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Abstract. The dynamics of flow inside a cylinder at high Reynolds number are considered.
A study of the viscous boundary layer near the walls is performed. In the case where there
is no pressure gradient, a result is proven demonstrating that a regular perturbation expansion
holds for the solution, even when a small discontinuity exists in the wall data. In addition, the
characteristic decay rate of the flow in the viscous boundary layer is established. In the case
where there is a pressure gradient, a result is proven demonstrating that an additional scale,
related to the size of the disturbance and larger than the boundary-layer width, must be used in
a multiple-scale expansion. Examination of the divergence of these multiple-scale expansions
for finite disturbances leads to discussions of viscous flow and separation processes.

AMS classification scheme numbers: 76C05, 76D15, 76D30, 76F99, 76U05

1. Introduction

When modelling laminar flows at high Reynolds number, the general approach used is to
model the flow away from any boundaries in an inviscid limit and then to construct viscous
boundary layers to adjust the Euler flow to any boundary conditions. When modelling
unbounded flows, a far-field condition is usually applied on the Euler flow, and the effects
of the viscous boundary layer are localized near the boundaries.

However, in systems with closed streamlines there is no far field, so there is no way to
know the properties of the Euler flowa priori. We consider the case of constant-vorticity
Euler flow inside a cylinder [1]. Since such a system is enclosed by boundaries, the effect of
the flow in the viscous boundary layer is magnified. In particular, the vorticity and Bernoulli
constant of the inviscid flow are determined by interactions with the viscous boundary layer
[1–4]. For instance, Wood [6] analysed several systems with closed streamlines in just
such a manner. Previous work in these systems has emphasized the computation of these
parameters and minimized the importance of the actual flow dynamics in the boundary layer.
In this work we perform a careful analysis of the fluid flow in the boundary layer present
in two-dimensional flow in a closed cylinder. Two specific cases are considered.

First, in the case where there is no pressure gradient arising from the Euler flow, a result
is proven demonstrating that a regular perturbation expansion holds for the solution in the
viscous region. This result is rather unexpected, given the nonlinearity of the equation, and
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holds even when there are small discontinuities in the wall data. In addition, the decay rate
of the displacement field is shown to depend exponentially on the lowest Fourier mode of
the wall disturbance.

In the case where there is a pressure gradient arising from the inviscid flow, the results
are markedly different. First, a regular perturbation expansion is no longer appropriate; a
multiple-scale expansion must be used. This expansion shows that in the viscous boundary
layer, there are two typical stream scales to consider: one determined by the viscosity, and
another, longer scale, determined by the disturbance.

Our work postulates an underlying relationship between the viscosity and disturbance
scales: namely, that one must be transcendentally small with respect to the other. Since it
does not matter which is smaller, the same mathematical framework with finite disturbances
can be used to examine viscous flow and the transition to separated structures.

These results indicate that though one may be able to calculate useful quantities without
solving in detail for the flow in the viscous boundary layer, such calculations miss some
subtleties of the problem. In fact, in order to understand fully all the physical mechanisms
inherent in such a simple flow, detailed analysis needs to be done for each of the constituent
parts which play a role. The mathematical framework presented in this paper can be
extended to other more complicated problems.

2. Governing equations

We wish to solve the problem of steady flow within a circular cylinder of unit radius. Here
we take the case of inviscid flow, so the Reynolds number Re is very large. Away from the
walls we have Euler flow. Leal [5] derives the following nondimensional equations for the
boundary layer near the walls:

−v
∂u

∂y
+ u

∂u

∂θ
= U(θ)U ′(θ) + ∂2u

∂y2
(2.1a)

−∂v

∂y
+ ∂u

∂θ
= 0 (2.1b)

with boundary conditions

u(0, θ) = F(θ) u(∞, θ) = U(θ). (2.2)

Here u is the angular velocity,v is the radial velocity scaled by Re1/2, y is the spatial
variable near the wall stretched by Re1/2, U(θ) is the Euler velocity of the core evaluated at
the wall, andF(θ) is the imposed wall velocity. (With a suitable change of variables, (2.1)
holds for non-circular cylindrical domains.) The pressure, which in the boundary layer is a
function of θ only, is given by

dp

dθ
= −U(θ)U ′(θ). (2.3)

In general,U(θ) must be determineda posteriori, since the boundary-layer structure will
determine the constant vorticity of the Euler flow, and thereby the core velocity at the wall.

At this stage we introduce a stream functionψ defined by
∂ψ
∂y

= u√
2

∂ψ
∂θ

= v√
2

which immediately satisfies (2.1b). Transforming from (y, θ) coordinates to(ψ, θ)

coordinates, equation (2.1a) becomes

1

2

∂(u2 − U2)

∂θ
= 1

4
u

∂

∂ψ

(
2u

∂u

∂ψ

)
(2.4)
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with boundary conditions given by (2.2). Note that this transformation eliminatesv from
our equation.

We assume that the velocity of the viscous layer is not too different from that of the
Euler flow. We simplify our equation further by introducing thevelocity displacement field
q, whereεq = u2 − U2. Here 0< ε � 1 is a parameter inherent in the physical system,
such as the magnitude of a disturbance or the eccentricity of a nearly cylindrical body.
Since it is related to the size of the displacement, we refer toε as thedisplacement scale.
In addition,q = O(1). Then lettingF 2(θ) − U2(θ) = εf (θ) wheref = O(1), we have

2
∂q

∂θ
=

√
U2 + εq

∂2q

∂ψ2
(2.5)

with the added conditions that

q(ψ, 0) = q(ψ, 2π) (2.6a)

q(0, θ) = f (θ) q(∞, θ) = 0. (2.6b)

In a systematic treatment of any set of equations using perturbation methods, it is
often expedient to treat any small or large parameters as functions of a single perturbation
parameter. In this work, there are two small parameters: Re−1 and ε. Equations (2.1)
and their counterpart in the core region result from taking the leading-order terms when
expressing the velocity as a power series in inverse powers of Re. Taking subsequent terms
in the expansion will lead to an infinite set of equations for the core and boundary-layer
velocities, one at each order of Re−1. Therefore, ifε were a power of Re−1 or vice versa,
at some order the disturbance at the wall would have to be matched to the Euler flow.

We wish to avoid this complication by treating the two parameters as distinct; that is, an
expansion in one will never have to be matched to the expansion in the other. Obviously,
this is true only if one vanishes faster than any power of the other. Therefore, we could
assume that 0< Re−1 � ε � 1; for instance, that Re= O(e1/ε). By doing so, we see that
for very smallε, in order to accept the Prandtl theory the Reynolds number would become
so large that our laminar flow assumption may not be valid.

Alternatively, we could assume that 0< ε � Re−1 � 1; for instance, thatε = O(e− Re).
But in this case a Reynolds number large enough to inspire a boundary layer would causeε

to be exceedingly small. However, such disturbances may still be of physical interest. We
note that the choice of assumption will not affect our mathematical analysis; therefore, our
model will provide accurate mathematical results for two very different physical situations.

3. No pressure gradient

We begin by supposing that the cylinder is circular and that the fluid within it is undergoing
a solid-body rotation in the interior: that is, letU(θ) ≡ 1. Note from (2.3) that there is no
pressure gradient. Then equation (2.5) becomes

2
∂q

∂θ
−

√
1 + εq

∂2q

∂ψ2
= 0. (3.1)

We might expect that a regular perturbation expansion of the form

q(ψ, θ; ε) =
∞∑

j=0

εjqj (ψ, θ) (3.2)

would break down at some point due to the nonlinearities in (3.1). However, we will show
that in fact such a breakdown never occurs; that is, the formal power series is a uniformly
valid solution.
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Note that if we expand the square root in (3.1) in a power series inε, the equation
which results is of the following form:

2
∂q

∂θ
− [λ2 + εg(q; ε)]

∂2q

∂ψ2
= 0 0 6 θ 6 2π, ψ > 0 (3.3)

with the added restrictions thatλ 6= 0 (in fact, in our caseλ = 1) and thatg(q; ε) has a
power-series expansion inq which consists only of positive integral powers.

We postulate the following expansions inε for our functions:

f (θ; ε) =
∞∑

j=0

εjfj (θ) (3.4a)

g(q; ε) =
∞∑

j=0

εjgj (Qj ) whereQj = {q0, q1, . . . , qj }. (3.4b)

(3.4b) follows directly from inserting (3.2) intog. Substituting (3.2) and (3.4) into (3.3)
and (2.6), we have a set of equations, one at each integral order ofε:

2
∂qj

∂θ
− λ2 ∂2qj

∂ψ2
= Rj =

j−1∑
k=0

gk

∂2qj−1−k

∂ψ2
(3.5)

qj (ψ, 0) = qj (ψ, 2π) (3.6)

qj (∞, θ) = 0 qj (0, θ) = fj (θ). (3.7)

We now wish to prove the following theorem:

Theorem 3.1.Let f (θ) be piecewise differentiable on[0, 2π ] (that is, a complex Fourier
series exists for the function) and slowly varying (that is,f ′(θ) = O(1) for all θ ∈ [0, 2π ]).
Then a solution to (3.3) and (2.6) exists ifff̄ = 0. In addition, the decay rate inψ is no
slower than

exp

(
−ψ

√
n0

λ

)
wheren0 is the smallest mode of the regular Fourier expansion off (θ).

In essence, theorem 3.1 states that the perturbation expansion is regular with no multiple
scales involved. Also, note that the requirement thatf̄ = 0 is equivalent to the requirement
that U2 = F 2, which allows us to determine the vorticity of the Euler flow given the
boundary conditions. We also note that if we have anf (θ) whose meanf̄ 6= 0, we may
definef ∗(θ) = f (θ) − f̄ , q∗(θ) = q(θ) − f̄ . These new starred quantities then satisfy the
hypotheses of the theorem, albeit with a differentλ.

Since we know from (2.6a) and the statement of the theorem that a Fourier series exists,
we can decompose our functionsqj into their complex Fourier coefficients:

qj (ψ, θ) =
∞∑

n=−∞
qj,n(ψ)einθ qj,n(ψ) = 1

2π

∫ 2π

0
qj (ψ, θ)e−inθ dθ. (3.8)

Introducing these substitutions into our system (3.5)–(3.7), we have

2inqj,n − λ2q ′′
j,n = Rj,n (3.9)

qj,n(0) = fj,n qj,n(∞) = 0. (3.10)

We need several facts in order to prove theorem 3.1. First, we must prove a result about
the Rj,0:

Lemma 3.2. Rj,0 = 0 for all j .
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Proof. Rewriting (3.3) and integrating with respect toθ , we have∫ 2π

0

∂2q

∂ψ2
dθ = 2

∫ q(ψ,2π)

q(ψ,0)

dq

λ2 + εg(q; ε)
= 0 (3.11)

where we have used (2.6a). By definition, we have that

Rj,0 = 1

π

∫ 2π

0

∂qj

∂θ
dθ − λ2

2π

∫ 2π

0

∂2qj

∂ψ2
dθ = 1

π

[
qj

]2π

0 = 0

where we have used (3.6) and the fact that (3.11) holds at each order in the expansion of
q. �
Corollary 3.3. qj,0 ≡ 0 for all j iff f̄ = 0.

Proof. By the definition of our complex Fourier coefficients, we know thatf̄ = 0 is
equivalent tofj,0 = 0 for all j . By lemma 3.2, we know thatRj,0 = 0 for all j , so our
equation for mode 0 becomes

−q ′′
j,0 = 0 qj,0(0) = fj,0 qj,0(∞) = 0.

Due to the nature of the operator and the boundary condition at infinity, this equation has
a solution if and only iffj,0 = 0. �

The physical reasoning behind corollary 3.3 is the following. Iff̄ 6= 0, we cannot
satisfy our far-field condition thatq must decay to 0. Therefore, we must not be using the
properU when constructing our displacement fieldq. This yields the consistency condition
thatU2 = F 2. Therefore, we see that we may bypass the particulars of the viscous boundary
layer if all we wish to calculate is the Euler flow. This approach was taken by Batchelor
[1].

Next we will need a fact regarding the products of eigenfunctions of the operator in
(3.9).

Corollary 3.4. Let φn(ψ) be thenth eigenfunction of the operator in (3.9) and

8n,{(aj ,bj )}(ψ) ≡
m∏

j=1

φ
bj

aj
(ψ) where

m∑
j=1

ajbj = n.

Then

8n,{(aj ,bj )}(ψ) = φn(ψ)

iff m − 1 of theaj are 0, andbJ = 1 for the oneaJ 6= 0.

Proof. First we calculate the necessary eigenfunctions. They are

φn(ψ) = exp

(
−ψ

√
2in

λ

)
= exp

{
−[1 + (sgnn)i]

ψ
√|n|
λ

}
. (3.12)

Then we have that∣∣∣∣ m∏
j=1

φ
bj

aj

∣∣∣∣ =
∣∣∣∣ m∏
j=1

exp

{
−bj [1 + (sgnaj )i]

ψ
√|aj |
λ

} ∣∣∣∣ = exp

(
−

m∑
j=1

bj

ψ
√|aj |
λ

)
.

But from the triangle inequality we have that
m∑

j=1

bj |aj |1/2 >
∣∣∣∣ m∑

j=1

ajbj

∣∣∣∣1/2
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with equality iff m − 1 of theaj are 0, andbj = 1 if aj 6= 0. Therefore, we have∣∣8n,{(aj ,bj )}(ψ)
∣∣ ≡

∣∣∣∣ m∏
j=1

φ
bj

aj

∣∣∣∣ 6 exp

(
− ψ

λ

∣∣∣∣ m∑
j=1

ajbj

∣∣∣∣1/2)
= exp

(
−ψ

√|n|
λ

)
≡ |φn(ψ)|

with equality iff m − 1 of theaj are 0 andbJ = 1 for the oneaJ 6= 0. In this case, we see
that 8n,{(aj ,bj )}(ψ) = φaJ

(ψ), and hence the corollary is proved. �
Remarks.

(1) 8m,·8n−m,· = 8n,·.
(2) 8′′

n,· is proportional to8n,·.
(3) If a term of the form eαψ appears inRj,n, then a corresponding term

eαψ

2in − α2

must appear inqj,n if α2 6= 2in. Note that the caseα2 = 2in causes a secularity.

We need only one more fact to complete the framework of our proof.

Lemma 3.5. For all j andn,
(a) qj,n(ψ) is a sum of terms, each of which is proportional to one of the8n,·.
(b) gj,n(ψ) is a sum of terms, each of which is proportional to one of the8n,·.
(c) Rj,n(ψ) is a sum of terms, each of which is proportional to one of the8n,·, but does

not contain any terms of the formφn(ψ).

Proof. First we compute theRj,n:

Rj,n =
( j−1∑

k=0

gkq
′′
j−1−k

)
,n

=
j−1∑
k=0

∞∑
m=−∞

gk,mq ′′
j−k−1,n−m. (3.13)

We induct onj . SinceR0,n = 0, the solution to (3.9) and (3.10) at leading order is given
by

q0,n(ψ) = f0,nφn(ψ) (3.14)

which satisfies all of the hypotheses of our theorem. Now given that the lemma is true for
j , we show that it is true forj + 1. We first note that8n,· is in the form eαψ, so by remark
(3) we know that since8n,· 6= φn, if there exists a term of that form inRj,n, there must
exist a corresponding term inqj,n.

From the form of (3.13) we see that first we must show thatgk,m has a power series
expansion in the8m,·. But sincegk,m has a power series in the setQk, and we have from
our induction hypothesis that (a) is true for allk < j + 1, then we see thatgk,m must also
have a power series in the8m,·. Therefore, our proof of part (b) is complete.

In addition, by remark (2)q ′′
j−k,n−m consists of a sum of terms proportional to the8n−m,·.

Therefore, by (3.13) we see that eachRj+1,n is made up of a sum of pairwise products of
terms proportional to8m,· and8n−m,·. But by remark (1) each of these terms is proportional
to 8n,·. In addition, by corollary 3.4, none of these terms can be proportional toφn unless
many of the terms are proportional toφ0. But by corollary 3.3,qj,0 = 0 for all j , so there
cannever be a term of the formφ0. So our proof of part (c) is complete.

From remark (3) we note that ifRj+1,n is in the form of a sum of terms proportional
to 8n,·, thenqj+1,n must be of that same form, with the exception that in order to satisfy
the boundary condition, we may have to add a term of the formφn. So our proof of part
(a) is also complete. �

Therefore, we now have the tools necessary to complete the proof of theorem 3.1.
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Proof of theorem 3.1. The fact thatf (θ) is slowly varying allows us to use (3.5)–(3.7)
as a system to model (3.3) and (2.6) without worrying about interior layers inθ . (The case
where there are discontinuities in the wall data will be considered in the next section.) The
fact thatf (θ) has a complex Fourier series allows us to use (3.9) and (3.10).

If f̄ = 0, then corollary 3.3 holds, which means that lemma 3.5 is true. Therefore, a
solution exists with no secularity. What is the decay rate of the solution? To answer this,
we simply solve (3.9) and (3.10) to leading order. By equations (3.8), (3.12), and (3.14),
we have that our solution is

q(ψ, θ; ε) =
∞∑

n=−∞
f0,n exp

{
−[1 + (sgnn)i]

ψ
√|n|
λ

+ inθ

}
+ O(ε).

Let n0 be the smallest mode (in absolute value) for whichf0,n 6= 0, son0 is the smallest
mode in the Fourier expansion off (θ). Then it is easy to see that any eigenfunctions with
|n| > n0 decay at a faster rate, and so we have

|q(ψ, θ; ε)| ∼ 2<f0,n0 exp

(
−ψ

√
n0

λ

)
ψ → ∞

which completes our proof. �

Therefore, from theorem 3.1 we see that even though (3.1) is a nonlinear equation, we
obtain the rather surprising result that a regular perturbation expansion converges to the
correct solution. Hence, our expansion depends on the displacement scaleε only as a gauge
function, and our solution at each order depends only on the viscous stream scale. Though
theorem 3.1 is an asymptotic result which holds in the limit thatε → 0, this result has been
extended to show convergence in the case of finite perturbations by Kim [4].

4. Discontinuous boundary data

We now consider the case where there are discontinuities inf (θ). Such discontinuities
could come about in the case of an arc-shaped sleeve rotating at a slightly different speed
from the cylinder. A variant of this situation is discussed in Batchelor [1]. Such a case is
not covered by the hypotheses of theorem 3.1 because our functions are no longer smooth.
However, we know from Fourier theory that if there is a discontinuity inf (θ) at θ = θd ,
then the Fourier series forf (θ) will converge to

f (θ+
d ) + f (θ−

d )

2
(4.1)

at θd . Is this also the solution of the physical system? If so, then theorem 3.1 will hold
even in the case wheref (θ) is not continuous.

We introduce the following scaled variables:

θ̃ = θ − θd

ε2
ψ̃ = ψ

ε
q(ψ, θ) = w(ψ̃, θ̃ ) − f (θ+

d ) + f (θ−
d )

2
. (4.2)

Using (4.2) in (3.1) and (2.6b), we have the following system:

2
∂w

∂θ̃
− √

1 + εw
∂2w

∂ψ̃2 = 0 − ∞ < θ̃ < ∞, ψ̃ > 0 (4.3a)

w(ψ̃, ±∞) = ±
[
f (θ+

d ) − f (θ−
d )

2

]
w(0, θ̃ ) = sgn(θ̃)

[
f (θ+

d ) − f (θ−
d )

2

]
. (4.3b)
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We begin by constructing the leading-order solution by lettingw(ψ̃, θ̃ ) ∼ w0(ψ̃, θ̃ ) + o(1).
Noting that a similarity solution is expedient, we introduce the following variables:

ζ = ψ̃
(2|θ̃ |)1/2

w0(ψ̃, θ̃ ) =
{

w+
0 (ζ ) θ̃ > 0

w−
0 (ζ ) θ̃ < 0.

Making these substitutions in (4.3), we have

d2w±
0

dζ 2
+ 2ζ

dw±
0

dζ
= 0 ζ > 0 (4.4a)

w±
0 (0) = ±

[
f0(θ

+
d ) − f0(θ

−
d )

2

]
w±

0 (∞) = 0 (4.4b)

the solution of which is

w±
0 (ζ ) = ±

[
f0(θ

+
d ) − f0(θ

−
d )

2

]
erfcζ

w0(ψ̃, θ̃ ) = sgn(θ̃)

[
f0(θ

+
d ) − f0(θ

−
d )

2

]
erfc

(
ψ̃

(2|θ̃ |)1/2

)
.

(4.5)

Since all the derivatives ofw±
0 with respect toθ̃ vanish atθ̃ = 0, we see that our solution

in (4.5) is as smooth as necessary.
In a similar manner, one can show that at any order the system equilibrates to the

one given by the Fourier series. Therefore, we see that there is an agreement between the
mathematical and physical solutions of the problem. Any discontinuities in our imposed
wall conditions are quickly smoothed on a much faster stream scale than the rest of the
viscous flow. This smoothed flow satisfies the hypotheses of theorem 3.1, and hence we
know that a smooth flow exists for the entire viscous boundary layer.

We note that due to the relationship betweenψ̃ and θ̃ , our expression can be written as

w0

(
ψ
ε

,
θ − θd

ε2

)
= sgn(θ − θd)

[
f0(θ

+
d ) − f0(θ

−
d )

2

]
erfc

(
ψ

(2|θ − θd |)1/2

)
. (4.6)

Thus, we see thatε scales out of our problem, as one would expect since we are using
similarity variables. Since there is no pressure gradient, we see that our solution at each
order is dependent on the displacement scale only as a gauge function, as found in section 3.

Since a specific function ofε does not appear in our interior layer solution, we would
expect that even forε moderate but still o(1), we could scale by some small function ofε

in order to obtain (4.6). On the other hand, if the discontinuties were O(1) quantities, they
might induce multiple eddies and other effects which we do not consider in this work. A
brief discussion of such a system may be found in Batchelor [1].

5. Including a pressure gradient

Now we wish to consider the case where a pressure gradient exists: by (2.3), we see that
U(θ) is not constant. Equations of the form of (2.5) with nonconstantU can also arise,
after a suitable change of variable, from imposing uniform boundary conditions on slightly
perturbed cylinders [6]. We note from theorem 3.1 that theεq term in the square root will
not cause any secularities, since the dying exponentials will multiply in such a way that the
right-hand side does not contain any eigenfunctions. However, we also haveθ -dependent
terms in our square root. How will these new terms affect our solution?
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We begin by lettingU2(θ) = 1 + εh(θ; ε), where

h(θ; ε) =
∞∑

j=0

εjhj (θ). (5.1)

Therefore, (2.5) can be written in the form (analogous to (3.3))

2
∂q

∂θ
− [1 + εg(q, θ; ε)]

∂2q

∂ψ2
= 0 0 6 θ 6 2π, ψ > 0 (5.2)

whereg(q, θ; ε) is no longer arbitrary, but is given by expanding the square root in (2.5).
Now we are prepared to prove the following theorem.

Theorem 5.1.Let f (θ) and h(θ) be piecewise differentiable on[0, 2π ] (that is, a complex
Fourier series exists for each function) and slowly varying (that is,f ′(θ) andh′(θ) = O(1)

for all θ ∈ [0, 2π ]). Then a solution of (5.2) and (2.6) exists iff the system is consistent.
Furthermore, the consistency conditions toO(ε) are

f̄0 = 0 h0f0 = 2f̄1. (5.3)

This consistency relationship between the mean of terms in the expansion ofU and the
mean of terms in the expansion ofq was noted by Wood [6] and Feynman and Lagerstrom
[3]. As remarked earlier, these consistency conditions determineU (sincef is a known
quantity).

Proof. The fact thatf (θ) and h(θ) are slowly varying allows us to use (5.2) and (2.6)
directly without the use of interior layers like those in section 4. We begin by writing the
first three equations in our perturbation expansion obtained by using (3.2) and (3.4):

2
∂q0

∂θ
− ∂2q0

∂ψ2
= 0 (5.4a)

q0(0, θ) = f0(θ) q0(∞, θ) = 0 (5.4b)

2
∂q1

∂θ
− ∂2q1

∂ψ2
= h0

2

∂2q0

∂ψ2
+ R1 (5.5a)

q1(0, θ) = f1(θ) q1(∞, θ) = 0 (5.5b)

2
∂q2

∂θ
− ∂2q2

∂ψ2
= h1

2

∂2q0

∂ψ2
+ h0

2

∂2q1

∂ψ2
− h2

0

8

∂2q0

∂ψ2
+ R2 (5.6a)

q2(0, θ) = f2(θ) q2(∞, θ) = 0 (5.6b)

where theRi notation is the same as in section 3.
Using the Fourier series expansion, we have thatq0,n is once again given by (3.14), and

exists if and only iff̄0 = 0. Therefore, we have the first condition in (5.3). In addition, in
Fourier space equations (5.5) become

2inq1,n − q ′′
1,n = i

∞∑
k=−∞

kh0,n−kf0,kφk(ψ) + R1,n (5.7a)

q1,n(0) = f1,n q1,n(∞) = 0. (5.7b)

For any n 6= 0, we see that we may add a multiple of an eigenfunction to satisfy our
boundary condition atψ = 0. However, forn = 0, our eigenfunctions do not satisfy the
matching condition asψ → ∞. Therefore, for a solution to exist, our far-field and boundary
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conditions must be consistent. We know from lemma 3.2 thatR1,0 = 0. Therefore, solving
(5.7) for the moden = 0, we have

q1,0 = 1
2

∞∑
k=−∞

h0,−kf0,kφk(ψ) f̄1 = 1

2

∞∑
k=−∞

h0,−kf0,k = h0f0

2
.

Thus, the second equation in (5.3) follows, and the theorem is proved. �

Remark. To O(ε), equations (5.3) replace the requirement in section 3 thatf̄ = 0. These
conditions are expressed in a different form by Wood [6] and Feynman and Lagerstrom [3].
However, note that in the caseh0 ≡ 0 (which to leading order is the case without a pressure
gradient), equations (5.3) reduce tōf = 0 to leading two orders.

Since we have assumed that we have normalized by the proper value for theinviscid
flow, we have that̄hj = 0 for all j . We continue our analysis by checking the form of the
secularity that will arise.

Theorem 5.2.Let f (θ) and h(θ) satisfy the hypotheses of theorem 5.1. In addition, let
h̄ = 0. Then the solution of (5.2) and (2.6) can be expressed as a regular perturbation
expansion of a function of two variables:

q(ψ, θ; ε) =
∞∑

j=0

εjQj (ψ̂, 9, θ) ψ̂ = ε2ψ 9 = ψ
(

1 +
∞∑

j=3

ωjε
j

)
(5.8)

wheneverh0(θ) 6≡ 0.

Proof. We begin by examining equation (5.7a). Since h̄ = 0, we know thath0,0 = 0.
Therefore, we immediately see from equation (5.7a) that an eigenfunction does not appear
in that term in the right-hand side. We know from theorem 3.1 that theRi do not contribute
to secularities, so we have that at this order there is no secularity present.

Now we continue our solution to next order by looking at only the secular terms. We
see that sincēh0 = 0, the middle term on the right-hand side of (5.6a) will not cause
secularities. In addition, sinceh1,0 = 0, we know that no secularity can arise from the first
term on the right-hand side of (5.6a). However, we see that the third term will cause a
secularity wheneverh0 6≡ 0, for then we have in Fourier space

2inq2,n − q ′′
2,n = − inf0,n

4
h2

0φn(ψ) + · · ·
the solution of which is

q2,n(ψ) = −f0,nψh2
0

8

√
in

2
φn(ψ) + · · · (5.9)

where the unlisted terms are not related to a secularity. The form of (5.9) motivates the
choice of variables in (5.8).

One could argue that a term of the form in (5.9) is not problematic, since it still decays
as ψ → ∞. However, the form of (3.2) is based upon the assumption thatqi+1 = o(qi)

as ε → 0 uniformly in our domain. It is clear from (5.9) that this is not the case for
ψ = O(ε−2). Therefore, though both terms decay, we note that there must be decay or
oscillation occurring on a longer scale inψ (in this case,ε2ψ). Hence, a multiple-scale
expansion is necessary for a uniformly valid solution.

Using (5.8) and the Fourier series approach, we see that our leading-order solution,
analogous to (3.14), is given by

Q0,n(ψ̂, 9) = c0,n(ψ̂)φn(9) c0,n(0) = f0,n. (5.10)
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In addition, the equation analogous to (5.7a) becomes

2inQ1,n − ∂2Q1,n

∂92
= i

∞∑
k=−∞

kh0,n−kc0,k(ψ̂)φk(9) + R1,n.

in Fourier space. We see that since no secularity occurs at this order, we did not include
an ω1 term in our definition of9; neither did we let our slow scalêψ = εψ.

The O(ε2) equation is given by

2
∂Q2

∂θ
− ∂2Q2

∂92
= h1

2

∂2Q0

∂92
+ h0

2

∂2Q1

∂92
− h2

0

8

∂2Q0

∂92
+ 2

∂2Q0

∂9∂ψ̂
+ R2

which in Fourier space becomes

2inQ2,n − ∂2Q2,n

∂92
= − inc0,n(ψ̂)

4
h2

0φn(9) − 2c′
0,n(ψ̂)

√
2inφn(9) + · · · (5.11)

where the unlisted terms do not contribute to secularity. Suppressing the secular-causing
terms in (5.11), we have

c0,n(ψ̂) = f0,n exp

(
−h2

0ψ̂
16

√
2in

)
= f0,nφn(h

2
0ψ̂/16) (5.12)

where we have used the initial conditions in (5.10). Hence our proof is complete.�
Remarks.

(1) The first two terms of the Taylor expansion of (5.12) for smallψ̂ agree with our
results in (3.14) and (5.9).

(2) Sincec0,0 is of the same form asφ0 (and hence does not decay asψ̂ → ∞), we see
that introducing the new variablêψ does nothing to affect our consistency conditions (5.3).

(3) Our hypothesis̄h = 0 assumes that the means of the wall velocity and the inviscid
velocity are nearly the same and that this mean can be used as a characteristic velocity with
which to normalize. If this assumption is relaxed, the multiple-scale procedure still works.
However, the slow-stream scale must beψ̂ = εψ.

Therefore, we see that we have both an amplitude and a phase modulation of our solution
coming from the slow stream scalêψ. We also note that both the amplitude and phase of
our solution will depend onall integral orders ofε smaller thanε, something which did not
occur when there was no pressure gradient. Thus, we see that in this case the displacement
scale does play a role in the solution at each order, providing the necessary scaling for the
slow-stream variable. This is more in keeping with what one would expect in a nonlinear
problem.

The framework outlined in this section is quite versatile since it does not depend on
the relative size of our parameters Re−1 and ε. It is our hope that this framework can be
formally extended to more difficult problems, such as the cylindrical analogue of a Hills
spherical vortex [2] or the bifurcation of a small inviscid eddy from the wall.

6. Conclusions

Since the dynamics of flow with closed streamlines are so complicated, researchers have
focused on specific facets of the flow to understand better the flow as a whole. Batchelor
[1] was interested in obtaining the Bernoulli constant of the system. Wood [6] made some
cursory inspections of the flow in the boundary layer, but did not thoroughly examine the
physical ramifications of his results.
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In this work, we have carefully examined the flow in a viscous boundary layer and how
such a flow might have far-reaching effects in the inviscid region. Though we modelled
the case where the wall velocity was perturbed, the form of (2.5) could also come from a
uniform boundary condition on a perturbed cylindrical shape, another case of interest [6].

By far the simplest of these problems is that of a circular cylinder, where the vorticity
is knowna priori in terms of the wall data, at least whenever the boundary layer exists. For
this case, we proved that a regular perturbation expansion suffices to describe the flow in
the viscous boundary layer. The decay rate of the flow with respect to the stream function
was found to depend on the Fourier modes of the perturbed wall velocity. No multiple-scale
expansion was necessary, and hence we saw that the solution depended on the amplitude
of the disturbance only through gauge functions.

In the case where there was a small discontinuity in our imposed wall velocity, we saw
that the physical system quickly smoothed out the discontinuity so that our Fourier series
solution still held. Note that this was true only when the discontinuities were in small
deviations from the flow’s constant value.

In the case where there was a pressure gradient, the dynamics of the flow changed
dramatically. Even though the pressure gradient was caused by only slight perturbations
from the case without a pressure gradient, our regular perturbation expansion was no longer
uniformly valid. We calculated the needed variables for our expansion, and proved that a
multiple-scale expansion is always needed if there is a pressure gradient. The slow-stream
scale needed reflected the amplitude of the displacement. In addition, we replicated the
result shown in Feynman and Lagerstrom [3] indicating consistency conditions thatU(θ)

andf (θ) must satisfy in order for our problem to have a solution.
If ε = O(1), the present theory becomes invalid. Since we make no assumption about

the relative size of our parameters, we see that in this limit, two different types of behaviour
can occur. If the Reynolds number is bounded from above byε−1, then we see that a finite
disturbance corresponds to a finite Reynolds number. Therefore, these disturbances would
then be spread throughout the cylinder, since our Euler assumption would no longer be
valid. However, if the Reynolds number is bounded from below byε−1, we see that we
can still have an Euler flow with a finite disturbance.

In physical terms, our theory becomes invalid with the occurrence of separation. This
can occur through the combined influence of the pressure gradient and the wall data. It can
take several forms, but the most interesting in the present context ismarginal separation.
The onset of marginal separation is marked by the detachment of the wall streamline and
its immediate reattachment, forming a small boundary-layer eddy. As a result of the
multiscaling procedure in the case where 0< Re−1 � ε � 1, we have a new length
scale which depends onε and is larger than the boundary layer thickness. Asε increases or
the wall data is further modified, the eddy can grow and change the topology of the Euler
flow to a two-eddy configuration. It is in this way that various eddy configurations and
their relation to wall geometry and data can be explored.

Of course, the present theory does not consider the stability of these flows. Solid-body
rotation is a stable configuration, so we are dealing with weakly unstable flows. At large
but finite Reynolds numbers (around 500), stable flows of this kind can be observed and
a viscous correction to the Euler flow can be calculated [4]. Therefore, it is our hope that
the mathematical framework presented in this paper can be used to analyse more difficult
problems.
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7. Nomenclature

7.1. Variables and parameters

The equation number where a particular quantity first appears is listed, if appropriate.
a arbitrary constant.
b arbitrary constant.
c(ψ̂) coefficient of terms in two-variable expansion (5.10).
F(θ) imposed wall velocityu(0, θ) (2.2).
f (θ) imposed wall displacement velocityq(0, θ) (2.6b).
g(·; ε) power-series expansion of nonlinear terms in equation (2.5), (3.3).
h(θ) deviation ofU(θ) from a constant value, defined as [U2(θ) − 1]/ε (5.1).
j indexing variable (3.2).
k indexing variable (3.5).
m arbitrary constant.
n indexing variable (3.8).
p(θ) pressure of fluid in a cylinder (2.3).
Q a set of terms in the perturbation expansion ofq (3.4b).
Q(ψ̂, 9, θ) element of perturbation expansion forq in multiple-scale expansion

procedure (5.8).
q(·) velocity displacement field, defined as(u2 − U2)/ε (2.5).
R the right-hand side of an equation in our perturbation expansion (3.5).
Re Reynolds number of the system.
U(θ) Euler flow velocity near wall (2.1a).
u(·, θ) angular velocity of fluid in boundary layer (2.1a).
v(·, θ) scaled radial velocity in boundary layer (2.1a).
w(ψ̃, θ̃ ) velocity displacement in boundary layer near wall velocity

discontinuity (4.2).
y spatial variable in viscous boundary layer (2.1a).
Z the integers.
α arbitrary exponent.
ε perturbation parameter.
ζ similarity variable in boundary layer near wall velocity discontinuity.
θ cylindrical angular coordinate (2.1a).
λ first term in the expansion of the nonlinear terms in (3.1a), (3.3).
8(ψ) a product of eigenfunctionsφ.
φ(·) an eigenfunction of the operator in (3.9).
9 perturbed stream function (5.8).
ψ stream function.
ω coefficient in perturbation expansion for9 (5.8).

7.2. Other notation

d as a subscript, used to indicate a position inθ at which the imposed wall
velocity is discontinuous (4.1).

J as a subscript, used to indicate thatj such thataj 6= 0.
n ∈ Z as a subscript, used to indicate a term in an expansion, either inε (3.2)

or Fourier mode (3.8).
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∗ as a superscript, used to indicate a variable which satisfies the hypotheses
of theorem 3.1.

+ as a superscript onw0, used to indicate the solution forζ > 0.
− as a superscript onw0, used to indicate the solution forζ < 0.
< the real part of an expression.
¯ used to indicate average values.
ˆ used to indicate the slow-stream variable (5.8).
˜ used to indicate scaled coordinates near a discontinuity in the boundary

condition (4.2).
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