in another portion.
In certain polymer-penetrant systems, this stress, which is a nonlinear
memory effect, is as important to the transport process as the well-under-

w xstood Fickian dynamics 11]13 . In the glassy region, the relaxation time is
finite, so the stress is an important effect. In the rubbery region, the
relaxation time is nearly instantaneous; hence, the memory effect is not as

w ximportant there 8, 11, 14 .
w xIn this article, we undertake a study of a previously derived model 15, 16

to explain this anomalous Case II behavior. The model consists of a set of
coupled partial-differential equations. The moving boundary-value problem
that results cannot be solved by similarity solutions, but can be solved using
asymptotic and singular perturbation techniques.

Since we are modeling desorption of a substance from a polymer film, two
important measurable quantities can be identified: the speed of the front
separating the glassy and rubbery regions and the flux of the penetrant
through the exposed boundary. In our analysis, each of these quantities is
identified and related to the dimensionless parameters. These computations
should provide useful information to chemical engineers who wish to verify
our model experimentally and, if our model is shown to be accurate, to those
who wish to exploit the skinning phenomenon for their own purposes.
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2. Governing equations

We begin with our theoretical equations for diffusion:

˜ ˜ ˜ ˜C s D C C q Es , 2.1aŽ .Ž . ˜t̃ x x˜ ˜ x̃

˜ ˜ ˜s q b C s s mC q n C , 2.1bŽ .Ž .˜ ˜˜ ˜t t

˜ ˜ ˜Ž .where C is the concentration of the penetrant, D C is the molecular
˜Ž .diffusion coefficient, b C is the inverse of the relaxation time, and m, n ,

and E are positive constants. Although these equations are derived in detail
w x Ž .in 15 , a brief summary is appropriate. Equation 2.1a comes from assum-

˜ing the chemical potential depends not only on C, but also on the nonstate
variable s , which includes memory effects into our diffusive flux. Since the˜

Ž .evolution equation 2.1b for s is reminiscent of the one for viscoelastic˜
Ž .stress, we refer to s as a ‘‘stress’’ throughout this work. Equations 2.1 have˜

w xbeen successfully used in 15, 17]19 to model various types of anomalous
behavior in polymer-penetrant systems.

˜Ž .In many polymer-penetrant systems, b C changes greatly as the polymer
w xgoes from the glassy state to the rubbery state 8, 11, 14, 20, 21 . However,

˜Ž .the differences in b C within phases are qualitatively negligible when
˜Ž .compared with the differences between phases. Hence, we model b C by its

average in each phase, yielding the following functional form:

¡ ˜ ˜b , 0FCFC# glass ,Ž .g~˜b C s 2.2Ž .Ž . ¢ ˜ ˜ ˜b , C#-CFC rubber ,Ž .r c

˜where C# is the concentration at which the rubber]glass transistion occurs
˜and C is the saturation level for the polymer.c

We wish to model the desorption of an initially saturated semi-infinite
polymer, so we have that

˜ ˜C x , 0 s C . 2.3aŽ . Ž .˜ c

We also need an initial condition for the stress, but we do not wish to
impose it at this time, so we simply let

s x , 0 s s x , 0 . 2.3bŽ . Ž . Ž .˜ ˜ ˜ ˜i
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Ž .At the exposed edge xs0 , we apply a radiation condition, which indicates˜
that the flux through the inside of the film is proportional to the difference
between the concentration at the edge of the film and the exterior concen-
tration:

˜ ˜ ˜ ˜ ˜ ˜ ˜˜ ˜ ˜J 0, t s y D C C q Es 0, t s k C yC 0, t ,Ž . Ž . Ž .Ž . ˜x x ext˜ ˜

˜where k)0 is a measure of the permeability of the outer surface. We
˜assume that C s0, so we haveext

˜ ˜ ˜ ˜ ˜˜ ˜D C C q Es 0, t s kC 0, t . 2.4Ž . Ž . Ž .Ž . ˜x x˜ ˜

Ž .Note that 2.4 implies that the flux desorbed depends directly on the
concentration at the boundary. Therefore, we see that if the boundary is dry
Ž .i.e., if a skin has formed , then there will be very little flux through the
boundary and the penetrant will be trapped inside the polymer.

To understand these dynamics better, it is instructive to define the
˜accumulated concentration flux F:

`
˜ ˜ ˜ ˜ ˜ ˜F ' D C C 0, t dt. 2.5Ž . Ž .Ž .H x̃

0

˜Not only is F an easy quantity to measure experimentally, but also its
behavior will determine whether we have trapping skinning, where an

˜Ž .increase in the driving force in this case, represented by k will actually
˜produce a decrease in F.

Our problem will involve matching the solutions of the two equations
where b s b and b s b . Thus, it is necessary to impose conditions at theg r

Ž .̃moving boundary s t between the two regions. We begin by assuming˜
˜continuity of concentration at the specified transition value C#:

˜r ˜ ˜g˜ ˜ ˜ ˜C s t , t s C# s C s t , t . 2.6Ž . Ž . Ž .˜ ˜Ž . Ž .

In addition, we assume that the stress is continuous there, although we need
not impose a specific value:

r ˜ ˜ g ˜ ˜s s t , t s s s t , t . 2.7Ž . Ž . Ž .˜ ˜ ˜ ˜Ž . Ž .

Lastly, we need to account for the fundamental change, seen experimen-
tally, that takes place in the polymer as it changes from glass to rubber.
Experimentally, this has been shown to be related to a stretching of the
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polymer. The penetrant used up by the polymer in this stretching is directly
analogous to the energy used up in melting in a standard two-phase heat
conduction problem. Hence, we follow the same sort of derivation. Given

˜ ˜ ˜the general form that C syJ , where J is the flux, we use the standardt̃ x̃

condition that the difference between the flux in and the flux out is
proportional to the speed of the front, i.e.,

ds̃
J̃ s ya ,˜s̃ d̃t

where a is a material constant and where we have defined the operator˜
w x gŽ y Ž . . rŽ q Ž . .˜ ˜ ˜ ˜f ' f s t , t y f s t , t . Note that a plays the same role as the˜ ˜ ˜s̃

latent heat in a Stefan problem. However, it is shown later that such a
˜simple interpretation of a is inappropriate. Substituting our expression for J˜

Ž .from 2.1a , we have the following:

ds̃˜ ˜ ˜D C C q Es s a . 2.8Ž .Ž . ˜ ˜x x˜ ˜ s̃ d̃t

When introducing nondimensional variables into the problem, we wish to
let our independent variables vary on a physically observable time scale.
Since the relaxation time in the glassy polymer is on the order of seconds
and hence physically realizable, we use b to normalize our time scale. Weg

also choose a length scale given by the glassy polymer to normalize our
length scale. In summary, we have

b ˜˜ ˜s t C x , tŽ . Ž .g ˜ ˜˜x s x , t s tb , s t s , C x , t s ,( Ž . Ž .˜ gn E x̃ C̃c c

˜s x˜ Ž .s x , t ˜ ˜ C# aŽ .˜ ˜ ˜is x , t s , s x s , C# s , a s ,Ž . Ž .i˜ ˜ ˜ ˜n C n C C Cc c c c

b˜ ˜˜ ˜D Ck FŽ . g
k s , D C s , F s .(Ž . n E n E˜n Eb C' g c

Ž . Ž . Ž . Ž .Then Equations 2.1 ] 2.4 and 2.6 ] 2.8 reduce to

C s D C C qs , 2.9aŽ . Ž .t x x x

b m
s q s s C q C , 2.9bŽ .t tb nbg g
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C x , 0 s 1, 2.10aŽ . Ž .

s x , 0 s s x , 2.10bŽ . Ž . Ž .i

D C C 0, t q s 0, t s kC 0, t , 2.11Ž . Ž . Ž . Ž . Ž .x x

C r s t , t s C# s Cg s t , t , 2.12Ž . Ž . Ž .Ž . Ž .

s r s t , t s s g s t , t , 2.13Ž . Ž . Ž .Ž . Ž .

D C C qs s as, 2.14Ž . Ž .˙x x s

where the dot indicates differentiation with respect to t. These are the
equations that we will be using in our nonlinear analysis. Once we have
computed our solutions, we will use them to calculate our nondimensional
accumulated concentration flux:

`

F s D C C 0, t dt. 2.15Ž . Ž . Ž .H x
0

To make the problem analytically tractable, we make one more simplify-
Ž .ing assumption. The molecular diffusion coefficient D C often increases

w xdramatically as the polymer goes from the glassy to rubbery state 21 .
However, changes within phases are less important. Hence, we perform the
same averaging as we did with the relaxation time to obtain the following

Ž .form for D C :

D , 0FCFC#,g
D C s 2.16Ž . Ž .½ D , C#FCF1.r

Ž . w xThis piecewise-constant form for D C has been used by Crank 22 to study
these anomalous systems. More discussion of various physically appropriate

Ž . w xforms for D C can be found in Cohen and White 23 .
Ž . Ž . Ž .Due to the forms of 2.2 and 2.16 , we see that we may treat b C and

Ž . Ž .D C as constants. Then 2.9a becomes

C s D C C q s . 2.17Ž . Ž .t x x x x

Ž . Ž .Combining 2.17 and 2.9b yields

b C b C D C mŽ . Ž . Ž .
C s 1q D C C y C q q C . 2.18Ž . Ž .t t x x t t x xb b nbg g g

Ž .It can be shown that 2.18 also holds for s .
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w x Ž .It has previously been shown 16 that our front condition 2.14 is
equivalent to

b s s t , tŽ .Ž .rD C q1 C q 1y s as. 2.19Ž . Ž .Ž . ˙x s ž /b ṡg

Ž .The second term on the left-hand side of 2.19 is highly unusual and results
Ž . Ž .from solving 2.9b for s and using the results in 2.14 . Due to the presence

of this term, a standard similarity-solution approach is fruitless.
Finally we examine the relative size of our parameters. Experimentally it

has been shown that polymers have a near-instantaneous relaxation time in
the rubbery state, while in the glassy state these substances are character-
ized by finite relaxation times. Hence, we assume that b r b se , whereg r

0-e <1. This is consistent with the observation that a polymer that has a
w xnear-instantaneous relaxation time will develop only a very thin skin 5 .

In addition, we know that the diffusion coefficient also varies greatly
between phases. It is known that in the glassy polymer skin the diffusion

w xcoefficient is small 4 . Therefore, we set D s D e . The small size of Dg 0 g

shows that in the glassy region, the dominant contribution to the normalized
flux is given by the stress term. This agrees with our understanding that the
nonlinear relaxation effects arising from the stress are most pronounced in
the glassy region. We expect the effects of the concentration to be dominant
when determining the stress, so we let msm ey1. Finally, for reasons that0

become clear later, we require that

a - y1. 2.20Ž .

This requirement indicates that a cannot be interpreted in terms of the
latent heat, since in this case the phase change parameter is negative.

Ž .However, a restriction of the form of 2.20 is not uncommon for the model
Ž .equations 2.1 ; a has been negative in other considerations of these

w xequations 15 .
Ž . Ž .Making these substitutions into 2.18 and 2.9b , we have the following in

the glassy region:

gg g g gC s 1q D e C y C q D e q C , 2.21aŽ . Ž .t t 0 x x t t 0 x xž /e

gg g g gs q s s C q C , 2.21bŽ .t te
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where

m0g s .
nbg

Ž . Ž .Since 2.18 also holds for s , we see from 2.21a that we have the
following equation for the stress in the glassy region:

gg g g gs s 1q D e s y s q D e q s . 2.22Ž . Ž .t t 0 x x t t 0 x xž /e

In addition, we have the following in the rubbery region:

1 k 2
r r r rC s a C y C q C , 2.23aŽ .t t x x t t x xe e

1 gr r r rs q s s C q C , 2.23bŽ .t te e

where

a s 1q D , k 2 s D qg . 2.23cŽ .r r

Ž .In addition, Equation 2.19 becomes

s s t , t1 Ž .Ž .g rD e q1 C s t , t y a C s t , t q 1y s as. 2.24Ž . Ž . Ž . Ž .Ž . Ž . ˙0 x x ž /e ṡ

Ž .If the outer boundary is in the rubbery region, Equation 2.11 becomes

D C r 0, t q s r 0, t s kC r 0, t , 2.25aŽ . Ž . Ž . Ž .r x x

while if it is in the glassy region we have

D e Cg 0, t q s g 0, t s kCg 0, t . 2.25bŽ . Ž . Ž . Ž .0 x x

3. Outer solutions and the accumulated flux

We begin by constructing the solution in the rubbery region. We postulate
the following expansions in e for our functions:

C r ; C 0r q e C1r q o e , s r ; s 0r q es 1r q o e . 3.1Ž . Ž . Ž .



Trapping Skinning in Polymers 57

Ž . Ž .Then in the rubbery region, Equations 2.23a and 2.23b become, to
leading orders,

C 0r s k 2 C 0r , 3.2aŽ .t x x

1 g0r 0r 1r 0r 1r 0rs q s qes s C qe C q C . 3.2bŽ . Ž . Ž .t te e

At the beginning of the problem, we expect the entire polymer to be
Ž . Ž .rubbery. Therefore, we begin by solving 3.2 subject to 2.25a . Matching the

y1 Ž .e terms in 3.2b , we have

s 0r s g C 0r . 3.3Ž .

Hence for consistency we should set

s x s g . 3.4Ž . Ž .i

Ž . Ž .If we do not define s x as in 3.4 , we will have a thin initial layer of widthi

e where the stress would equilibrate to g . Since this region is not of physical
Ž .interest, we use 3.4 for our initial condition and do not consider the initial

layer.
Ž . Ž .Substituting 3.3 into 2.25a , we have the following:

k 2 C 0r 0, t s kC 0r 0, t . 3.5Ž . Ž . Ž .x

Ž .To complete our problem, we simply rewrite the leading order of 2.10a :

C 0r x , 0 s 1. 3.6Ž . Ž .

Ž . Ž . Ž .The solution of 3.2a , 3.5 , and 3.6 is given by

C 0r x , t s C k x , t , 3.7aŽ . Ž . Ž .

where

x kxq k 2 t 2ktq xkC x , t s erf qexp erfc . 3.7bŽ . Ž .2ž / ž /ž /' 'k2k t 2k t
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On the boundary we have

2 'k t k t0rC 0, t s exp erfc , 3.8Ž . Ž .2 ž /ž / kk

which is a monotonically decreasing function of t, as we would expect.
Therefore, we note that at some time t#, given by

2 'k t#k t#
exp erfc s C#,2ž / ž /kk

the polymer will change from an all-rubbery to a two-phase state. Letting

k 2 t#
z# s 3.9aŽ .2k

to simplify our analysis, we have the implicit relation for z#:

z# 'e erfc z# s C#. 3.9bŽ .

Note that z# is a function of C# only, as illustrated in Figure 1.
We now wish to make some initial asymptotic estimates for the time t#

Žfor various C#. If C# is near 1 that is, if the saturation concentration is
.very near the transition concentration or krk <1, a small-z# asymptote is

Ž .needed for the left-hand side of 3.9b , which yields

21yC# pŽ .
z# ; . 3.10Ž .4

Figure 1. z# vs C#.
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If C# is near 0 or krk 41, a large-z# asymptote is needed for the
Ž .left-hand side of 3.9b , and we have the following:

1
z# ; . 3.11Ž .2C#p

Ž . Ž . 0rTo complete our work in this section, we use 3.7 in 3.3 to obtain s :

2x kxq k t 2ktq x0rs x , t s g erf qexp erfc . 3.12Ž . Ž .2ž / ž /ž /' 'k2k t 2k t

0rŽ .Figure 2 shows a graph of C x vs x for the listed parameters and
times. The concentration decreases monotonically with t, so the line C 0r s1

0rŽ .corresponds to ts0, and the graph where C 0, t s0.5sC# corresponds
Ž .to t#, the value of which was calculated numerically from 3.9 . Since the

polymer is totally in the rubbery state for t- t#, the relaxation time is
instantaneous, and there are no memory effects to consider. Thus, our
solution behaves in a standard Fickian way and the concentration flux is
Ž . Ž .O 1 . Note from 3.12 that for the particular value of g we have chosen,

0rŽ .Figure 2 is also a graph of s x .
At this time we consider the solution profile in the rubbery region when

t) t#. Now there are two phases in the polymer, and we are left to consider
a moving boundary-value problem. To obtain a solution, we first see if there
can be an interior layer near the moving front in C 0r. This would affect the
boundary conditions for our outer solution. However, it can be shown that
the equation in such a layer does not have a solution that remains bounded
as z ª`, which must occur for our solution to match.

0 rŽ . 0 rŽ .Figure 2. C x and s x vs x for k s2, ks3, g s1, C#s0.5, t#f0.262, and ts0,
0.01, 0.04, 0.16, 0.64, and t#.
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Therefore, we see that there is no layer in this region, and our boundary
Ž . rŽ Ž . .condition 2.12 for C s t , t must be satisfied exactly. Indeed, since we

know that the same operator holds for C r and s r, we know that we have no
r Ž .layer in s either. Therefore, from 3.3 we have that

s 0r s t , t s g C#, 3.13Ž . Ž .Ž .

Ž .and 2.24 becomes

g C#qes 1r s t , t1 Ž .Ž .g rD e q1 C s t , t y a C s t , t q 1y s as.Ž . Ž . Ž .Ž . Ž . ˙0 x x ž /e ṡ

3.14Ž .

Next we define the variable us ty t#. To solve for our solution, we
w xemploy the integral method developed by Boley 24 for simpler diffusion

Ž .problems and used extensively by Edwards and Cohen on Equations 2.1
w x15, 17, 19 . In this method, we assume that the equations for the rubbery

Ž .region hold for the entire semi-infinite region for some function T x, u .
Next we impose a fictitious boundary condition involving an unknown

Ž .function f u at xs0 for u)0. We then require this solution to satisfy all
the other true boundary conditions. This solution will then give the proper

Ž . kŽ .result in its region of validity, x) s t . Since we know that C x, t is a
Ž .solution to 3.2a that solves our initial condition and the fictitious condition

Ž .f u s0, we let

C 0r x , t s T x , uq t# q C k x , t , x ) s t , 3.15aŽ . Ž . Ž . Ž . Ž .

Ž . Ž . Ž .in which case Equations 3.2a , 3.5 , and 3.6 become

T s k 2T , x ) 0, u ) 0, 3.15bŽ .u x x

k 2T 0, u s kT 0, u q f u , 3.16Ž . Ž . Ž . Ž .x

T x , 0 s 0. 3.17Ž . Ž .

Ž . Ž .The solution of Equations 3.15b ] 3.17 is given by

u1
T x , u s y f uytŽ . Ž .Hk 0

=
2 21 x k kxq k t 2kt q x

exp y y exp erfc dt .2 2 ž /ž / ž /k' '4k t kpt 2k t

3.18Ž .
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Ž . Ž .Inserting 3.18 into 3.15a , we have

u10rC x , t s y f uytŽ . Ž .Hk 0

2 21 x k kxq k t 2kt q x
= exp y y exp erfc dt2 2 ž /ž / ž /k' '4k t kpt 2k t

qC k x , t , x ) s t . 3.19Ž . Ž . Ž .

Ž .Using this expression in 2.12 gives us the first condition on s and f :

u1
C# s y f uytŽ .Hk 0

=
2 21 s k ksq k t 2kt q s

exp y y exp erfc dt2 2 ž /ž / ž /k' '4k t kpt 2k t

q C k s, t . 3.20Ž . Ž .

Ž . 0rŽ Ž . .To satisfy Equation 3.14 , we also need the value of C s t , t , so wex

calculate the derivative of each of its component parts:

k ksq k 2 t 2ktq skC s t , t s exp erfc , 3.21aŽ . Ž .Ž .x 2 2 ž /ž / 'k k 2k t

u 21 1 s s
T s t , t s y f uyt exp y kyŽ . Ž .Ž . Hx ž /3 2½ ž / 2t'k 4k tpt0

k 2 ksq k 2t 2kt q sy exp erfc dt . 3.21bŽ .2 5ž /ž /k 'k 2k t

Next we examine the glassy region. Letting

Cg x , t ; C 0g x , t q e C1g x , t q o e ,Ž . Ž . Ž . Ž .

s g x , t ; ey1s 0g x , t q s 1g x , t q o 1 ,Ž . Ž . Ž . Ž .

Ž . Ž . Ž . Ž .in 2.21 , 2.22 , 2.25b , and 3.14 yields

g0g 0g 0g 0g 1gC s C y C q C qe C , 3.22aŽ .Ž .t t x x t t x x x xe

gy1 0g 1g y1 0g 1g 0g 1g 0ge s q s q e s q s s C qe C q C , 3.22bŽ . Ž .t t te
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g0g 0g 0g 0g 1gs s s y s q s qes , 3.23Ž .Ž .t t x x t t x x x xe

ey1s 0g 0, t q s 1g 0, t s kC 0g 0, t , 3.24Ž . Ž . Ž . Ž .x x

1q D e C 0g qe C1g s t , t y a C 0r s t , tŽ . Ž . Ž .Ž . Ž .Ž .0 x x x

1 1 1rq 1y g C#qes s t , t s as . 3.25Ž . Ž .Ž .Ž . 0̇ž /eṡ

0gŽ Ž . .We immediately see that if s s t , t /0, then an interior layer is
Ž . 0gnecessary around xs s t , since s is an order of magnitude larger than

s 0r. But it can be shown that there can be no interior layer there, and hence
we have that

s 0g s t , t s 0. 3.26Ž . Ž .Ž .

Ž . 0gIt can also be shown that there is no boundary layer in 2.22 for s at
Ž .xs0, and so we must use the proper order of 3.24 for our boundary

condition.
Ž . Ž .Taking the leading order of 3.23 and 3.24 , we have

s 0g s 0, s 0g 0, t s 0,Ž .x x x

which implies that the stress is a function of time only, so we have

s 0g x , t ' 0. 3.27Ž . Ž .

y1 Ž .Matching the e terms in 3.22b yields

s 0g q s 0g s g C 0g . 3.28Ž .t

Ž . Ž .Using 3.27 in 3.28 , we have that

C 0g x , t ' 0. 3.29Ž . Ž .

Ž .Since 2.22 will not support a boundary layer near xs0, neither will
Ž . Ž . Ž . Ž .2.21a . Therefore, by using 3.29 in 2.15 , we see that only O 1 contribu-
tion to F comes from the range 0F tF t#. However, we must be careful
when neglecting the contribution from t) t# since we are integrating over
an infinite range. We neglect this contribution after noting that in practice

Ž .the experiment would end after some long but finite time and that our
perturbation solution holds only in the limit that e ª0. Therefore, we
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Ž .replace 2.15 by

t# D kr 0rF s C 0, t dt , 3.30Ž . Ž .H 2k0

Ž . Ž . Ž . Ž . Ž .where we have used 3.5 and 3.29 . Using 3.8 and 3.9 in 3.30 , we have

D z#rF s 2 y 1yC# . 3.31Ž . Ž .'k p

Therefore, we have the rather amazing result that for fixed C#, an
increase in k, which is the driving force for the desorption, will actually

w xdecrease F. This represents the phenomenon of trapping skinning 2, 4 . This
rather counterintuitive result follows from the fact that z# is a function of
C# only. Therefore, when we increase the driving force, the instantaneous

Ž .flux increases, but by 3.9a we see that t# decreases. Since the range of
integration decreases faster than the integrand increases, the accumulated
flux decreases with increasing k.

Finally we consider the behavior of F as C# takes on extremal values.
Ž . Ž .Using 3.10 and 3.11 , we obtain

0, C#ª1,¡~ 2 DF ; 3.32Ž .r , C#ª0.¢kC#p

Therefore, we see that if the transition concentration is very near the
saturation concentration, there is little time for the penetrant in the rubbery
region to diffuse through the exposed surface, and hence F is small. On the
other hand, if the transition concentration is low, the polymer is in the
rubbery region for a long period of time, and hence F becomes arbitrarily
large, which it can do since we have an infinite reservoir of penetrant.

4. Interior layers

Ž .Since our outer glassy solution given by 3.29 does not satisfy our front
Ž . Ž .condition 2.12 , we see that there must be an interior layer near xs s t .

Letting

xy s tŽ . g 0y 1yz s , C x , t ; C z , t q e C z , t q o e , 4.1Ž . Ž . Ž . Ž . Ž .e
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Ž .in 2.21a , we have, to leading orders,

2 y2 0y y3 0y 1y y2 0ys e C s 1q D e ye s C qe C qe CŽ .˙ ž̇ /zz 0 zzz zzz zz t

qgey3 C 0y qe C1y . 4.2Ž .ž /zz zz

Matching the ey3 terms, we have

0y gz r ṡC z , t s C#e , 4.3aŽ . Ž .

g xy s tŽ .Ž .0gC x , t s C# exp , 4.3bŽ . Ž .
e ṡ

Ž . Ž .where we have used 3.29 for a matching condition and 2.12 for a
boundary condition at z s0.

0gŽ Ž . . Ž y1 . y1 Ž .Since we see that C s t , t sO e , matching the e terms in 3.25x

yields

g C#0gC s t , t y s 0. 4.4Ž . Ž .Ž .x e ṡ

Ž . Ž .Using 4.3b , we see that 4.4 is immediately satisfied. Hence, we see that in
Ž .this case we must go to next order to obtain the functional form of s t ,

which will then provide us the final bit of information needed to construct
the solution profiles.

It can be shown that another boundary layer of order e will be needed for
1g Ž .C , so 3.25 becomes

s 1r s t , tg C# Ž .Ž .1y 0rC 0, t y a C s t , t q 1q D y s as, 4.5Ž . Ž . Ž . Ž .Ž . ˙z x 0 s s˙ ˙

Ž .where we have used 4.3a .
1rŽ Ž . . Ž .We begin by solving for s s t , t , which is the true value at xs s t

Ž .since there are no interior layers in the rubbery region. Matching the O 1
Ž . Ž .terms in 3.2b and using 3.3 , we have

s 1r s t , t s 1yg C 0r s t , t . 4.6Ž . Ž . Ž . Ž .Ž . Ž .t

Ž .Taking the total derivative of 2.12 with respect to t, we have

C 0r s t , t s ysC 0r s t , t . 4.7Ž . Ž . Ž .Ž . Ž .˙t x
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Ž . Ž .Using 4.7 in 4.6 , we have

s 1r s t , t s y 1yg sC 0r s t , t . 4.8Ž . Ž . Ž . Ž .Ž . Ž .˙ x

Ž . Ž .Substituting Equation 4.8 in 4.5 yields

g C#1y 2 0rC 0, t y k C s t , t q 1q D s as, 4.9Ž . Ž . Ž . Ž .Ž . ˙z x 0 ṡ

Ž .where we have used 2.23c .
1y 0g Ž .Next we continue by finding C . Using our results for C from 3.29

0g Ž . Ž . Ž .and s from 3.27 and matching the next-order terms in 3.22 ] 3.24 , we
have

C1g s 0, 4.10aŽ .x x

s 1g q s 1g s g C1g , 4.10bŽ .t

s 1g s 0, 4.11Ž .x x

s 1s 0, t s 0. 4.12Ž . Ž .x

Ž . Ž .In addition, we have front conditions given by 3.13 and 2.12 :

s 1g s t , t s s 0r s t , t s g C#, 4.13aŽ . Ž . Ž .Ž . Ž .

C1g s t , t s 0. 4.13bŽ . Ž .Ž .

It can be shown that just as there is no boundary layer in s 0g near xs0,
1g Ž . Ž .neither is there one in s . Therefore, from 4.11 and 4.12 we see that

1g Ž .s must be a function of time only, so to calculate it we simply use 4.13a :

s 1g x , t ' g C#. 4.14Ž . Ž .

Ž . Ž .Substituting 4.14 into 4.10b , we have

C1g x , t ' C#. 4.15Ž . Ž .

Ž . Ž .We see from 4.13b that there must be a boundary layer around xs s t .
y2 Ž .Using the e terms in 4.2 , we have

s2 C 0y s yD sC 0y y sC1y q C 0y qg C1y . 4.16Ž .˙ ˙ ˙zz 0 zzz zzz zz t zz
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Ž . Ž . Ž .Using 4.3b in 4.16 , matching to our outer solution given by 4.15 , and
Ž .solving our front condition 4.13b , we obtain

D g g sz̈01y gz r s gz r s˙ ˙C z , t s yC#z e q sq q C# 1y e . 4.17Ž . Ž . Ž .˙ 3ž /ṡ 2 ṡ

Summarizing our results, we have

g xy s tŽ .Ž .gC x , t s C# expŽ .
e ṡ

D g g s xy s tŽ .¨0= 1ye y xy s t q sqŽ . ˙ 3½ 5ž /ṡ 2e ṡ

q e C#q o e , 4.18Ž . Ž .

s g x , t s C#g q o 1 . 4.19Ž . Ž . Ž .

1y Ž .Now that we have C z , t , we must calculate its derivative at z s0 to
Ž .use in 4.9 :

C#g1yC 0, t s y 1q D y C#s. 4.20Ž . Ž . Ž .˙z 0ṡ

Ž . Ž .Substituting 4.20 into 4.9 yields

aqC#0rC s t , t s y s. 4.21Ž . Ž .Ž . ˙x 2k

0rŽ Ž . .Since we know that both s and C s t , t are positive, we see that the˙ x
Ž .coefficient of s must be positive. Since C#-1, we see that 2.20 is sufficient˙

for this to be true.
Ž . Ž . Ž .The last pieces needed to solve 4.21 are given by 3.21 . Solving 4.21

Ž .simultaneously with 3.20 will complete our solution. In the next two
Ž 0r .sections, we provide small and large asymptotic results for f and hence C

Ž .and s t .

5. Near the transition time

Ž .We now obtain asymptotic estimates of our functions near but after the
transition time t#. To do this, we make the following substitution:

s t s S u ; s um as u ª 0q, 5.1Ž . Ž . Ž .0
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Ž . Ž . Ž . Ž .where m)0 since s t# sS 0 s0. Using 5.1 in 3.21a , we obtain

m 2 mks u q k t#qu 2k t#qu q s uŽ . Ž .k 0 0kC S u , u ; exp erfcŽ .Ž .x 2 2k k '2k t#qu

ms uk ku C#k 1 C#k 10; C#q y q q ,2 k k k kž / ž /k ' 'p t# p t#

5.2Ž .

Ž . Ž . Ž .where we have used 3.9 . Using 5.1 in 3.7b , we have that

s um
0kC S u , u ; erfŽ .Ž . ž /'2k t#qu

0 mku C#k 1 s u C#k 1q C#q y q y
k k k kž / ž /' 'p t# p t#

C#ks umku C#k 1 0; C#q y q . 5.3Ž .2k kž / k'p t#

Ž . Ž Ž . . Ž . Ž .We see from 5.3 that we must have T S u , u s o 1 as uª0. Using 5.1
Ž .in 4.21 , we have

aqC#0r my1C S u , u s y ms u . 5.4Ž . Ž .Ž .x 02k

We assume that

f u ; f un as u ª 0. 5.5Ž . Ž .0

Our next task is to determine the proper value of n. Physically, we should
expect that our fictitious boundary condition should be continuous at t#,

Ž . Ž .namely that f 0 s0. Since 3.15b is a diffusion problem, we might expect
1r2 Ž .our solution to depend on u . Choosing ns1r2, we see that 3.18 and

Ž .3.21b become

2'f p S kSy k u 2kuqS0T x , u ; erfc yexp erfc ,Ž .x 2ž / ž /ž /2kk ' 'k2k u 2k u

5.6aŽ .

f u1r2
0T S u , u ; . 5.6bŽ . Ž .Ž .x 2k
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Ž . Ž .Thus, using 5.2 , the leading order of 5.4 is

kC# aqC# my1s y ms u ,02 2k k

from which we have that

kC#
m s 1, s s y . 5.7Ž .0 aqC#

Note that our initial front speed depends linearly on k; that is, a larger
permeability coefficient at the boundary will cause a faster-moving
glass]rubber transition front. In addition, we see that initially our phase-
transition front moves with constant speed and is very sharp. This type of
behavior, when seen in sorption experiments, is associated with Case II

w xdiffusion 14, 25 .
Ž Ž . . Ž .To calculate f , we need T S u , u , which we obtain by substituting 5.50

Ž .into 3.18 :

2 2'f p k kxq k u 2kuq x0T x , u ; y exp erfcŽ . 2 2 ž /ž /2k 'k k 2k u

2 2k x x 2k u xy q erfc q exp y . 5.8Ž .'2 2ž /ž / ž /k k p'k 4k u2k u

Ž . Ž . Ž .Using 5.1 along with our knowledge that ms1 in 5.8 , we have

1r22'f p ku s q k 2kq s uŽ . Ž .k0 0 0T S u , u ; y exp erfcŽ .Ž . 2 2½2k 2kk k

1r2 22 s u s u s uk 2k u0 0 0y q erfc q exp y'2 2ž / 5ž / ž /k 2k k pk 4k

'f u p0; y . 5.9Ž .2k

Ž .Using the fact that ms1 in 5.3 , we have, to leading orders,

C# kq sŽ .ku 10kC S u , u ; C#q y . 5.10Ž . Ž .Ž . k k 'p t#
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Ž . Ž . Ž .Using 5.9 and 5.10 in 3.20 , we have

C# kq sŽ .2k 10f s y . 5.11Ž .0 k' 'p t#p

Summarizing our results, we have

t ª tq#, x ) s t ,Ž .

2 'k t#k t#
exp erfc s C#, 5.12Ž .2ž / ž /kk

kC#
s t ; s ty t# , s s y , 5.13Ž . Ž . Ž .0 0 aqC#

x kxq k 2 t 2ktq xrC x , t ; erf qexp erfcŽ . 2ž / ž /ž /' 'k2k t 2k t

C# kq sŽ .1 10y y
k k 'p t#

22 2kxq k ty t# 2k ty t# q xk kŽ . Ž .
= exp erfc y q x2 ž /½ k kk '2k ty t#

2x ty t# x
=erfc q2k exp y . 5.14Ž .( 2ž / 5p 4k ty t#' Ž .2k ty t#

Ž .Figure 3 shows a graph of C x vs x for small u and various parameters
Ž .that satisfy 2.20 . Since we are using a finite e , we see that on a relatively

Ž .Figure 3. C x vs x for asy2, D s2, e s0.01, k s2, ks3, g s1, C#s0.5, t#f0.262,0
and ty t#'us0, 0.003, 0.007, 0.015, 0.04, and 0.1.



D. A. Edwards70

Ž .fast time scale note that our largest us0.1 the concentration in the glassy
Ž .region decays away to an O e quantity. This is the mathematical manifesta-

tion of the formation of the glassy skin near the exposed surface. Note also
that due to the small scale in the x-direction, our front is very sharp. This
becomes more apparent in our long-time graphs.

Ž .Figure 4 shows s x vs x for the same parameters and times. We note
that rather than decaying to zero, the stress in the glassy region remains at a
constant value before making a smooth transition to the rubbery region. The
gaps in the graph for the larger times is due to the fact that our asymptotic
expansion for small times is starting to break down. Constructing further
terms in the asymptotic expansions would yield new curves with less notice-
able gaps.

6. Long-time asymptotics

We now obtain asymptotic estimates of our functions for large time. In the
discussion that follows it is helpful to have the following asymptotic expan-
sion, which holds for all x:

2 2'kxq k t 2ktq x 2k t x
exp erfc ; exp y , t ª `.2 2ž /ž / ž /' 'k 4k t2k t xq2kt pŽ .

6.1Ž .

We begin by making substitutions for large time,

s t s 2k s t j, f t ; f t p , as t ª `, 6.2Ž . Ž . Ž .` `

Ž .Figure 4. s x vs x for asy2, D s2, e s0.01, k s2, ks3, g s1, C#s0.5, t#f0.262,0
and ty t#'us0, 0.003, 0.007, 0.015, 0.04, and 0.1.
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where jG0 since s)0. We would expect that pF0 since this would force˙
our solution to remain bounded. However, we do not postulate this; it

Ž . Ž .follows from our analysis. Using our expression for s t in 3.21a and using
Ž .6.1 , we obtain

k exp ys2 t 2 jy1Ž .`kC s t , t ; . 6.3Ž . Ž .Ž .x jy1r2 1r2 'k k s t q kt pŽ .`

Ž . Ž .Using our expression for s t in 3.7b , we have

k exp ys2 t 2 jy1Ž .`k jy1r2C s t , t ; erf s t q . 6.4Ž . Ž .Ž . Ž .` jy1r2 1r2 'k s t q kt pŽ .`

1 Ž .First we assume that j) . Then 6.4 becomes2

C k s t , t ; 1,Ž .Ž .

Ž .which means that we must have another O 1 term to strike a balance in
Ž . Ž .3.20 . However, note that tª` is the same as uª` in 3.18 . Since this
equation is diffusive in nature and hence has an underlying similarity

'variable xr u , we see that for any n, the contribution from these terms
1 1would be transcendentally small for j) . Therefore, we conclude that js .2 2

1 jy1r2 Ž .Next we assume that j- . Then for large t, t ª0, so 6.4 becomes,2

to leading order,

2 s k`kC s t , t ; q , 6.5Ž . Ž .Ž . 1r2yj' 't p k p t

Ž .which means once again that we must have another O 1 term to strike a
Ž . Ž .balance in 3.20 . An O 1 term can arise when ps0, in which case

Ž .Equation 3.18 becomes

2f x kxq k u 2kuq x`T x , u ; y erfc yexp erfc . 6.6Ž . Ž .2ž / ž /ž /k ' 'k2k u 2k u

Ž .Simplifications arise when we note from 3.7b that

kf 1yC x , uŽ .`T x , u ; y , 6.7aŽ . Ž .k

f C k x , uŽ .` xT x , u ; . 6.7bŽ . Ž .x k
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Ž .Therefore, 3.20 becomes, to leading order,

kf 1yC s t , tŽ .Ž .`C# ; y q C s t , tŽ .Ž .kk

f s y kC#. 6.8Ž .`

Ž . Ž . Ž . Ž .Using 6.7b , 6.3 , and 6.8 in 4.21 , we have, to leading order,

f C k s t , tŽ .Ž . aqC#` xkC s t , t q s y sŽ .Ž . ˙x 2k k

2 j aqC# s t jy1Ž .1yC# `s y . 6.9Ž .k'k p t

1Therefore, we see that to have a dominant balance, we must have js ,2
1which is not in agreement with our hypothesis that j- . However, we2

retain our supposition that ps0.
Ž . Ž .Using these facts in 6.4 and 6.3 , we have

k exp ys2Ž .`kC s t , t ; erf s q , 6.10aŽ . Ž .Ž . ` 'k p t

exp ys2Ž .`kC s t , t ; . 6.10bŽ . Ž .Ž .x 'k p t

Ž . Ž . Ž . Ž .Using 6.10 and 6.7 in 3.20 and 4.21 , we have, to leading orders,

f 1yerf s` `C# ; erf s y` k

k erf s yC#Ž .`f s , 6.11aŽ .` erfc s`

exp ys2f aqC# sŽ .Ž .`` `1q s yž /k ' 'k p t k t

exp ys2Ž .1yC# ` s y aqC#Ž .ž /erfc s '` s p`

1yC# 2g s ' exp ys q aqC# s erfc s s 0. 6.11bŽ . Ž . Ž .Ž .` ` ` `'p
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Ž . Ž .Now we search for roots of g s . We see that g 0 )0 and note that`

1 aqC# 2g s ; 1q ay exp ys as s ª `.Ž . Ž .` ` `2ž /' 2 sp `

Therefore, we have the following:

0q, aGy1,
g s ªŽ . as s ª`.` `½ y0 , a-y1,

Ž .We next consider g 9 s , which is given by`

2 s 1q aŽ .` 2g 9 s s y exp ys q aqC# erfc s . 6.12Ž . Ž . Ž .Ž .` ` `'p

Ž . Ž .We see that if aGy1 then g 9 s -0 for all s , and 6.11b has no root.` `

Hence, we see that the condition for which a solution can exist is given by
Ž .2.20 .

Is this solution unique? To answer this question, we note from the
behavior of g at 0 and ` that there must be an odd number of roots. This

Ž .odd number of roots means that g 9 s must change sign at each root. Using`

Ž . Ž .6.11b in 6.12 , we see that at a root s s s#, we have`

2 2' < <g 9 s# exp s# s# p s 2 s# 1q a y 1yC# .Ž . Ž .Ž .

Ž .But we see that g 9 s# changes sign only once; hence, we have a unique
root.

Ž .To obtain numerical results, we rewrite 6.11b as

2 2' '< <1y C# 1ys erfc s exp s p ; a s erfc s exp s p . 6.13Ž . Ž . Ž .Ž . Ž .` ` ` ` ` `

We note that s does not depend on k. This is consistent with the`

observation that in a system of finite width, the steady-state skin depth does
w xnot depend appreciably on k 5 .

Ž .Figure 5 shows a graph of the left- and right-hand sides of 6.13 for
various allowable values of C# and a. The value of s describing the front is`

given by the intersection of the two curves. We see that as C# gets smaller,
s gets smaller. This agrees with our intuition, as we expect that the front`

would slow as the rubber]glass transition value decreases. In addition, we
see that as a increases, the front speed increases. This is because the
absolute value of the jump in the flux needed to move the front along is
decreasing, and hence the front should move faster.
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1 2Ž .Figure 5. Left- and right-hand sides of 6.13 . Light lines: C#s , asy2. Dark lines: C#s ,3 3
5asy .4

Summarizing our results, we have the following:

t ª `, x ) s t ,Ž .
2exp ysŽ .1yC# `'s t ; 2k s t , s y aqC# , 6.14Ž . Ž . Ž .` ž /erfc s '` s p`

2 C#yerf sx kxq k t 2ktq x `0rC x , t ; erf qexp erfc qŽ . 2ž / ž /ž / erfc s' 'k `2k t 2k t

2x kxq k t 2ktq x
= erfc yexp erfc , 6.15Ž .2ž / ž /ž /' 'k2k t 2k t

s r x , t ; g C r x , t . 6.16Ž . Ž . Ž .

Figure 6 shows a graph of the short- and long-time expansions of our
Ž .front position s t in the xs t plane. In addition, there is a darker curve,

Ž .Figure 6. Short- and long-time asymptotes for s t for asy2, D s2, e s0.01, k s2, ks3,0
g s1, C#s0.5, and t#f0.262.
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which interpolates between the two asymptotic expansions to show how the
true front might behave. Note that the front slows as time increases.

Ž .Figure 7 shows a graph of C x vs x for the same parameters as graphed
earlier and for long times. Now it is much clearer that the front is sharp and

g Ž .quickly takes C from the transition value C# to a value that is O e . The
gaps for smaller times are once again indicative of the fact that our
asymptotic expansion loses validity for smaller times. The mathematical
interpretation of the skin is clear now, for we see the wide glassy region
where there is practically no penetrant. We also see that the concentration
flux through the exposed boundary is zero to the order of our approxima-
tion.

Ž .Figure 8 shows a graph of s x vs x for times and parameters the same
as those in Figure 7. We once again note that the rubbery portion of the
graph is the same as that for the concentration since g s1. We see that the
stress in the glassy region remains at a constant value, which smoothly
transitions in a Fickian way to the fully stressed polymer when xª`. Thus
we see that not only is the concentration flux zero at the boundary, but the
total flux is zero there as well.

7. Conclusions

In the phenomenon of trapping skinning, several anomalous features of
polymer-penetrant systems combine to yield a counterintuitive result: namely,
that an increase in the driving force for desorption will actually decrease the
amount of penetrant desorbed. As the penetrant is desorbed, a glassy skin
forms at the exposed surface. Since the molecular diffusion coefficient is

w xsmaller in the glassy region 1]3 , the formation of such a skin slows

Ž .Figure 7. C x vs x for asy2, D s2, e s0.01, k s2, ks3, g s1, C#s0.5, ts50, 250,0
1250, 6250, and 31250.
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Ž .Figure 8. s x vs x for asy2, D s2, e s0.01, k s2, ks3, g s1, C#s0.5, ts50, 250,0
1250, 6250, and 31250.

w xdesorption 4 . However, the lower diffusion coefficient is not adequate to
describe such behavior; rather, nonlinear viscoelastic effects must also be

w xconsidered 2, 3, 10 .
A mathematical model that captures this behavior was presented. The

model, which contains memory effects, led to a set of coupled partial
differential equations along with an unusual condition at the moving front
Ž .s t between the glassy and rubbery phases. The problem was not solvable by

w xsimilarity solutions, and thus an integral method 24 had to be used to
obtain asymptotic solutions.

Since the polymer is initially saturated and in the rubbery region, for a
finite amount of time the polymer remained totally in the rubbery state. The

Ž .concentration flux at the exposed surface was O 1 , and the solution be-
haved in a purely Fickian way. This is because memory effects are unimpor-

w xtant in the rubbery state 8 .
Once the concentration at the boundary had reached C#, the glass]rubber

transition concentration, the character of the solution changed drastically.
Ž .The glassy polymer could not support an O 1 concentration, so an interior

Ž .layer around xs s t formed a sharp interface between the rubbery and
glassy regions. This front initially moved with constant speed}behavior
that, coupled with the sharp interface between the glassy and rubbery states,

w xis reminiscent of Case II diffusion in sorption experiments 25 .
A quantity of interest is the accumulated concentration flux F through

the boundary, since this determines whether or not we are in the trapping
Ž .skinning case. Since the concentration in the glassy polymer is o 1 , we see

that the dominant contribution to F is from the rubbery region. As ex-
pected, the instantaneous flux through the boundary is increased when k,
the driving force for the desorption, is increased. However, the duration of

Žtime during which the polymer is in the rubbery region and hence the time
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Ž . .when there is an O 1 contribution to F decreases with increasing k. This
duration effect is stronger, and hence we see that the overall accumulated
flux decreases with k. This behavior embodies the very essence of trapping
skinning.

8. Nomenclature

8.1. Variables and parameters

Ž . Ž . Ž . Ž .Units are listed in terms of length L , mass M , moles N , or time T . If
the same letter appears both with and without tildes, the letter with a tilde
has dimensions, while the letter without a tilde is nondimensionalized. The
equation number where a particular quantity first appears is listed, if
applicable.

a coefficient in flux-front speed relationship, units NrL3.˜
˜ 3Ž .̃ ˜C x, t concentration of penetrant at position x and time t, units NrL˜ ˜

Ž .2.1a .
˜ ˜ 2Ž . Ž .D C binary diffusion coefficient for system, units L rT 2.1a .
E coefficient preceding the stress term in the modified diffusion equa-

Ž .tion, units NTrM 2.1a .
˜ 2F accumulated concentration flux through the boundary, units NrL

Ž .2.5 .
Ž . Ž .f u fictitious boundary condition for T 3.16 .
Ž .g s function whose roots yield the coefficient of the long-time front`

Ž .position 6.11b .
˜ 2Ž .̃ ˜J x, t flux at position x and time t, units NrL T.˜ ˜

Ž .j variable exponent for large-time asymptotics 6.2 .
K̃ measure of permeability of outer surface, units LrT.

Ž .m variable exponent for small-time asymptotics 5.1 .
Ž .n variable exponent for small-time asymptotics 5.5 .
Ž .p variable exponent for large-time asymptotics 6.2 .

Ž . Ž .S u position of front in the u-coordinate system 5.1 .
˜ ˜Ž . Ž Ž . .˜ ˜ ˜s t position of glass-rubber interface, defined as C s t , t sC#, units L˜ ˜

Ž .2.6 .
T imbedding of C from one region to the fully semi-infinite region

Ž .3.15a .
Ž .t̃ time from imposition of external concentration, units T 2.1a .

Ž .u shifted time coordinate, defined by us ty t# 3.15a .
Ž .x distance from boundary, units L 2.1a .˜
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Z the integers.
2 2 Ž .z scaled time variable, value k trk 3.9a .

Ž .a dimensionless parameter, defined as a s1q D 2.23a .r
˜ y1Ž . Ž .b C inverse of the relaxation time, units T 2.1b .

Ž .g nondimensional parameter, value m rnb 2.21 .0 g

e perturbation expansion parameter, value b r b .g r
w Ž .x Ž .z interior layer variable, defined as xy s t re 4.1 .

Ž .k nondimensional parameter, value D qg 2.23c .' r

m coefficient of concentration in stress evolution equation, units
2 3 Ž .ML rNT 2.1b .

˜ 2 2n coefficient of C in stress evolution equation, units ML rNTt̃
Ž .2.1b .

Ž . 2 Ž .˜ ˜s x, t stress in polymer at position x and time t, units MrLT 2.1a .˜ ˜ ˜
Ž .t dummy integration variable 3.18 .

8.2. Other notation

Ž .c as a subscript, used to indicate the saturation concentration 2.2 .
ext as a subscript, used to indicate a value exterior to the polymer.

Ž .g as a sub- or superscript, used to indicate the glassy state 2.2 .
Ž .˜i as a subscript, used to indicate a quantity at ts0 2.3b .

jg Z as a sub- or superscript, used to indicate a term in an expansion,
either in t or e .

Ž .k as a superscript, used to indicate a known quantity 3.7a .
Ž .r as a sub- or superscript, used to indicate the rubbery state 2.2 .

˙ Ž .used to indicate differentiation with respect to t 2.14 .
# as a subscript, used to indicate a quantity at the transition value

Ž .between the glassy and rubbery states 2.2 .
y Ž .as a superscript, used to indicate an interior layer near xs s t in the

Ž .glassy region 4.1 .
as a subscript, used to indicate a term in an expansion for large t`

Ž .6.2 .
w x gŽ y Ž . . rŽ q Ž . .˜ ˜ ˜ ˜? jump across the front s, defined as ? s t , t y? s t , t .˜ ˜ ˜s̃
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