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Thomas and Windle’smodel of Case II transport is analyzed for a semiinfinite medium 
by a singular perturbation technique. Two adjacent boundary layers separate equili- 
brated and dry regions. A thin boundary layer of width - O(M-lp/ln M), where M 
( % 1) dictates how rapidly the mixture’s viscosity decays with liquid concentration, sits 
next to the equilibrated outer left region. Here, quasi-steady difision balances relax- 
ation. A thicker intermediate layer of width - O(M-  ‘p) separates the lejihand bound- 
ary layer and the dry outer region on the right, where both relaxation and unsteady 
difision participate in the transport. Matching the solutions at leading order specifies 
the moving front’s speed, u: u - M’P. The analysis indicates that relaxation sign$- 
cantly afsects the nearly dry region just ahead of the moving fiont. This disagrees with 
the widely accepted view that ordinary difision dominates in the nearly dry righthand 
region. Approximating that ordinary difision dominates in this region leads to a step- 
exponential concentration profile at the front and a simple analytical solution for the 
front speed, u with the correct M scaling. This approximate result accurately predicts the 
values of u determined by direct numerical solutions. 

Introduction 
The unsteady diffusion of liquids in polymers is a control- 

ling physical process in many engineering applications. Two 
examples are a class of control release devices, in which a 
bioactive species entrapped in a dense polymer matrix is 
slowly released by the progressive swelling of the matrix in an 
environmental fluid and certain barrier materials, which must 
effectively confine a liquid after initial contact on one side 
for an extended length of time. In these examples, and many 
others, simple mathematical models for the unsteady mass 
transport are invaluable design tools. 

Unsteady interdiffusion in such systems is often compli- 
cated by viscoelastic or anelastic effects. Essentially, the poly- 
mer’s response to its local dynamic history influences the mass 
transfer. This is shown in simple diffusion experiments, such 
as sorption or permeation, as obvious deviations from the 
predictions of Fick‘s laws (Vrentas and Duda, 1986). For un- 
steady diffusion over macroscopic length scales [0(10-3 - 

lo-’ rn)] such deviations appear inevitably when the system 
is near or below the glass transition since, under these condi- 
tions, the characteristic material time for the polymer be- 
comes comparable to the relevant (macroscopic) time scale 
for the unsteady transport. In addition, such diffusion proc- 
esses are often nonlinear in the sense that enormous changes 
in the governing transport properties accompany typical 
changes in local liquid content during the diffusion. In exam- 
ples cited above, glassy polymers are employed and relatively 
large changes in composition occur during transport. Conse- 
quently, nonlinear “ viscoelastic” or “anelastic” diffusion is 
encountered, showing striking deviations from Fick’s law:$. 

Nonlinear, non-Fickian diffusion is difficult to model from 
first principles for two reasons. First, there is no widely ac- 
cepted theoretical result telling precisely how material mem- 
ory or anelasticity influences the diffusion flux in situations 
of practical importance. A second difficulty is the mathemati- 
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cal challenge of typical initial value problems derived from a 
first-principles model. Typical problems require numerical 
computation, which makes comparison with data cumber- 
some. 

The objective of this work is to explore the predictions of a 
relatively simple nonlinear model for a striking non-Fickian 
effect, Case I1 transport. The model, first derived by Thomas 
and Windle (1982) from phenomenological arguments, was 
shown by Fu and Durning (1993) to be the small Deborah 
number limit of a more general theory for viscoelastic media 
derived from nonequilibrium thermodynamics (Durning and 
Tabor, 1986). We analyze this nonlinear model by a singular 
perturbation method to obtain a simple expression for the 
most important dynamic feature of the Case I1 process, the 
front speed. The phenomenology of Case I1 transport is dis- 
cussed briefly, as well as the essentials of Thomas and Win- 
dle’s (TW) model. Subsequently, the surface boundary condi- 
tion in the model is analyzed, and then the diffusion equation 
is studied by a perturbation analysis. 

Case II  Transport and the TW Model 
Alfrey, Gurnee and Lloyd (1966) documented unusual phe- 

nomenology during the unsteady sorption of liquid swelling 
agents in glassy polymers under immersion conditions. The 
striking observation was of a sharp liquid concentration front, 
separating highly swollen polymer from a nearly dry interior, 
propagating slowly into the sample at constant speed. At the 
same time the liquid mass uptake increased linearly with time. 
Neither observation can be reconciled with Fick’s laws. In- 
deed the character of the process was so distinct from that 
normally associated with diffusion, Alfrey et al. labeled it Case 
I1 transport and proposed that it was a transport mechanism 
unique to polymer/fluid mixtures which becomes dominant in 
the glassy state. 

Careful experiments have since clarified the phenomenol- 
ogy of Case I1 transport. Direct measurements of concentra- 
tion profiles (Thomas and Windle, 1978; Hui et al., 1987a,b; 
Lasky et al., 1988) show that the fluid concentration at the 
polymer surface relaxes autocatalytically after first contact 
with the fluid, causing an initial delay or induction time in 
the liquid weight uptake kinetics. After the initial surface re- 
laxation, a sharp liquid concentration profile develops and 
propagates into the sample at constant speed. Studies of 
sample thickness and temperature effects (Hopfenberg, 1978; 
Thomas and Windle, 1978) show that the front propagation 
can become limited by diffusion in the swollen region if the 
diffusion path length between the polymer/fluid interface and 
the front becomes large enough, or, equivalently, if the front 
speed becomes sufficiently large as occurs if one elevates the 
sorption temperature. Indirect evidence strongly suggests that 
Case I1 is a nonlinear effect, since it is not seen in “differen- 
tial” sorption experiments (Billovits and Durning, 1990, 1993, 
1994) where the composition change during transport is de- 
liberately kept small so as to minimize or eliminate signifi- 
cant variations in physical properties during the process. In 
summary, the experimental evidence indicates that Case I1 is 
a particular manifestation of viscoelasticity or anelasticity in 
diffusion, appearing in sorption experiments when the com- 
position dependence of transport properties is strong and 
fluid diffusion in the swollen surface layers is sufficiently 
rapid. 

These experimental results have stimulated many modeling 
efforts. Thomas and Windle (1982) proposed a one-dimen- 
sional nonlinear model from phenomenological arguments 
which was shown by numerical solution and subsequent anal- 
ysis (Hui et al., 1987a,b) to describe the essential character of 
Case 11. Fu and Durning (1993) showed that the diffusion 
flux in the Thomas and Windle model can be derived by 
keeping the first nontrivial term in a retarded-motion expan- 
sion of a memory integrai appearing in a more general flux 
law for diffusion in viscoelastic media. This approximation is 
only valid when the local diffusion Deborah number De(c) is 
sufficiently small, where De gives the ratio of the local relax- 
ation time for memory effects T ( C )  to an external time scale 
for the unsteady diffusion. The Thomas and Windle flux law 
is 

where j:,{ means the mass flux of liquid (component 1) rela- 
tive to polymer (component 2) along the (material) coordi- 
nate ( (Billovits and Durning, 1989). Also, c is the liquid 
mass concentration per unit volume of polymer, D(c)  is the 
polymer-material diffusion coefficient, ~ ( c )  is the mixture’s 
(zero shear rate) viscosity, and Go is the dry polymer’s high 
frequency shear modulus. The function D’(c), scaling the 
contribution of memory effects to the flux, is proportional to 
D(c)  and to the ratio of Go to the mixture’s osmotic modulus 
(Durning and Tabor, 1986). If simple thermostatic behavior is 
assumed (Fu and Durning, 1993), one finds 

where c, and qle  are the equilibrium values of the liquid 
concentration and volume fraction, respectively. Also, 
means the liquid molar volume, R is the gas constant, T is 
the absolute temperature, and Do = D(c = 0). 

Combining Eq. 1 with a 1-D liquid mass balance yields a 
third-order, nonlinear diffusion equation governing the liquid 
concentration field. For sorption, the appropriate boundary 
condition on the polymer/fluid interface is of continuity in 
the liquid chemical potential; the form thermodynamically 
consistent with Eqs. 1 and 2 is 

(3) 

where I‘, means the liquid specific volume. The first term on 
the left approximates the thermostatic chemical potential for 
a given value of c; the second term on the left approximates 
the nonequilibrium contribution to the chemical potential be- 
cause of the polymer’s fading memory. 

In Fu and Durning (1993) the diffusion equation for c based 
on Eqs. 1 and 2 was solved numerically for integral sorption 
in a dry thin film. Equation 3 gave the boundary conditions 
on the film surfaces and the representations D(c)  = Do 
exp(kc) and q(c) = qo exp( - mc) were used. Three parame- 
ters appeared in the dimensionless initial value problem 
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; K = kc,; M=rnc,. cp lP177, Do 
R T ~ ~  

0 =  

0 is a Deborah number; K and M gauge the strength of 
nonlinearities in the problem; K measures how rapidly the 
diffusion coefficient increases with concentration while M 
measures how rapidly the viscosity decays with concentration. 
Estimates of these for 1-mm thick films of poly(methy1 
methacrylate) immersed in liquid methanol at room tempera- 
ture, where Case I1 dominates, showed 9 - 0(10-'), K = M - O(10). 

The numerical simulations by Fu and Durning (1993) re- 
vealed the following: 

i. Both K and M must be sufficiently large (>  3) for Case 
I1 to be predicted from the model. 

ii. 9 must be small ( -  0(10-')) for Case I1 to be pre- 
dicted; however, Case I1 characteristics are extinguished for 
excessively small 0 ( << lo-'). 

iii. When Case I1 is predicted, the dimensionless front 
speed u obeys u - 0-lP for fixed values of K and M. 

iv. When Case I1 is predicted, u increases monotonically 
with M for fixed K and 9; an unambiguous functional repre- 
sentation was not found however. 

v. When Case I1 is predicted, the nonequilibrium contribu- 
tion to the chemical potential - q(c)dc/dt (see Eq. 3) forms 
a sharp, symmetric peak traveling at speed u just ahead of 
the liquid concentration front; it is nearly zero away from the 
front. 

The last feature clarifies the role of fading memory in Case 
I1 through the effect of the nonequilibrium, relaxing part of 
the chemical potential. Evidently, relaxation effects are con- 
fined to a narrow spatial locus traveling at speed u ;  within 
this zone, V(c)dc/dt is strongly peaked. On the side of its 
peak nearer the liquid reservoir, ~(c)dc/dt has a large posi- 
tive slope, and so strongly retards diffusion of the fluid; this 
confines spreading of the liquid, causing it to collect at a sharp 
front immediately adjacent to the locus of relaxation. 

1 -D Sorption in Semiinfinite Medium 
For mathematical convenience we study the Thomas and 

Windle model for sorption into a semiinfinite body of dry 
polymer. Let the polymer/fluid interface be located at 6 = 0. 
Then, defining scaled concentration u = c/c,, scaled distance 
x = &'(Dh~,/G,>'~ and scaled time s = t/(Dh.rl,/G,D,) leads 
to the dimensionless initial value problem 

u , + e M u I n u = O  at x = O  for O < s < m ,  ( 5 )  

u - 0  as x+m for O < s < m ,  (6) 

~ = e - ~ ~ u , - + O  as x-00 for ~ < s < m  (7) 

u=O at s = O  for O i x < m  (8) 

T = O  at s = O  for O < x < m .  (9) 

Equations 5-7 are the boundary conditions for the semiinfi- 
nite media; Eq. 7 expresses that the (dimensionless) nonequi- 
librium contribution to the chemical potential T vanishes far 

into the polymer, where the material is undisturbed. Equa- 
tions 8 and 9 are the initial conditions of dry polymer at equi- 
librium. 

Now, from the finding (i) in the numerical work mentioned 
above, we want both K and M to be large; hence, we let. 
K = a M  where a - O(1) and pursue an analysis for large M .  

Analysis of Surface Boundary Condition 
Equation 5 indicates that the fluid concentration at the 

polymer-fluid interface u ( x = O ,  s) is not constant, but re- 
laxes with time to the final, equilibrium value. We show that 
this relaxation becomes autocatalytic for large M .  The gov- 
erning equation already suggests this tendency. Figure 1 shows 
us  vs. u according to Eq. 5 for various values of M. For large 
values of M the maximum becomes very sharply peaked and 
lies close to u = 1 (Figure lb). The behavior suggests that for 
M B 1, u(x  = 0, s) should increase slowly at first, but later 
suddenly increase quite rapidly before abruptly skidding into 
the equilibrium value u = 1. 

The exact solution of Eq. 5 is 

Figure 2 shows the numerical evaluation of Eq. 10 by 
Romberg integration, using a finite lower limit to avloid nu-. 
merical overflow. For large M ,  an autocatalytic response is 
clearly seen: u(x = 0, s) rises slowly until an abrupt increase 
to 1 at a characteristic time s* which appears to scale near 
s* -A,-'. 

A short-time asymptote to Eq. 10, valid for large M' and u 
such that u - o(M- ' ) ,  follows from Eq. 5 ,  us +In u = 0, which 
has the solution 

where El = /,= (e-"/x)dx. Since Eq. 11 is only good for s such 
that u - o ( M - ' )  and since El(x) - e-'/x for x >> 1 (Gautschi 
and Cahill, 1965), Eq. 11 is only valid for s - o(M-L/ln M ) ,  
after which a rapid blowup in u occurs (e.g., Figure 2b). This 
blowup is logarithmic in s for large M ,  which can be !seen by 
considering u > O(M- ' )  but - o(1). Putting u = M-' i i  in Eq. 
5 gives 

ti, + MeVn u -In M )  = 0. 

In the regime of interest, the second of the logarithm terms 
dominates and we have 

where So - U(1) is an integration constant. 
The asymptotic approach of u to its equilibrium value can 

also be understood from Eq. 5. Consider when u = 1 .- A/M., 
with A - O(1). For M >> 1, Eq. 5 becomes 

A? + eAA = 0 (13) 
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(a) (b) 
Figure 1. us vs. u for various values of M according to Eq. 5. 

(a) M = 1 (-); M = 2 (---); M = 3 (----); (b) M = 5 (-); M =  10 (---); M = 15 (----). 

where 2 = e's. The solution, which is written in the original 
variables, is 

E,(M(l-  u ) )  = eMs + to; 1 - u - O ( M - ' ) ;  M >> 1 (14) 

where 2o is an integration constant. Equation 14 implies an 
extremely rapid relaxation to the equilibrium concentration 

0.0 0.2 0.4 0.6 0.8 1 .o 
S 

(a) 

after the logarithmic blowup. This can be seen clearly by con- 
sidering the asymptotic form of Eq. 14 for (1 - u )  - o(M- ' ) ,  
u = 1 - C ( M ) P M s  where C ( M )  is an M dependent con- 
stant. It shows that u achieves its equilibrium value very 
abruptly after the logarithmic growth begins, within a tran- 
scendentakly small time scale s - O(e-M).  

Equations 11, 12 and 14 can be patched at the crossover 

1 .o 
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(b) 
Figure 2. u vs. s for various values of M according to Eq. 10; the lower limit in Eq. 10 was set to to avoid 

numerical overflow. 
(a) M = 1 (-); M = 2 (---); M = 3 (----); (b) M = 5 (-); M = 10 (---); M = 15 (----I. 
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Figure 3. Comparison of exact and asymptotic solu- 
tions for u vs. s with M = 10; asymptotic solu- 
tions are patched at the crossover points u = 
M-' and u = l -  M-'.  
Eq. 10 (-); Eq. 11 (0); Eq. 12 ( A ) ;  Eq. 14 ( 0 ) .  

points u = 1/M and 1 - 1/M by appropriate choice of the in- 
tegration constants s, and ;o to give a very good, piecewise- 
continuous approximation to Eq. 10 Figure 3 shows the com- 
parison for M = 10. 

Perturbation Analysis of Diffusion Equation 
We seek a wavelike solution to Eq. 4 for M B 1 and for 

time-scales s > O(M-'/ln MI.  From numerical studies (Fu 
and Durning, 1993), we anticipate that the solution has a 
sharp front where the concentration drops very suddenly over 
a small spatial scale, from u - 00) on the left to u << 1 on 
the right (Figure 4). In seeking a wave-like solution, we apply 
the transformation Z = X -  us where u is the speed of the 
concentration wave to be determined in the analysis, and ex- 
pect that the ordinary differential equation governing u(z) 
submits to a boundary layer analysis. 

Under the conditions of interest, the surface boundary 
condition Eq. 5 can be replaced by 

u = l  at x = O  for O < s < m .  (15) 

Making the transformation z = x - us in Eq. 4, integrating 
and making use of the boundary conditions Eqs. 6 and 7 gives 

uueaMU(e-MUuz)2 - eaMuu, - uu = o for - us < z <m. 

(16) 

For M B 1, one sees immediately that in any region where 
d/dz - 0(1), i.e., outside the boundary layers, the first term 
on the left in Eq. 16 representing the effect of memory is 
negligible compared to the second owing to the coefficient 
- MU 

1 .o 

0.8 

0.6 

3 

0.4 

0.2 

0.0  

layers  
W 

U. 

I I 
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Figure 4. Wave-like concentration profile. 

Auxiliary conditions associated with Eq. 16 can be dleduced 
from the unused auxiliary conditions in the original problem 
Eqs. 8, 9, and 15. The last gives 

(17:) u = l  at z = - u s .  

To state the implications of Eqs. 8 and 9, we must first assign 
the position z = 0. Let us define the Case I1 front position xf 
as the location in the fixed coordinates of the peak in T ,  

since it is a precisely defined feature associated with the liq- 
uid front [recall the result (v) from numerical work discussed 
earlier]. Let us also define a characteristic liquid concentra- 
tion, u = uf, and a characteristic value of rr = r r f ,  corre- 
sponding to the front location xf (Figure 4). Now, ak.,/ds = u 
which gives xf = us +const. Assuming xf(0) = 0, i.e., xf = us 
is consistent with Eq. 17, in that both ignore the initial induc- 
tion process at the polymer/fluid interface, during which the 
surface concentration relaxes to its equilibrium value. This 
choice gives zf = xf - us = 0. Consequently, z = 0 corre- 
sponds to the location of the liquid front. 

With this, Eqs. 8 and 9, imply 

u = O  for O < z < m  (18) 

and 

rr = - ue-MUuz = 0 for o < z <m. (19) 

The following subsections examine the dominant balances 
among the terms in Eq. 16 in several regions. In two outer 
regions (one for z > 0 and one for z < O), the first term on 
the left, representing the effect of relaxation on transport, 
plays a minor role. In the inner, boundary layer regions near 
z = 0, this term must be included and is balanced by the sec- 
ond and/or third term on the left, representing tranisport by 
ordinary diffusion. Matching at leading order eliminates all 
unknown integration constants and supplies a formu'la for v. 
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It turns out that the preferred matching process employing 
intermediate limits (Kevorkian and Cole, 1981) cannot be 
done analytically, and we rely where possible on "patching" 
the asymptotic solutions, i.e., forcing the values to agree at 
crossover points. 

The numerical work by Fu and Durning (1993) shows that 
the front speed increases monotically with M [see the result 
(iv) discussed previously], suggesting u = u ( M )  diverges with 
M. The dominant balances depend on the strength of this 
divergence. It turns out that u - O ( M W )  is needed for a 
self-consistent, leading-order solution; we demonstrate this 
below by a process of elimination. 

Outer solutions 
Consider the outer right region first (Figure 4). We assume 

u I O(M- ' )  to satisfy Eq. 18 for M >, 1 and so let u - M-'f  
in this region. Equation 16 leads to 

f = O  (20) 

when M - t o o ;  the outer right region is completely dry. This 
clearly satisfies Eq. 19. 

In the outer left region we know u - O(1) by Eq. 17. Let 
u - g; neglecting the subdominant first term on the left in 
Eq. 16 leads to eaMggz + ug = 0 indicating transport con- 
trolled by unsteady ordinary diffusion to the left of the front. 
Note, however, that the term ug is also negligible when d/dz - O(1) since e a M S  >> 1. So, to leading order we actually have 
eaMggz  = 0. The solution, subject to Eq. 17, is 

g = 1 .  (21) 

In deriving this we assumed d/dz - O(1), but it is actually 
valid under the less restrictive assumption that d/dz > 
O(ue-aM). Considering that the extremal value of z occurs 
at x = 0 where z = - xf, the least restrictive condition for 
which Eq. 21 holds can be stated 

x f  - o(eaM/u). (22) 

Equation 22 is a solvability condition, needed for a wave-like 
solution of Eq. 16. 

Boundary layer solutions 
Now consider the boundary layer regions (Figure 4). Intu- 

ition suggests that ordinary diffusion might dominate in a 
boundary layer adjacent to the outer right. Let u - M- 'w  in 
this layer. In order for the diffusive terms in Eq. 16 to bal- 
ance we must scale z by f = uz. Then, Eq. 16 becomes 

" 
-weaw(e-wwi)i - ecrwwi - w = 0. 
M (23) 

Note that if u - o ( M P ) ,  then the first term drops out when 
M diverges and ordinary diffusion dominates. For u 2 
O(MLZ) ,  one cannot drop the first term and relaxation plays 
an important role in the layer. 

First consider the case u - o(M-lP) .  The leading order so- 
lution to Eq. 23 becomes 

where the integration constant ensures patching to the front 
concentration uf at z = 0. Note that w -+ 0 as i -+m, so that 
Eq. 24 matches Eq. 20 on the right. For Eq. 24 to be self-con- 
sistent, we must find that T has a maximum and the corre- 
sponding value of u ( =  u f )  has the correct M scaling, i.e., 

which does show a maximum; calculating uf from the condi- 
tion T= = 0 gives 

u < O(M- ' ) .  From Eq. 24 we find m- = u*e-('+")" w/M 
f :  

(25) 

showing that Eq. 24 is indeed self-consistent. We subse- 
quently consider uf and the corresponding value of T 

(26) 

as righthand boundary conditions on the adjacent lefthand 
inner balance, in order to patch the left- and righthand 
boundary layers at z = 0. 

In a lefthand boundary layer adjacent to the outer left, u > 
O(M- ' ) .  One cannot drop the first term on the left in Eq. 
16, representing the influence of memory (i.e., of relaxation). 
Note that whenever d/dz > O(1), then the third term on the 
left in Eq. 16 can be neglected in comparison with the other 
two. Denoting by Z the boundary layer variable and putting 
u - h in this layer, we have 

as the dominant balance in this region. Equation 27 balances 
the effects of memory and of quasi-steady ordinary diffusion. 

Integrating once leads to 

1 1 
e-Mhhi = -In h +constant = -In h.  

U U 
(28) 

Choosing the integration constant as zero, as shown in the 
second part of Eq. 28, ensures matching to the outer left so- 
lution. Note that Eq. 28 is isomorphic to Eq. 5, indicating 
that the lefthand boundary layer profile has the same shape 
as the surface concentration's time history. Integrating again 
leads to 

(29) 

where the integration constant is chosen to patch h and w at 
z = 0. Equations 20, 21, 24, 25 and 29 are the leading-order 
solutions assuming u - o(MIP).  They contain the unknown 
parameter u determined by patching T derived from h and 
w at z = 0. This leads to u = [e(l + a ) M  In M(1+ a ) ] v ,  
which contradicts the original assumption u - o ( M P ) .  Con- 
sequently, u must scale u 2 O(M*P) .  
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We now assume u > O(M'/2). The outer left solution at 
leading order remains the same (Eq. 21 subject to Eq. 22) 
because of the overwhelming effect of the exponential factors 
in Eq. 16 when u - O(1) and M -+a. For the righthand 
boundary layer, introduce f = uz and let w - v-'u; Eq. 16 
becomes 

(30) ww-- - w -  - w = 0 
zz z 

at leading order. Integration gives wi = In Ae'w where A is 
an integration constant - O(1). There exists a solution such 
that w(Z -+ -m) - i2/2; w(i -+a) - e-i/A, which ensures 
matching between the right boundary layer and the outer 
right. This solution displays a maximum in m-, allowing calcu- 
lation of u f  as in the development of Eq. 25. One finds that 
uf satisfies u f u 2  +In A u f v 2  = 0 which shows u f  - O(u-') 
consistent with the scaling for w. The corresponding value of 
m- is rf = -In Aufu2 .  If one proceeds as before to patch m- 
derived from h and w at z = 0, the relation u = A-'P - O(1) 
results. However, this violates the original assumption that 
u > O(M1fl) .  Attempting a more rigorous matching calcula- 
tion also leads to a contradiction. Here, we recognize that 
the function w occupies a doubly infinite domain in Z about 
z = 0, and try to match h and w using intermediate limits. 
This cannot be done directly since w diverges quadratically 
when Z -+ - 00 while h approaches a finite value for 2 -+ 0-. 
The only possibility is to construct an intervening layer, 
thicker than that for either w or h ,  which enables matching 
at either end. Analysis of Eq. 16 shows that it is not possible 
to construct such a layer. Hence, the assumption that u > 
O ( M ' P )  must be wrong. 

Having reached contradictions assuming either u - o(M'P)  
or u > O ( M v ) ,  we conclude u - O ( M v ) .  Setting v = 

u o M p  where u, - O(1) leads to the correct dominant bal- 
ance in the righthand boundary layer. Appropriate scaling for 
this layer is Z = M'flz and u - M-'w.  Equation 16 becomes 

uoweaw(e~Wwz)i - enWwi - uow = 0 (31) 

for M -+ 00. Since Eq. 31 behaves like Eq. 30 for small w, we 
know there exists a solution decaying for i --)cot permitting 
matching to the outer right. Unfortunately, neither matching 
or patching of Eqs. 31 and 29 can be done analytically, al- 
though numerical matching succeeds, as demonstrated later. 
One can obtain analytical results however by approximating 
the concentration profile at the front by a step-exponential 
shape, as first suggested by Peterlin (1965). 

Step-exponential approximation 
By adopting two ad-hoc mathematical approximations, the 

boundary layer solutions can be patched at z = 0 to find an 
analytical, leading-order solution consistent with the scaling 
u - O ( M p ) .  First, neglect the logarithmically ascending por- 
tion of the concentration profile in the left boundary layer, 
isomorphic to Eq. 12. Second, drop the first term in Eq. 31, 
representing relaxation effects in the righthand boundary 
layer. It turns out that this approximation gives a step-ex- 
ponential concentration profile for the Case I1 front. 

In deriving the results, it is helpful to note that concentra- 
tion and nonequilibrium potential at the front are related ex- 
actly by 

Now, neglecting the relaxation term in Eq. 31 for f r o ,  we 
have 

which corresponds to pure diffusion in the right boundary 
layer; the integration constant in Eq. 33 is chosen to patch to 
u f  at z = 0. Calculating u f  from the maximum in m implied 
by Eq. 33, and using Eq. 32 to determine rf therefrom, leads 
to Eqs. 25 and 26 with u = v o M p .  We find u f  - O(M- ' ) ,  
consistent with the scaling assumed for Eq. 31, and rrf '- O(1). 

Consider now the lefthand boundary layer governed by Eq. 
28. Adopting as the leading-order form the equation isomor- 
phic to Eq. 13 gives 

analogous to Eq. 14, where the integration constant is, evalu- 
ated to patch h and w at z = 0. Note that this neglects the 
logarithmic portion of the lefthand boundary layer, which is 
now transcendentally thin. Evaluating m- from Eq. 34 and 
patching m- derived from h and w at z = 0 leads to vf = 1 - 
l/[M(a + l)] = u;/[e(a + l)] which gives 

This agrees with the scaling of u assumed for Eq. 31. 

Discussion 
Consider first the solvability condition Eq. 22 needed for a 

wave-like solution. Equation 22 corresponds to 

(36) 

in the dimensional quantities. Here I/ is the actual speed of 
the front, Sf is its position (in polymer material coordinates), 
and Do, means the (polymer material) diffusion coefficient in 
the outer left region, i.e., at the equilibrium concentration c,. 
The physical meaning of Eq. 36 is clear: A wave-like slolution 
exists only if the characteristic velocity for fluid diffusion from 
the reservoir to the front greatly exceeds the front speed, or, 
equivalently, if the characteristic time for diffusion frlom the 
reservoir to the front is negligible compared to the time for 
the front to reach its present position. In other words, the 
diffusional resistance to the left of the front must be negligi- 
ble for Case I1 to appear. 

This condition is consistent with experimental eviidence, 
numerical solution of the TW model and previous analytical 
modeling efforts. Hopfenberg (1978) and Thomas and Win- 
dle (1978, 1982) studied the effect of film thickness on Case 
I1 using sorption experiments. In systems showing Caste I1 ki- 
netics, increasing significantly the film thickness caused the 
front speed to decay with time at long times; Thomas and 
Windle showed that this decay resulted from the develop- 
ment of gradients in the fluid profile in the swollen layer, i.e., 
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with the onset of diffusional limitations behind the front in 
thick samples. The same authors found temperature to have 
a similar effect in the poly(methylmethacrylate)/methanol 
system: Increasing the sorption temperature from 20 to 60°C 
erased Case I1 characteristics in 1 mm thick plates. They 
showed that increasing the temperature greatly increased the 
front speed relative to the diffusion velocity in the swollen 
region, causing the rapid onset of severe diffusional limita- 
tions behind the front. 

The requirement of negligible diffusional resistance behind 
the front is obvious in numerical solutions of the TW model. 
Fu and Durning (1993) solved the TW model numerically for 
integral sorption in thin films. The results showed that the 
model only predicts Case I1 if the diffusional resistance in 
the swollen region remains negligible. Increasing the film 
thickness (by decreasing the parameter 6 to excessively small 
values) or decreasing the diffusion coefficient behind the front 
(by using a small value of the parameter K ) ,  extinguished 
Case I1 characteristics [see the features (i) and (ii) discussed 
in an introductory section]. Indeed, a number of previous ef- 
forts to phenomenologically model the Case I1 process 
(Astarita and Sarti, 1978; Hui et al., 1987a,b) recognize this 
requirement and build it into the modeling. For example, Hui 
et al. (1987b) solved the TW model for a wave-like profile 
with the assumption that the diffusion coefficient diverges at 
a small, critical concentration. 

Next, consider the analytical results for the front concen- 
tration uf and the front speed u according to the step- 
exponential profile approximation Eqs. 25 and 35. Together 
with Eq. 33, the expression for uf predicts a shallow, diffu- 
sive “foot”or “precursor”of liquid of width - O(M-’p) just 
ahead of a sharp moving front in the nearly dry polymer. The 
foot becomes more shallow as the concentration dependence 
of the viscosity increases, i.e., as M and therefore u increase. 
The prediction agrees qualitatively with the results of Hui et 
al. (1987b). Equation 25 also predicts that uf decays mono- 
tonically as a increases. Recall the parameter a controls the 
rate of increase in the diffusion coefficient with concentra- 
tion. 

Equation 35 predicts that u is sensitive to the strength of 
nonlinearities in both the viscosity and diffusion coefficient, 
since it increases monotonically with both M and a. The 
prediction for the effect of M is in general agreement with 
the results by Hui et al. (19871, who predict faster front speeds 
for larger values of M. Compare the predictions of Eq. 35 
with the results of the direct numerical solutions by Fu and 
Durning (1993). Rescaling u for the case sorption in a finite 
film and making the replacement a + K/M leads to 

For fixed values of K and M ,  Eq. 37 predicts u - 6-v2 in 
agreement with the numerical data by Fu and Durning (1993). 
For fixed 8 and K ,  the numerical solutions gave that u in- 
creases monotonically with M .  Figure 5 shows a comparison 
between the predictions of Eq. 37 (solid line) and the numer- 
ical results (u,  means the front velocity determined by track- 
ing propagation of the steep concentration profiles; u, means 
the front velocity calculated from the slope of weight uptake 
data). The agreement between Eq. 37 and the numerical data 
is remarkably good considering the approximate nature of the 

I 

6 
3 

2 3 4 5 

M 
Figure 5. Comparison between the predictions of Eq. 37 

and the results of the numerical solutions by 
Fu and Durning (1993). 
uc ( 0 ) ;  ow (0); predictions of Eq. 37 (-1. 

formula and that only moderately large values of M were 
explored in the numerical work. 

Before discussing the concentration profiles, consider the 
dimensional result for the front speed 

Equation 38 predicts a front speed proportional to the square 
root of the fluid diffusion coefficient in the dry polymer ahead 
of the moving front and inversely proportional to the square 
root of the dry polymer’s viscosity. One can predict from di- 
mensional analysis that V - ( D  * /r, * )’/2, where D * and r, * 
are characteristic values of the fluid diffusivity and polymer 
viscosity, respectively (Lasky et al., 1988). Equation 38 sup- 
plies definitions of D * and r, *, and gives the numerical 
prefactor. 

Figures 6a-6c show the “exact” and boundary layer pro- 
files, according to Eqs. 16, 25, 33, 34 and 35 for M = 7 and 
a = 1.0. Figure 6a shows concentration profiles, Figure 6b 
shows profiles of the nonequilibrium contribution to the 
chemical potential rr while Figure 6c shows n- vs. u. The 
“exact” solution was determined by a shooting method using 
the numerical integration of Eq. 16 in the form of a first-order 
system for u and n- by a fully implicit method. Integration 
was done from right to left with starting values of u = lo-* 
and n- = 0 and finding u by trial to get u = 1 and rr = 0 on 
the left. The righthand point for beginning the integration 
was selected by trial to position the peak in n- at z = 0; this 
starting position shifted to the right as the starting value of u 
was reduced, reflecting the existence of a trajectory with u 
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Figure 6. Comparison among exact [u,  n ( u ) ] ,  left 
boundary layer [h, n(h)l and right boundary 
layer [ w ,  n ( w ) l  profiles with the step-ex- 
ponential approximation for M = 7 and a =: 1.0. 
The exact profiles were found by numerical solution of Eq. 
16, with a value of u = 8.2. The boundary layer profiles were 
calculated according to Eqs. 33, 34, 25 and 35 for M = 7 and 
(Y = 1.0. Exact solution = u (-1; left boundary layer solu- 
tion = h (----); right boundary layer solution = w (. . . "). 

decaying to 0 for z +a. The value of u found for the exact 
solution in Figure 6 was u = 8.2, above that predicted by Eq. 
35 ( = 5.95 for M = 7, (Y = 1). The discrepancy results from 
the approximations used in getting Eq. 35, mainly that pure 
diffusion dominates in the righthand boundary layer. 

Boundary layer profiles in Figure 6a are a step-exponential 
approximation. Figure 6 makes it clear that this approxima- 
tion is not a faithful description of the true solution. The 
lefthand boundary layer profile h is much steeper than the 
exact solution, because the approximation for h isomorphic 
to Eq. 14 omits the logarithmically ascending portion of the 
profile, isomorphic to Eq. 12. The approximate nature of the 
right boundary layer solution w also appears in Figure 6a 
where w underpredicts the true solution, and in Figures 6b 
and 6c where thc peak value in n- is underpredicted. 

Figures 7a to 7c illustrate the boundary layer profiles in- 
cluding the logarithmically ascending portion of h and retain- 

ing the relaxation term in w. They compare the solution of 
Eq. 16 for M = 7.0. and a = 1.0 with patched asymptotic so- 
lutions based on Eqs. 29 and 31 (solved numerically). Patch- 
ing was accomplished by setting uf equal to the value deter- 
mined by the numerical solution of Eq. 16 and setting u, to 
match the values of rf determined from w and h; this pro- 
duced excellent agreement between h and w/M a1 z=O 
meaning that patching had been accomplished. Figure 7a 
shows improved agreement between the exact and asymptotic 
solutions in both the left- and righthand boundary layers (cf. 
Figure 6a). Clearly, relaxation effects have an important in- 
fluence on the shape of the Case I1 front. Figures 7b and 7c 
show improvement in the predictions for n- compared to the 
step-exponential approximation (cf. Figures 6b and 6c). Un- 
fortunately, one cannot obtain analytical expressions .Ear u f ,  
rf or v in this case, even when the simple patching process 
is employed. 
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Figure 7. Comparison among exact [u ,  ~ ( u ) ] ,  left 
boundary layer [h ,  d h ) ]  and right boundary 
layer [w,  n ( w ) l  profiles for M = 7 and a = 1 .O. 
The exact profiles were found by numerical solution of Eq. 
16, with a value of u = 8.2. The inner profiles were calcu- 
lated according to Eqs. 29 and 31, with uf’ and u, set as 
described in the text. Exact solution = ~d (-); inner-left 
solution = h (---); inner-right solution = w (----). 

Conclusion 
We analyzed Thomas and Windle’s model for Case I1 

transport by a singular perturbation in the parameter E = 
1/M, where M controls how quickly the viscosity decays with 
fluid concentration. The calculation yields a wave-like solu- 
tion at leading order with two adjacent traveling boundary 
layers (Figure 4) separating a fully equilibrated outer region 
on the left (Eq. 21) from a completely dry outer region on the 
right (Eq. 20). A solvability condition (Eq. 22) is required, 
which has the physical meaning of negligible diffusional resis- 
tance in the equilibrated, left outer region between the fluid 
reservoir and the moving front. In the lefthand boundary 
layer, quasi-steady ordinary diffusion balances relaxation (Eq. 
271, while in the righthand boundary layer, unsteady ordinary 
diffusion and relaxation compete (Eq. 31). Unfortunately, the 
last means that no real simplification occurs in the governing 

equations at leading order. Consequently, an intermediate- 
limit matching procedure cannot be carried out to find an 
explicit formula for the key dynamic feature, the front speed 
u, although the scaling u - O(M’p) clearly results. By two 
(unjustified) approximations, that relaxation does not con- 
tribute in the righthand boundary layer and that the lefthand 
boundary layer has negligible width, one can find very simple, 
analytical solutions (Eqs. 33 and 34) which correspond to 
widely assumed step-exponential concentration profile 
(Peterlin, 1965). Patching the boundary layers at the moving 
front gives a simple formula for the front speed with the cor- 
rect M scaling. 

The approximate analytical results agree qualitatively with 
Hui et a1.k (1987b) analysis of an alternate version of Thomas 
and Windle’s model, where a discontinuous diffusion coeffi- 
cient was assumed, but are much simpler. Further, the pre- 
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dictions for u agree with values from full numerical solutions 
of the original TW model by Fu and Durning (1993) (Figure 
5). A comparison between the exact solution of the problem, 
obtained numerically by a shooting technique, and the step- 
exponential solution shows that the true profiles are not well 
represented by the step-exponential. Therefore, analysis of 
experimentally determined concentration profiles ought to 
employ the full model. Nonetheless, the step-exponential ap- 
proximation does supply a result of practical importance: an 
accurate, accessible formula for the front speed, which is the 
most important dynamic feature of Case I1 transport. This 
result does not rely on the unrealistic simplifying assumptions 
taken by Hui et al. (1987) and is connected to a first-princi- 
ples theory by the development in Fu and Durning (1993). 

Of fundamental importance, the present analysis, together 
with previous works (Billovits and Durning, 1990, 1993, 1994; 
Mehdizahdeh and Durning, 1990; Fu and Durning, 1993), 
shows that the relatively simple nonequilibrium thermody- 
namic results by Durning and Tabor (1986) can explain the 
essential characteristics of the most important experimental 
manifestations of viscoelastic diffusion in polymer/fluid mk- 
tures: The appearance of “two-stage” weight uptake in lin- 
ear-perturbation, differential sorption experiments (Billovits 
and Durning, 1990, 1993, 1994; Mehdizahdeh and Durning, 
1990) and the appearance of Case I1 transport in sufficiently 
nonlinear, integral sorption experiments (Fu and Durning, 
1993). These studies clarify the relationship between two- 
stage uptake and Case I1 transport in the context of a first 
principles development. 
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Notation 
cf =value of c at moving front 
0, =D(c = 0 )  
D’ =mobility scaling the effect of memory in diffusion flux 
0; =constant defined in Eq. 2 
f = leading-order solution to Eq. 16 in the outer right region 
g = leading-order solution to Eq. 16 in the outer left region 
h = leading-order solution to Eq. 16 in the left boundary layer 
k =phenomenological constant in D(c)  
I =dry polymer film half thickness 

m =phenomenological constant in ~ ( c )  
R =gas constant 
s =dimensionless time 
s^=eMs 

s^o =integration constant 
t =time 
ii =uM 
v =dimensionless front speed in semiinfinite medium 
v =dimensionless front speed in finite film 

w = leading-order solution to Eq. 16 in the right boundav layer 
n =dimensionless distance in semiinfinite media 
xf =dimensionless front position 
zf =value of z at moving front ( = 0) 

2,  z =dimensionless distance in the boundary layers 

Greek letters 
a =K/M 
6 = 1 - u  
A =M6 

To = 71(c = 0) 
=value of T at moving front 

T =shear relaxation time 
q l  =fluid volume fraction 
q2 =polymer volume fraction 
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