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Abstract
This article introduces the approach of using Bayesian sampling to estimate the mix-
ture copula with discrete margins, we further apply our models to solve the class 
imbalanced problems in data science by oversampling. The methodology makes it 
possible to learn and sample from the data set with the discrete and continuous fea-
tures exists simultaneously. On the other hand, the discreetness of factors in a data 
set are not naturally considered for the classic SMOTE algorithm and classic ran-
dom oversampling is simply performed by generating the already existing points, 
which do not give any new information to the classifiers and is easy to overfit. Cop-
ula methods enable us to generate new points with the correlation structure memo-
rized by learning from the training set. Hence, the overfitting problems are reduced. 
Experiments with synthetic and real data are done in the article following the intro-
duction of the methodology. The outcomes shows the validity of the approach when 
compared with the benchmark methods.

Keywords  Oversampling · Imbalanced learning · Copula methods · Bayesian 
analysis · Dependence analysis

1  Introduction

Over recent decades, the field of imbalanced learning has become a popular area of 
study (Chawla et al., 2004; He & Garcia, 2009; Krawczyk, 2016; Fernández et al., 
2018). An imbalanced learning problem is one where the data set to be classified is 
highly unbalanced between classes. In particular, for the binary classification prob-
lem we study here, there are far more members of one class (the majority class) than 
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the other (minority class). This imbalance causes a performance reduction for the 
standard classifiers which are designed with balanced data sets in mind (Provost, 
2000).

Imbalanced classification problems are commonly seen in many fields and are 
often of great importance. For example, cancer diagnosis requires selecting the rare 
positive cases from a much larger universe of data (Fotouhi et al., 2019; Gupta & 
Gupta, 2022). Financial risk management involves identifying rare fraudulent activ-
ity from a large pool of mostly legitimate transaction data (Liu et al., 2021). In the 
retail banking industry, it is desirable to efficiently identify and reject those rela-
tively few credit card applicants who are at high risk of default (Alam et al., 2020).

To mitigate the class size imbalance, many methods have been proposed to cre-
ate an artificially balanced dataset with the same properties as the original data set. 
For instance, the random oversampling technique creates a larger balanced set by 
randomly generating instances from the minority class using its empirical distribu-
tion. Alternatively, random undersampling erases members of the majority class at 
random until the dataset is balanced. Some experiments with these two methods for 
different classifiers can be found in Mohammed et al. (2020). Although these two 
simple techniques indeed improve the accuracy of the classifier, they are not with-
out drawbacks. By removing members of the majority class, random undersampling 
methods may discard useful information in the dataset. Methods that employ ran-
dom oversampling are prone to overfitting (He & Garcia, 2009).

A popular and very powerful alternative that addresses the shortcomings of the 
random oversampling method is the synthetic minority over-sampling technique 
(SMOTE) introduced in Chawla et al. (2002). Rather than simply using the empiri-
cal distribution of the minority class, SMOTE generates new points using a nearest-
neighbor approach. First, given a value of K. SMOTE randomly chooses two points: 
x0 , a base point in the minority class, and x′ , which is one of the K nearest neighbors 
of x0 . A new point x∗ is added to the minority class, which is a randomly chosen 
convex combination of x0 and x′:

where U refers to the uniform distribution. SMOTE and its variants enjoy great 
success in a wide variety of applications; see Fernández et al. (2018) for a recent 
overview.

However, challenges remain for the SMOTE algorithm. The performance of the 
algorithm can be highly sensitive to K, whose choice for a particular application can 
then become somewhat arbitrary. The results sometime have large variance. Moreo-
ver, because the assignment of x∗ uses a uniform distribution, SMOTE may not be 
suited to skewed data sets (Wang & Japkowicz, 2004; He & Garcia, 2009; Fernán-
dez et al., 2018).

To avoid these issues, recently several authors have been using copula functions 
to implement the oversampling. These functions are powerful tools for modeling 
the dependence between different factors in the data. Zhu et  al. (2019) oversam-
pled an imbalanced data set using a Gaussian copula with a kernel-based marginal 
distribution. Xue et al. (2022) apply the copula-based oversampling methods in an 

x∗ = Ux0 + (1 − U)x�, U ∼ U(0, 1),
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imbalanced rock burst data set. In this work, the authors use both a Gaussian cop-
ula and t-copula with the marginal distribution of each factor chosen by using Kol-
mogorov–Smirnov (KS) statistics. Both articles show the validity of the methods 
for their particular data set, as well as superiority over the SMOTE for certain of the 
classifiers.

Though the copula-based approaches in those manuscripts show promise, they 
share a shortcoming with the SMOTE method: they are not well designed for data 
sets with categorical (discrete) marginal factors. However, in many applications (for 
example the credit card approval task), many of the factors are categorical: edu-
cational background, nationality, etc. Moreover, for simplicity, many of the more 
quantitative variables (income, age) are often placed into categorical bins for study. 
Simply ignoring the discrete treatment of these factors in the data may hinder the 
effectiveness of the final results.

In this work, we consider the problem of oversampling in data sets with both 
continuous and discrete features. We introduce the idea of implementing the over-
sampling using mixture of normal and skew-normal copulas with discrete margins 
by Bayesian augmentation and the correlated pseudo method in Deligiannidis and 
Doucet (2018). Our work is an extension of the work of Pitt et  al. (2006); Smith 
and Khaled (2012); Gunawan et  al. (2019), where the former two papers intro-
duced Bayesian augmentation approaches to estimate copulas with discrete margins. 
Gunawan et al. (2019) introduced the work of Deligiannidis and Doucet (2018) into 
copulas literature and used the correlated pseudo method to estimate Archimedean 
copulas. On the other hand, in the paper of Gunawan et al. (2019), their implementa-
tions and applications mainly focused on the one-parameter Archimedean families, 
which might not be well suited for many complex data. We extend their approaches 
to the normal and skew-normal copulas of any dimensions.

Current studies of copulas with discrete margins largely use Gaussian copulas 
(Pitt et al., 2006; Smith & Khaled, 2012; Meyer, 2013; Jiryaie et al., 2016). Some 
authors have also considered cases of Archimedean copulas (Smith & Khaled, 2012; 
Gunawan et  al., 2019; Geenens, 2020) or other classic copulas such as t copulas 
for the discreteness problems (Smith et  al., 2012). In order to make the consid-
erations suitable for higher dimensions as well as complex data, vine copulas are 
of major interest (Smith, 2011; Smith & Khaled, 2012; Panagiotelis et  al., 2012; 
Loaiza-Maya & Smith, 2019). However, despite the usefulness of mixture models 
of copulas in modeling complex distribution patterns, they are less studied under the 
circumstances. Therefore, in this paper, we study algorithms for estimating param-
eters of mixture copulas with discrete or mixed margins using Bayesian approaches. 
Normal and skew-normal mixture copulas are given special attention. Furthermore, 
we propose to use copula mixture models in the field of imbalanced learning. The 
integration of Bayesian sampling methods, coupled with the algorithm’s capacity 
to incorporate discrete data features, renders the mixture copulas aptly suited for 
addressing the real problems in the field of data science.

The structure of the articles is as follows. In Sect. 2, we introduce the particular 
normal and skew-normal copulas, which we will use in our analysis. In Sect. 3, we 
introduce the learning algorithm. To test the algorithm, we perform experiments on 
synthetic and real data in Sect. 4.
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2 � Copula functions

As defined in McNeil et al. (2015), the copula function is a multivariate probability 
distribution function with all its univariate margins set to be the standard uniform 
distribution. It is a powerful tool for modeling the correlation between variables 
when compared with some of the most popular metrics for describing the correla-
tion such as Pearson and Spearman correlation, which only return a single num-
ber to describe the bilateral relation. In contrast, the copula method describes the 
dependence between two variables using probability distributions constructed from 
its marginal law. The approach extends naturally to higher dimensions.

A fundamental result in the study of copulas is Sklar’s Theorem (Sklar, 
1959), which states that for any multivariate probability distribution func-
tion F(⋅) ∶ R

d
→ [0, 1] , there exists a d-dimensional copula function 

C(⋅) ∶ [0, 1]d → [0, 1] such that

where Fj(xj) is the marginal (cumulative) distribution of the random variable xj.
The copula function is unique if the xj are all continuous. If some of the xj are 

discrete, the copula is unique in the range of the marginal distributions. Sklar’s The-
orem allows us to form a multivariate distribution by linking the underlying univari-
ate marginal distributions with a copula function. The copula therefore gives us the 
full description of the relation between variables, which is more informative than 
single correlation statistics.

2.1 � The continuous case

Suppose that all the Xj are continuous, and that there are d of them. Then the joint 
probability density function f (⋅) is easily computed using partial differentiation of 
(1):

Here c(⋅) is the copula density.
Equations (2) follow directly from (1), but gives no direct indication as to what 

the proper functional form for c should be for any given f. To remedy this, first we 
manipulate (2) to obtain

(1)F(x1, x2,… , xd) = C
(
F1(x1),F2(x2),… ,Fd(xd)

)

(2)
f (x1, x2,… , xd) = c

(
F1(x1),F2(x2),… ,Fd(xd)

) d∏
j=1

fj(xj)

c(u1, u2,… , ud) =
�dC(u1, u2,… , ud)

�u1�u2 ⋯ �ud
.

(3)c(F1(x1),F2(x2),… ,Fd(xd)) =
f (x1, x2,… , xd)∏d

j=1
fj(xj)

.
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Equation (3) now provides a form for the copula given a particular probability 
density function f. This technique, called copula by inversion or implicit copula, 
is a very common tool for modeling the dependence of high dimensional random 
vectors.

2.2 � Normal and skew‑normal copulas

For example, suppose that each random variable Xj is normally distributed 
with mean �j and standard deviation �j . Then the vector X = (X1,X2,… ,Xd) 
is normally distributed with mean � ∈ R

d and the positive definite covari-
ance matrix Σ : X ∼ N(�,Σ) . The copula of X is the same as the copula of 
the standard normal vector Z ∼ N(0,R) , where R is the correlation matrix 
(Xue-Kun  Song, 2000). Therefore, by introducing x = (x1, x2,… , xd)

T and 
u = (u1, u2,… , ud)

T ,Φ−1(u) =
(
Φ−1(u1),Φ

−1(u2),… ,Φ−1(ud)
)T , where Φ(⋅) is the 

cumulative standard normal distribution. We have

where | ⋅ | refers to the determinant. Substituting (4) into (3), we obtain

where the subscript “N” stands for “normal”.
The relatively simple form (5) for the standard normal (Gaussian) copula has 

been well studied from a theoretical perspective and enjoys widespread use in prac-
tical studies (Xue-Kun Song, 2000; Renard & Lang, 2007; Meyer, 2013; MacKenzie 
& Spears, 2014). However, note that c(1 − u) = c(u) , which is a major shortcoming 
if the underlying data set is skewed.

To remedy this, we consider variables from the skew normal distribution (Azza-
lini, 1985; Azzalini & Valle, 1996). Suppose that we have two normal variables X0 
and Xj , X0 is standard normal. Then we define the corresponding skew-normal ran-
dom variable Yj via

where �j ∈ (−1, 1) is a given skewness parameter. We denote this as 
Yj ∼ SkewNormal(�j) , where

(4)f (x) =
1

(2�)d∕2�R�1∕2 exp
�
−xTR−1x

�
, f (xj) =

e
−x2

j√
2�

,

(5)cN(u) =
1

|R|1∕2 exp
(
−Φ−1(u)

T
(R−1 − I)Φ−1(u)

)
,

(6)Yj = �j|X0| +
√

1 − �2
j
Xj,

(7)�j =
�j√
1 − �2

j

.
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The resulting distribution for such a variable is given by (Azzalini & Valle, 1996, 
eq. 1.1) 

Note that when �j = 0 , all skew-normal results reduce to the normal case.
We now extend this result to d dimensions by considering the following d + 1

-multivariate normal random vector:

where X and R are as defined before. Jointly, the density of the d-multivariate skew 
normal is written as Azzalini (1985); Azzalini and Valle (1996)

 where

When � = 0 the skew-normal results degenerate to the standard joint Gaussian dis-
tribution. Hence, we are able to represent more complex, especially asymmetrical 
data distributions using the skewed family.

Therefore, rewriting our results to obtain the multivariate skew-normal copula 
as in (Wu et al., 2014; Wei et al., 2019), we have

where the subscript “SN” refers to “skew-normal”. Here the forms of f are in (8), 
and we may use the integral of (8a) to obtain F−1

j
 (numerically).

2.3 � Mixture copulas

For complex data structures in many real-life applications, a single parametric 
copula might be insufficient to capture all important features when performing 
analysis. It is therefore motivated to introduce finite mixture copulas,

(8a)fj(yj) =

√
2

�
e
−y2

j Φ(�jyj).

(
X0

X

)
∼ Nd+1

(
0,

(
1 0T

0 R

))
,

(8b)f (y) = 2(2�)−d∕2|R�|−1∕2 exp
(
−
1

2
yTR−1

�
y
)
Φ(�Ty),

yT = (y1, y2,… , yd)

�T = (�1, �2, ..., �d),

�T = (�1, �2, ..., �d),

Λ = (Id − diag(�)2)1∕2,

R� = Λ(��T + R)Λ,

� = Λ−1R−1�(�TR−1� + 1)−1∕2.

(9)cSN(u1, u2,… , ud) =
f
�
F−1
1
(u1),F

−1
2
(u2)… ,F−1

d
(ud)

�
∏d

j=1
fj
�
F−1
j
(uj)

� ,
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Where C(i) refers to a single copula component and K is usually a predefined hyper-
parameter. In classic finite mixture models’ discussion, C(i) are usually from the 
same parametric family (McLachlan et  al., 2019). However, mixture models with 
heterogeneous components are also common in the copula literature, see (Hu, 2006; 
Arakelian & Karlis, 2014) for examples. It is straightforward to check (10) to satisfy 
the definition of the copula function. In this article, we discuss the mixture of nor-
mal copulas and skew-normal copulas. That is, we consider two mixture models

Where the density of the normal copula c(i)
N

 follows (5) and the density of skew nor-
mal copula c(i)

SN
 follows (9). Furthermore, we estimate them by Bayesian Markov 

chain Monte Carlo (MCMC) sampling. One advantage of using a Bayesian approach 
other than the MLE-based approach is to enable the model selection and parameter 
estimation simultaneously by specifying a large K, the redundant groups would be 
assigned a zero weight asymptotically(Rousseau & Mengersen, 2011).

2.4 � The categorical case

We now compute the analog of the copula density in the case that all of the random 
variables are discrete. We denote these variables as sj to distinguish them from the 
continuous case and suppose that there are d of them. The discrete variables in the 
classification problems of interest are typically data category identifiers, so we fur-
ther assume that the sj take on integral values. In this case, it is convenient to define 
the following difference operator: 

 With the definition in (11), we can find the probability mass function by taking 
repeated differences:

where p(⋅) refers to the probability mass function and we have defined the iterated 
operator Δ for simplicity.

We will now consider cases where the data set contains both continuous and cat-
egorical variables.

(10)Cmix =

K∑
i=1

wiC
(i),

K∑
i=1

wi = 1, wi ≥ 0 ∀i = 1, 2,… ,K.

CNormalMix =

K1∑
i=1

wiC
(i)

N
and CSkewm

=

K2∑
i=1

wiC
(i)

SN
.

(11a)
ΔjC(v1, v2,… , vd) ≡ C(v1, v2,… ,Fj(sj),… , vd) − C(v1, v2,… ,Fj(sj − 1),… , vd),

(11b)vj ≡ Fj(sj).

(12)p(s1, s2,… , sd) = Δ1Δ2 ⋯ΔdC
(
F1(s1),F2(s2),… ,Fd(sd)

) ≡ Δ1,2,3,…,dC,
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Assume we have m categorical variables and d − m continuous variables. There-
fore, (1) is replaced by

We are then computing a hybrid between a probability mass and density func-
tion, which can be obtained by combining the appropriate elements of (2) 
and (12). Hence, with first m dimensions to be discrete features, and let 
(s, x) = (s1, s2, ..., sm, xm+1, ..., xd)

T . By assuming the absolutely continuous of the 
considered copula functions, we have:

Where

is the copula variables with the categorical margins, and

is the copula variables with continuous margins. We denote C(v ∣ u) = ∫ v

0
c(�� ∣ u)d�� 

to be the conditional copula function given � , c(u) = ∫ c(��, u)d�� is the marginal 
copula density of continuous variables.

2.5 � Model identifiability

The identifiability problems are important in statistics. As this paper studies the 
approaches of discrete copulas and mixture models. One may raise doubt about the 
model’s identifiability.

First of all, as noted in the explanation following (1), the copulas are only 
uniquely defined up to the range of marginal distributions. This poses identifiabil-
ity issues for the copulas with discrete variables as one could use different copu-
las to construct the same discrete probability distribution. Faugeras (2017) gave 
examples regarding this problem. This would in general decrease the reliability 
of any conclusions drawn from a user-chosen copula in modeling procedures if 
variables have discreetness (Faugeras, 2017; Geenens, 2020). Some tools are 
available for diagnosing the identifiability of this type. Nasr and Remillard (2023) 
proved that for parametric families of copulas with parameters � ∈ Θ , it is iden-
tifiable whenever C�(F1(x1),F2(x2),… ,Fd(xd)) is injective with respect to � ∈ Θ . 
In other words, C�1

(⋅) must not equivalent to C�2
(⋅) when �1 ≠ �2 in the domain 

of consideration. When margins are unknown, they suggested using empirical 
margins to check the conditions. On the other hand, we are in favor of the point 
raised by the paper that as long as we are aware of the restrictions posed, it is 

F(s1, s2, ..., sm, xm+1, ..., xd) = C
(
F1(s1),F2(s2),… ,Fm(sm),Fm+1(x1),… ,Fd(xd)

)
.

(13)f (s,x) = f (x)p(s ∣ x) = c(u)

d∏
j=m+1

fj(xj)Δ1,2,3,…,mC(v ∣ u).

(14)v = (v1, v2,… , vm)
T =

(
F1(s1),F2(s2),… ,Fm(sm)

)T

(15)
u = (um+1, um+2,… , um+d)

T =
(
Fm+1(xm+1),Fm+2(xm+2),… ,Fm+d(xm+d)

)T
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reasonable to proceed by using one particular choice of copulas in applications. 
For the sampling task considered in the article, it is most important to recon-
struct the dependency in the domain of concern. That is, abilities to reconstruct 
the probability distributions through copulas are the main consideration, which is 
guaranteed by Sklar’s theorem.

The identifiability of mixture models of copulas is another potential problem. 
This refers to the scenario when we have two mixtures and 

∑K

i=1
piFi =

∑K�

j=1
p�
j
F�
j
 

but left and right side are not equivalent up to the label permutation. That is, 
pi = p�

i
, Fi = F�

i
∀i and K = K� does not hold even after any label adjustment. 

Seminal works regarding this issue for general finite mixture models include 
Teicher (1961, 1963) and Yakowitz and Spragins (1968). Yakowitz and Spragins 
(1968) proved that the mixture models are identifiable if and only if the corre-
sponding class of the component-wise distributions is linearly dependent over the 
real number field.

The identifiability issue of this kind is difficult to address in general and usu-
ally needs to be considered case by case for different families of mixtures. Holz-
mann et al. (2006) proved the identifiability of elliptical mixtures. Otiniano et al. 
(2015) showed that the multivariate skew normal and zero mean univariate skew t 
mixtures are identifiable. Therefore, the identifiability of the normal mixture cop-
ulas within their own normal parametric family can be readily obtained by recall-
ing the construction formula

Where Φ(⋅) is the distribution of standard normal, Φd(⋅;R) is the zero mean multi-
variate normal distribution with the standardized covariance matrix R. If there exist 
two different normal copula mixtures such that ΣiwiCi = Σw�

i
C�
i
 . This means

which contradict the identifiability of the normal mixtures.
Deeper identifiable results are not available among mixture copula literature to 

the best of the authors’ knowledge, other works discussed and applied the mixture 
of copulas either claimed the identifiability is not the key issue in their assign-
ments (Wang, 2008; Cai & Wang, 2014; Mazo & Averyanov, 2019) or totally 
ignored identifiability problems. Otherwise, they declared it as open questions 
(Arakelian & Karlis, 2014; Kosmidis & Karlis, 2016; Mazo & Averyanov, 2019). 
We quote the ideas from Mazo and Averyanov (2019) that although identifiability 
is very important in statistical theory, verifying it can be difficult and the applied 
statistical work often achieves satisfactory outcomes for models with identifia-
bility issues, such as neural networks. Hence, for many cases including mixture 
copulas applications as above, the identifiability problem may be set aside.

Besides, in our study, we use the Bayesian paradigm of estimations, Rousseau 
and Mengersen (2011) showed us that as long as the parameters �1, �2,… , �K� 
for the Dirichlet weighting prior w ∼ Dirichlet (�1, �2,… , �K� ) are small enough, 

∑
i

wiCi(u1, u2,… , ud;Ri) =
∑
i

wiΦd(Φ
−1(u1),Φ

−1(u2),… ,Φ−1(ud);Ri,� = 0).

∑
i

wiΦd(Φ
−1(u1),Φ

−1(u2),… ,Φ−1(ud);Ri) =
∑
i

w�
i
Φd(Φ

−1(u1),Φ
−1(u2),… ,Φ−1(ud);R

�
i
)
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along with some other regularity conditions. The overfitted finite mixtures 
achieve the sparsity. That is, if the samples are from the true model 

∑K

i=1
pifi , 

using the overfitted model 
∑K�

i=1
pifi where K′ > K for Bayesian estimations would 

result in 
∑K�

K+1
wi = O(1∕

√
n) asymptotically under the regularity. This outcome 

adds another layer of usefulness for the Bayesian methods considered (Liu et al., 
2023).

2.6 � Bayesian data augmentation approach

The equation (13) naturally motivates us to estimate to copula with mixed margins 
by Maximum Likelihood Estimation (MLE)

where the notation is kept the same as (13), (14) and (15).
However, as suggested by Smith (2011); Smith and Khaled (2012), the calculation 

of m dimensional discrete features involves O(2m) evaluations of the copula function 
for every data point, this becomes computationally prohibited when we encounter 
high dimensional large data set. In addition, it is not easy to maximize the likeli-
hood in such cases. They suggest using the Bayesian data augmentation approach 
for parameter learning. Let (sl, xl) = (sl

1
, sl

2
, ..., sl

m
, xl

m+1
, ..., xl

d
)T , l = 1, 2,… n be the 

(16)logL(s,x) = log c(u) + logΔ1,2,3,…,mC(v ∣ u) +

d∑
j=m+1

log fj(xj),

Algorithm 1   Bayesian data augmentation
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n data points and the first m features are discrete. We give an augmented variables 
� = (�1, �2, ..., �m, �m+1, ..., �d)

T such that the joint density is

n represents the total number of points available, �(⋅) is the Dirac delta. In this sense,

From the above, we can naturally use the Gibbs within Metropolis-Hasting (M-H) 
types of sampling techniques for parameters learning and sample generations, which 
we summarize as Algorithm 1.

To estimate and sample the normal as well as skew normal copula using this 
approach, the correlation matrix needs to be proposed in every iteration, Smith 
(2011)[Section 3.1] suggests sampling it from R = diag(Σ)−1∕2Σdiag(Σ)−1∕2 where 
Σ−1 = LL

� . L is the lower triangular matrix with 1 in its main diagonal, (L)ij for 
i > j is sampled using the proposal Lnew

ij
∼ N(Lcurrent

ij
, 0.012) followed by the M-H 

acceptance step for every i, j.
The conditional copula needs to be computed when sampling �l

j
 for 

j = 1, 2,… ,m, l = 1, 2,… , n . This can be derived from

F can be obtained from the formula of conditional normal distribution Xi ∣ Y = y 
with X ∼ N(0, 1) and Y ∼ Nd−1(0,Mii) . Mii refers to the correlation matrix R with ith 
row and ith columns deleted.

On the other hand, Sampling from the skew-normal distribu-
tion requires extra parameters of skewness �T = (�1, �2, ..., �d) 
where we can propose each �i by truncated normal distribu-
tion from −1 to 1 with the mean being �current

i
 . The conditional copula 

CSN(ui ∣ u1, u2, ..., ui−1, ui+1, ...ud) = FSN(F
−1
i
(ui) ∣ F

−1
1
(u1),F

−1
2
(u2), ...,F

−1
d
(ud)) 

is more involved, as per Azzalini (2013, Sect.  5.3), the conditional distribution 
FSN(⋅ ∣ ⋅) follows the extended skew normal distribution, the density of which is 
denoted as

Let X = (X1,��
T )T and R and � is partitioned into R11,R12,R22,R21 and �1, �2 

according to X1,X2 . We have

(17)

n∏
l=1

f (sl, xl, �l) =

n∏
l=1

f (sl, xl ∣ �l)c(�l) =

n∏
l=1

f (xl ∣ �l)f (sl ∣ xl, �l)c(�l)

=

n∏
l=1

( m∏
j=1

I
(
Fj(s

l
j
− 1) < 𝜈l

j
≤ Fj(s

l
j
)
) d∏
k=m+1

𝛿(Fk(x
l
k
) = 𝜈l

k
)fk(x

l
k
)
)
c(�l),

f (s, x) = ∫ f (s, x, �)d� = ∫ f (s, x ∣ �)c(�)d�.

CNormal(ui ∣ u1, u2, ..., ui−1, ui+1, ..., ud) = F(Φ−1(ui) ∣ Φ
−1(u1),Φ

−1(u2), ...,Φ
−1(ud)),

ESNd(�,R,�, �) = �d(x − �;R)Φ(�(1 + �TR�)1∕2 + �T (x − �))∕Φ(�).

X1 ∣ �� = x2 ∼ ESN1(�1⋅2,R11⋅2, �1, �1⋅2).
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Where we follow the notation of Azzalini (2013, p.130, 151),

This method works well when the analytical forms of the conditional copulas and 
their corresponding inversions are available. However, for complex copula models, 
one often needs to obtain the inversions numerically, this task is computationally 
demanding and sometimes unstable when the discrete dimensions m and the sample 
size n become large. As for each iteration, we need to sample O(nm) from condi-
tional copulas. Gunawan et al. (2019) used the pseudo marginal method based on 
unbiased estimators of likelihood functions and applied it to learn the one-parameter 
Archimedean copulas, they showed that this largely improved the computational 
time compared with the augmentation method. We extend their work to the mixture 
copulas of high dimensional normal and skew-normal copulas, which could be more 
applicable when we analyze complex high dimensional data structures.

3 � Methodology

Consistent with what we have discussed in the Algorithm 1, we learn the marginal 
cumulative distribution with its modified empirical counterpart

Where xij is the jth dimension of the ith data, i = 1, 2,… , n.

If every margin is continuous, we can simply learn the copula by inference for 
margin (IFM) introduced thoroughly in Joe and Xu (1996). Then maximum likeli-
hood estimation would be suitable for learning the parameter:

If some prior information �(�) is available, for the data x collected. Bayesian learn-
ing would be more proper by using p(� ∣ x) ∝ f (x ∣ �)�(�) where MCMC is often 
used for sampling the posterior. Oversampling the minority class in the data set is 
through

R11⋅2 = R11 − R12R
−1
22
R21

�1⋅2 = R12R
−1
22
(x2)

�1⋅2 =

⎛
⎜⎜⎜⎝

�2 + R−1
22
R21�1�

1 + �
�

1
R11⋅2�1

⎞
⎟⎟⎟⎠

T

x2.

(18)F̂nj(x) =
1

n + 1

n∑
i=1

I(xij ≤ x).

𝜃̂ = argmax𝜃

n∑
i=1

log c
(
F̂n1(xi1), F̂n2(xi2), ..., F̂nd(xid);�

)
.

�∗ ∼ p(� ∣ x)

y� ∼ f (x ∣ �∗)
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in the Bayesian case.
For the data set with discrete features, extra attention needs to be paid. Algo-

rithm  1 uses Bayesian augmentation approach for modelling, we approach the 
problem here from different angles. Let (s, x) = (s1, s2, ..., sm, xm+1, ..., xd)

T be the 
d-dimensional data with first m features are discrete. From (13), if the copula dis-
tribution C(⋅) is absolutely continuous with the density c(⋅) , similar as what have 
been presented in Gunawan et al. (2019), we can write (13) as 

Where F(s− 1) =
(
F1(s1 − 1),F2(s2 − 1),… ,Fm(sm − 1)

)
 and u follows (15) such 

that

By change of variables of the integration,

where 
⨀

 refers to the component-wise product of vectors.
More specifically,

This motive us to approximate the integral of (19b) by Monte Carlo

Where �� ∼ Um(0, 1) is the m-dimensional uniform distribution and N′ is predefined. 
The Eq. (21) gives an unbiased estimation of (19b) numerically. Noticing that

(19a)L(s, x) = ∫
F(s)

F(s−1)

c(𝐯�, 𝐮)d𝐯�
d∏

j=m+1

fj(xj).

u = (um+1, um+2,… , um+d)
T =

(
Fm+1(xm+1),Fm+2(xm+2),… ,Fm+d(xm+d)

)T
.

(19b)

L(s, x) =

m∏
i=1

[
Fi(si) − Fi(si − 1)

]
∫

1

0

c(���
⨀(

�(�) − �(� − �)
)

+F(s − 1), u)d���
d∏

j=m+1

fj(xj),

(20)

(
�
⨀(

�(�) − �(� − �)
)
+ �(� − �), �

)
j

=

{
vj
(
Fj(sj) − Fj(sj − 1)

)
+ Fj(sj − 1), j = 1, 2,… ,m

uj j = m + 1,m + 2,… , d

(21)

L(s,x) ≈

d∏
j=m+1

fj(xj)

m∏
i=1

[
Fi(si) − Fi(si − 1)

] 1

N�

N�∑
j=1

c
(
��

⨀(
�(�) − �(� − �)

)
+ �(� − �), �

)

∶= L(s,x,p)

p(� ∣ s, x) ∝ L�(s, x)�(�) = �(�)∫
1

0

L�(s, x, p)fUm
(�)dp.
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Sampling the posterior of � can be realized by sampling 
p(�, p ∣ s, x) ∝ p(� ∣ p, s, x)f

Um
(�) and take the marginal part, where f

Um
 is denoted 

as the density of m-variates uniform distribution. Gibbs-M-H types algorithm can 
therefore be constructed.

To realize the sampling of mixture copulas, we assign the group label 
kj ∈ {1, 2, 3,… ,K} , for our observations j = 1, 2,… , n . The prior of the group 
weight is the Dirichlet distributions

Therefore, we present the pseudo marginal algorithm for mixture copula with dis-
crete and mixed margins in Algorithm 2, which circumvents the necessity of sam-
pling from the conditional copulas of every dimension and every data point.

�(�) ∼ ���������(1∕K, 1∕K,… , 1∕K).

Algorithm 2   Bayesian pseudo correlated method for mixture copula with mixed margins
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4 � Algorithm validation

In order to validate our approach, we firstly use it to learn the synthetic data sampled 
from mixture copulas of our own design so that the correctness of the sampler can 
be empirically tested. Then, we solve classification problems involving real experi-
mental data by oversampling from mixture copulas.

4.1 � Synthetic data

For the first synthetic test, we simulate the data from a 3-dimensional mixture 
normal copula and discretize it using categorical marginal distributions. In par-
ticular, the marginal distribution is set to be Categorical (a1, a2,… , a10) where 
a1 ∶ a2 ∶ a3,⋯ ∶ a10 = 1 ∶ 2 ∶ 3⋯ ∶ 10 . The sample data are transformed using 
xij = F−1(uij) where F−1(⋅) is the inverse of the categorical distribution. As for the 
copula, we use

where the subscript “m” refers to “mixed”, v ∈ [0, 1]3 and � = (�12, �13, �23)
T deter-

mine the corresponding correlation matrix. We generate

points from the first and second copulas c1N and c2N respectively and since 
the data points are exchangeable, this corresponding to estimate copulas with 
(w1,w2) = (1, 0), (0.75, 0.25).

We set the initial number of mixture components K to be 3 and let the algorithm 
in the Sect. 3 to decide if it is appropriate. We generate 5000 posterior points for 
each parameter. The commonly occurring label-switching problems are solved by 
ranking the group number according to their weights at the end of each iteration. 
We calculate the posterior mean of parameters after discarding the first 3000 points 
through burn-in. The experiments stated above were repeated 30 times for each 
sample size and the estimations for the posterior means were averaged over repeti-
tions and the corresponding standard deviations were calculated. Table 1 displays 
the results. As we have overfitted the number of groups K = 3 , we can see that the 
algorithm correctly selects the number of groups even for relatively small sample 
sizes. Only insignificant amount of weightings are assigned to the empty compo-
nents. With the increase of the data points, the posterior means show a good sign of 
convergence.

For the skew-normal copula, the estimation of the parameters are more difficult, 
especially for the � parameters. We sample from

(23)
cm(v) = w1c1N(v;�

1 = (0.6,−0.5,−0.6)T ) + w2c2N(v;�
2 = (0.8, 0.7, 0.8)T ),

(n1, n2) = (200, 0), (500, 0), (1000, 0), (150, 50), (375, 125), (750, 250)

(24)
cskewm

(v) = w1c1SN(v;�
1 = (0.6, 0.6, 0.6)T , �1 = (0.8, 0.8, 0.8)T )

+ w2c2SN(v;�
2 = (−0.8,−0.8, 0.8)T , �2 = (−0.8,−0.8,−0.8)T ).
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Data points are converted similarly but using the categorical distribution 
with 30 categories, and the corresponding probability for each category is 
a1 ∶ a2 ∶ … a30 = 1 ∶ 2 ∶ ⋯ ∶ 30 . We report the results with two sets of data which 
are

This corresponds to (w1,w2) = (1, 0), (0.6, 0.4), (0.75, 0.25) . We estimate the param-
eters by setting K = 2 . The MCMC method is implemented for 5000 iterations, 
with the first 2000 points discarded for the first two experiments and 3000 points 
discarded for the last experiment as burn-in. Due to the computational burden, the 
experiments are not repeated. Table 2 shows the results. Noticeably, the first com-
ponent of the skew-normal copula when (w1,w2) = (0.6, 0.4) is not correctly esti-
mated, although other parts of the results are reasonably acceptable. In general, we 
find out through multiple experiments that the learning of mixture skew normal 
copulas sometimes requires much more data than the corresponding mixture normal 
copulas, especially for the skewness parameters � . On the other hand, increasing the 
number of uniform samples N′ as introduced in (21) could lead to faster mixing of 
the MCMC sampler. However, this would lead to slower computational iterations.

4.2 � Real experimental data

To test our approach against real data, we select 3 imbalanced datasets from KEEL 
(Alcalá-Fdez et al., 2009), which are abalone9–18, car-vgood and kr-vs-k-zero–one_
vs_draw. The abalone data set contains eight attributes of captured abalones, which 
are used to predict if the abalone is an older one or a young one. Only the first meas-
urement is categorical (so m = 1 ) with three levels; the remaining seven factors are 
continuous (so d − m = 7 ). The data is highly imbalanced: only 42 of the 731 total 
instances belong to the “older” class. The car dataset includes 1728 observations, 6 
categorical features are used to predict if the car has a ”very good” quality, only 65 

(n1, n2) = (2000, 0), (1500, 1000), (3000, 1000).

Table 1   Means and standard deviations of the posterior mean estimators for synthetic discrete data from 
normal copulas over 30 repetitions of MCMC experiments

Mean ± sd are reported, �1,�2 are the correlations for the first and second normal copulas. The number 
of uniform samplings N� = 30

n1,n2 200, 0 500, 0 1000, 0 150, 50 375, 125 750, 250

w1 0.88 ± 0.08 0.92 ± 0.07 0.94 ± 0.05 0.68 ± 0.08 0.69 ± 0.07 0.71 ± 0.06

w2 0.10 ± 0.06 0.07 ± 0.06 0.05 ± 0.05 0.26 ± 0.06 0.24 ± 0.04 0.24 ± 0.03

�1
12

0.60 ± 0.06 0.61 ± 0.03 0.60 ± 0.02 0.60 ± 0.07 0.62 ± 0.04 0.61 ± 0.03

�1
13

−0.52 ± 0.06 −0.51 ± 0.04 −0.49 ± 0.03 −0.43 ± 0.15 −0.50 ± 0.06 −0.51 ± 0.04

�1
23

−0.61 ± 0.05 −0.61 ± 0.03 −0.60 ± 0.02 −0.53 ± 0.13 −0.61 ± 0.06 −0.60 ± 0.04

�2
12

0.71 ± 0.12 0.76 ± 0.05 0.78 ± 0.06

�2
13

0.45 ± 0.25 0.56 ± 0.18 0.63 ± 0.14

�2
23

0.51 ± 0.27 0.64 ± 0.17 0.72 ± 0.17
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instances out of the total samples belong to ”very good” class. The last mentioned 
data set is a chess data set. There are 2901 observations in total with six categorical 
features indicating the status of the current game. We use the features to predict the 
outcome of games, the dataset only contains 3.6% positive instances.

We split the data using the random hold-out method. The car dataset is sepa-
rated with 90% − 10% train-test set ratio. The chess dataset is divided according to 
80% − 20% train-test ratio and the abalone dataset is divided into 70% − 30% train-
test ratio. We use different ratios to ensure that there are enough minority samples 
for us to train models. In order to keep the proportion between majority and minor-
ity classes in our training and test sets, we use the stratified train test split. That 
is, the proportion between classes are kept the same in train and test set when we 
conduct the splitting. Finally, the random hold out approach is used for 5 times 
in each dataset. Figure  1 shows the scatter plot of the minority class in the aba-
lone dataset between (Ui,Uj) = (F̂ni(xi), F̂nj(xj)) for i, j = 1, ..., 8 , where F̂ni(⋅) is 
defined in (18). Since the first attribute is discrete, U1 is sampled uniformly from 
[F̂n1(x1 − 1), F̂n1(x1)] for every instance on the plot.

Since our datasets are imbalanced, we oversample the minority class using the 
mixture copulas to balance the training set. As before, we use MCMC techniques 
following the Algorithm 2 to generate 2500 points. Sufficient samples up till the last 
are used to balance the set and the remaining are discarded. We use this approach 
with our two copula methods, random oversampling, and SMOTE.

We then apply the random forest, support vector machine, logistic regression 
classifiers to learn the parameters from the balanced training datasets and test them 
in the test sets. Every experiments are repeated 5 times as we split the data 5 times 
using the random hold out approach and we calculate the mean and sd estimators 
from there; the results are shown in Table 3. For 9 comparisons over different classi-
fiers and datasets. The copula methods win 5 times. We can say that the copula over-
sampling methods do perform better than the random oversampling and SMOTE 

Fig. 1   Pairs plots between the attributes for the minority class in the training set
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under many circumstances. On the other hand, all copula models perform signifi-
cantly better in the statistical sense than the original unbalanced data. Therefore, the 
approach is promising when marginals of the data display highly correlated complex 
patterns, especially if the margins are mixed with continuous and discrete features 
which may not be handled well with the classical SMOTE or random oversampling 
methods.

5 � Discussion and conclusion

When faced with imbalanced data sets, many algorithms implement a preprocessing 
step to oversample the minority class in order to obtain a balanced training set. In 
the work, we introduced the alogrithm for learning the mixture copula with mixed 
margins and apply the approach for performing the oversampling. This enables us to 
oversample data with both discrete and continuous features.

The classical random oversampling method replicates points from the exist-
ing distribution, and hence is prone to overfitting. In contrast, our proposed copula 
methods may generate new points with correlation between margins already cap-
tured, and hence is less prone to overfit. Another classical method, the SMOTE 
algorithm, is not naturally applicable for the discrete features. This may cause prob-
lems in cases where discrete data is an important attribute.

We applied our method to both a synthetic data to validate its correctness and 
used real life datasets to perform the oversampling. Our copula approach has shown 
some merits over the benchmark methodologies. Although under some circum-
stances random oversampling and SMOTE still performed best, our methods were 
competitive as can be seen. Therefore, this new methodology can be incorporated 
into the oversampling toolbox for more applications.

In this manuscript, we focused on two types of copulas: normal and skew-normal. 
To deal with the multi-modal correlation structure, we incorporated the mixture 
copula model (Arakelian & Karlis, 2014), which is useful for processing the com-
plex real dataset.

But any of the wide variety of copulas in the literature can be used with our 
approach, which will cause further advancement in this study of imbalanced learn-
ing and clustering. If the data set has very few points, the one-parameter Archime-
dean family of the copula Genest and Rivest (1993) can be used. Moreover, various 
copula selection approach such as Huard et  al. (2006) may be further considered 
when we select the best model for the data set. These additional cases will be 
explored in further research.

Data availability  The experimental data set used for the current study is available in the KEEL reposi-
tory: https://​sci2s.​ugr.​es/​keel/​datas​ets.​php.
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