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Three-Dimensional Printing

Stresses result when polymer feed stock is extruded through the nozzle of a three-
dimensional (3D) printer, causing undesirable surface roughness called “sharkskin,”
which hinders effective bonding to the substrate. A promising method to remove the
sharkskin is to reheat the polymer after extrusion. However, questions remain about the
appropriate design parameters to guarantee success. A mathematical model is presented
for this system, and both amorphous and crystalline polymers are examined. The former
is a heat transfer problem, the latter a Stefan problem. Several effectiveness conditions
are considered, including exit temperature and a duration condition related to the poly-
mer relaxation time. Our results provide guidance on designing effective postextrusion
heaters. [DOI: 10.1115/1.4046343]
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1 Introduction

With improvements in technology and reductions in cost, three-
dimensional (3D) printing (or additive manufacturing) has
become incredibly popular. It is used in wide ranges of applica-
tions, from industrial production of prototypes to consumer pro-
duction of various devices and gadgets [1]. Especially, in the
industrial setting, it is desirable to manufacture as quickly as pos-
sible. However, doing so can lead to defects in the extruded mate-
rial that inhibit effective bonding to the substrate.

In a 3D printer, a flexible polymer thread is extruded from a
“hot end” at velocity V. Within the hot end, the polymer can be
thought of as a fluid subject to the no-slip condition at the wall.
However, after extrusion the thread moves according to plug flow.
The resultant rapid acceleration of the polymer surface causes a
stress singularity at the exit of the hot end [2]. These stresses
cause periodic irregularities (commonly called “sharkskin”) to
form on the outer surface of the polymer thread [2—4]. These
irregularities can inhibit bonding to the substrate.

One innovative idea to remove these defects is to reheat the
extruded thread by running it through a “washer heater” (so-called
because a prototype is an ordinary metal washer). The thread then
exits into the open air before being deposited onto the existing 3D
printout substrate. Engineers would like to design the washer
heater as efficiently as possible with two goals in mind:

(1) Heat the outer surface of the polymer to a temperature T,
(the “r” denotes ‘“relaxation”) for long enough that the
viscoelastic polymer relaxes, removing the sharkskin
roughness.

(2) Heat the outer surface of the polymer enough so it is signif-
icantly warmer at deposition, further enhancing bonding.
(For more discussion of the negative effects of heat loss
before deposition, see Ref. [5].)

The experimental parameters at our disposal for the washer heater
are its height H., and temperature T\, where the subscript “w” refers
to “washer.” Hence, we wish to know, for a given H w» What is the
minimum fw needed to remove the sharkskin, or vice versa.

We model the system as a heat transfer problem in cylindrical
coordinates in Sec. 2. There are two main types of polymers used
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in 3D printing: amorphous polymers such as acrylonitrile butadi-
ene styrene (ABS), and crystalline polymers such as polylactic
acid (PLA) [6,7]. In the amorphous case treated in Sec. 3, the rigid
and pliant regions have similar material properties, and the prob-
lem has an analytically tractable solution. However, it is not
obvious which constraint on the mathematical system translates
into results which match the experimental data. In Sec. 4, we con-
sider two possibilities: the exit temperature and a duration above a
threshold temperature.

As shown in Sec. 5, a formal treatment of the crystalline case
involves a Stefan-like problem. Introducing the quasi-stationary
approximation yields analytically tractable solutions. Only the
minimum duration condition requires the use of the crystalline
approximation.

Our results demonstrate that goal #2 above is unrealistic, as the
polymer thread cools quite rapidly when exposed to the air, no mat-
ter the exit temperature. As for goal #1, it is possible to relax the
sharkskin at experimentally realizable temperatures for reasonably
thick washers. Either the exit or duration condition provides a com-
putable threshold, though the duration condition has the advantage
of an interpretation in terms of the polymer relaxation time. The
additional complication of introducing the Stefan problem for the
crystalline case is demonstrated to affect the results only slightly.
Hence, as in Ref. [8], treating any crystalline polymer as amor-
phous will not significantly degrade the model’s performance.

2 Governing Equations

We model the system as shown in Fig. 1. We consider heat
transfer of a polymer passing through a cylinder (the washer
heater). Complete models for the entire system may be quite com-
plex, necessitating numerical approaches [4,9—12]. However, our
goal is quite different: to calculate the temperature needed to
eliminate the sharkskin, and relate that bound directly to other
parameters in the problem. Therefore, a much simpler model
(once which allows analytical solutions) is desirable. Results from
such models have been shown to fit experimental data well [6,13].

Thus in the system at hand, we make the following
simplifications:

(1) The problem is radially symmetric.

(2) We are interested in the stationary problem; that is, the
steady-state flow after all transients has decayed away.

(3) The velocity is only in the Z-direction at a constant V' con-
sistent with the plug-flow description (see Fig. 1). Thus, we
may think of the thread flowing within the washer heater,
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Fig. 1 Cross section of half of cylinder, dimensional coordi-
nates. Dark shaded area is heater; light shaded area is sharkskin
region. z = 0 corresponds to exit of hot end/entrance of heater.

but with a vanishingly thin air gap between the thread and
the inner surface of the heater.

Assumption #3 will cause us to be too conservative with our esti-
mates (which is the preferred direction for our errors). That is
because in Poiseuille flow, the polymer near the heater would
move more slowly, causing more relaxation of the sharkskin for a
given H, and T, than our model will predict.

With these assumptions, the general dimensional equation is

given by
yor _ 12(~8_f)+
o *ior \oF

where T is the temperature of the polymer and o is the thermal
diffusivity. We denote Z = 0 to be the upper end of the heater,
which maintains the surface 7 = R at a fixed temperature T = T ,,
after which the polymer is exposed to the air for a distance H , at
a temperature 7.

The polymer is inserted at Z = O at an insertion temperature T;.
Two remarks about this temperature are appropriate:

o*T

(1) We have assumed that the initial polymer temperature is
independent of 7. In the hot end itself, the polymer travels
through a narrowing cone after it is heated. During the tra-
versal time, the polymer temperature should have time to
equilibrate, especially since R is so small.

(2) The polymers used are either amorphous (such as ABS) or
crystalline (such as PLA). We assume that 7; is above any
sort of transition temperature (such as the melting tempera-
ture or glass-rubber transition) in the polymer. (See the
Appendix for parameter values.)

Motivated by the discussion above, we introduce the following
scalings:

T(ryz)=—""tr"2 AT =T ~Tx

@
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Note that we use the length scale that balances convection and dif-
fusion. Substituting Eq. (2) into Eq. (1), we have the following:

Q = lg ﬂ 4 2& (3a)
oz ror\'or) " o2 “
o o(/l __ radial diffusion rate 3b)

V" vertical velocity

From the Appendix, we have that ¢ < 1, so diffusion in the z-
direction can be neglected in the washer as long as it is thick
enough. In particular, we have the following cases:

Case 1. If H,, = O(1), then z-diffusion can be neglected, and
Eq. (3a) simplifies to

or 10 ( or

—=——\r= 0 H, 4

0z rar<r8r)7 <Es M @)
Case 2. If Hy, = O(¢"), 0 < a <2, then the washer is short

enough that only the outside of the thread gets heated. (As dis-

cussed in the Appendix, Hy, can be O(e), so this case does apply.)

Therefore, we introduce the following scalings:

z 1—-r
Y=- X:W %)

Substituting Eq. (5) into Eq. (3a), we obtain, to leading order

or  O*T Hy
oy~ o 0<y<—==00) (6)
The balance of terms is still the same: convection and x-diffusion.
Hence, we expect that in this regime, we could still use the solu-
tion to Eq. (4) for small z, but with extra caution. However, the
asymptotic nature of Eq. (6) makes the solution much simpler,
and we will exploit this aspect of the problem when possible. This
will be explored more fully in Sec. 3.

To obtain the boundary conditions, we substitute Eq. (2) into
the conditions described above, which yields

Ty, 0<z<H,,

T(l,z) = (7a)

0, Hy<z<Hy+Hy

T(r,0) =1 (7b)

where we have dropped the tildes following the convention in

Eq. (2). The last boundary condition required is that the centerline
of the cylinder has no flux through it:

oT
5 (0.9 =0 @®)

The schematic in dimensionless coordinates is shown in Fig. 2.

3 The Amorphous Case

One common polymer used in 3D printing is ABS [6,7], which
is amorphous. Such polymers have no phase transition, and hence
the problem reduces to solving Eq. (4) subject to Egs. (7) and (8).
It is most convenient to examine the heated and exposed regions
separately.

3.1 Heated Solution: Exact. In the heated region, the rele-

vant boundary condition is given by the first line in Eq. (7a).
Motivated by this condition, we let

T(r,z) =Ty — (Ty — 1)O(r,z), 0<z<Hy )

Transactions of the ASME
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Fig. 2 Idealized dimensionless system. Light shaded area is
sharkskin region.

which yields the following homogeneous problem for ©:

00 10 ([ 00 00
E—;E(I"E>7 @(I,Z)—O, 5(072)_07 @(7"70)—1

(10)

It is a standard but tedious exercise in separation of variables to
show that

o0 2 . )
Ou(rz) = e (—jgrnz).lo(jo‘nr) (11)

n—1 J (jO,ﬁ)

where the subscript “e” stands for “exact.” (The problem may also
be written as a series using Laplace transform techniques, as in
Ref. [14]. However, such series are typically good for large z,
which is not the region in which we are interested.)

Since H,, is small, we may expect to be required to take a large
number of terms in the sum in Eq. (11). However, the jj , increase
rapidly, so each term is exponentially smaller than the one before.
That behavior dominates, as long as z is not very near 0. This
anomaly will appear later on and be discussed further at that
point.

3.2 Heated Solution: Asymptotic. Even though Eq. (11) is
an exact solution which can (usually) be well approximated with
just a few terms, it can be difficult to interpret given its compli-
cated form. Therefore, (motivated by the fact that H,, < 1), we
also construct the solution in the heated region for case 2 outlined
in Sec. 2.

To do so, we solve Eq. (6) subject to initial and boundary con-
ditions which are found by substituting the scalings in Eq. (5) into
Eq. (7):

T(Ovy) =T, T(X, O) =1 (12)
We must also append a matching condition: to wit, at the far
extent of the boundary layer, the polymer temperature must match
the core temperature, which remains unchanged from its initial
value
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T(oc0,y) =1 13)

For simplicity of comparison, we introduce the same substitu-
tion as in Eq. (9), except with the independent variables x and y:

T(va):Tw_(Tw_])G)a(xsy)> 0§Z<Hw (14)
where “a” stands for “asymptotic.” Substituting Eq. (14) into our

system, we have

00, 00,
dy — ox2’

9"1(07)’) =0, ®a(x7 0) =1, ®a(ooay) =1
(15)

the solution of which is given by

Oq(x,y) = erf(%) _ erf(lz_ﬁ,>

Note that due to the self-similar structure of the solution (16), the
exact width of the boundary layer is irrelevant.

16)

3.3 Exposed Solution. To complete the analysis, we con-
struct the solution in the thread exposed to the open air, which is
the region H,, < z < Hy + H,. In the exact case, we must solve
Eq. (4) subject to the second line in Eq. (7a), as well as Eq. (8).
Moreover, we have the following new “initial” condition, which
is simply the temperature of the polymer as it exits the heater:

T(r,Hy) =Ty — (Tw — 1)O(r,Hy,) 17)
where we have used Eq. (9). Equation (17) replaces Eq. (7b). The
new boundary conditions are homogeneous, so O(r,z) already
solves them. Therefore, if we let

T(r,z) =W(r,z) — (Ty — 1)O(r,z2),

:>Hy  (18)

in Egs. (4), (7a), (8), and (17), we obtain

OW_IQ(‘OW)./ W(l,2) =0,

oW _19( oW w
dz  ror ’ar

o (0,2)=0, W(r,Hy)=T,
(19)

But this is exactly the system for ® in Eq. (10) with the following
two changes:

(1) We must shift the z variable by H,, to pick up the shift in
the initial condition.

(2) We must multiply by Ty, to pick up the size of the initial
condition.

Given these arguments, the solution to our problem is found to
be

T(r,z) =TwO(r,z— Hy) — (T — 1)O(r,z), z>H, (20)
This analysis holds for both the exact and asymptotic cases;
hence, we may use Eq. (20) in conjunction with either Eq. (11) or
Eq. (16). The solution as constructed will not be twice continu-
ously differentiable in z about z = Hy,, but this will not affect the
overall analysis of the problem.

4 Threshold Conditions

The first objective of the heater is to remove the sharkskin
imperfections by heating the outer surface of the polymer
(whether it heats the polymer below the sharkskin is largely irrele-
vant). Physically, we expect that if the temperature of the outer
surface is above some temperature 7, long enough for the
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polymer to relax, then the imperfections will be removed. It is
then natural to ask what sorts of equivalent measurable conditions
will guarantee that the imperfections will vanish.

4.1 Exit Temperature. We first analyze a condition which
can be easily measured experimentally. For the outer surface of
the polymer to be hot enough to remove the imperfections, we
posit that the sharkskin must exit the heater above some threshold
temperature T'.. This condition serves as a substitute for the full
condition described above, and is used by engineers. Thus, we
require that

T(ro,Hy)=T., T.<T,<T, 21
where 7 denotes the inner boundary of the sharkskin layer (the
“s” denotes “sharkskin”; see Fig. 2). Since the temperature
increases with radius, this is a sufficient guarantee.

Substituting Eq. (9) into Eq. (21) and rewriting the result in

dimensional variables, we have the following:

. AT[T, — O(ry, Hy)]

Ty =Ts - 22
* 1-0(r,H,) 2

Given values for r; and T, Eq. (22) defines a relationship between
H,, and T\,. Therefore, given a heater of a particular height, we
can determine the minimum temperature required to relax the
sharkskin. Alternatively, if we know the maximum operating tem-
perature of the heater, we can determine the needed thickness.

A plot of the solution to Eq. (22) is shown in Fig. 3. For the
range of allowable temperatures, the computed values of H,, are
(much) less than the length scale in Eq. (2), but are comparable to
R. Hence, Hy, is O(e), and the asymptotic approximation (16) is
valid. To confirm this, we graph the full solution (11) and the
asymptotic solution (16) for experimentally realizable values. The
experimental washers in the laboratory have

Hy=1mm = T, =231°C (23)
where we have used Eq. (22). Note that Eq. (23) is consistent with
Fig. 3.

We first graph our results versus r for Z = H,,; the results are
shown in Fig. 4. The solid curve shows the temperature using 15
terms in the series (11), while the dotted curve uses the asymptotic
expression (16). Note the close agreement in the sharkskin region
[0.9, 1], though the asymptotic expression underestimates the true
solution. Hence, using the asymptotic expression will be a con-
servative estimate, suggesting that we use a washer slightly longer
than would be suggested using the true solution.

260
250
240

2304

220 T T T
0 1 2 3

Fig. 3 Graph of T, required to satisfy the exit condition (22)
for a given washer height H,. Solid curve: full solution from
Eq. (11). Dotted curve: asymptotic solution from Eq. (16).
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2401
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0

Fig. 4 Exact (solid) and asymptotic (dotted) expressions for
T(r,Hy) versus rfor parameters in the Appendix and Eq. (23)

Though it is not in the region of interest, we note the rather sur-
prising fact that the asymptotic solution outperforms the exact
solution near » = 0. As alluded to in Sec. 2, for incredibly small
z, the convergence of the series is very slow, while the asymptotic
solution satisfies the boundary condition exactly. This effect is
irrelevant to the calculation of H,, in Fig. 3, since H,, is large
enough that this effect does not occur.

Due to the close agreement over the domain, we have confi-
dence in displaying the asymptotic solution as the dotted curve in
Fig. 3. As expected, the asymptotic solution is more conservative
(in both temperature and thickness) than the exact solution.

The second goal of the washer heater is to keep the temperature
of the outer surface hot enough not only to relax the sharkskin but
also to keep it warm until bonding. Therefore, we compare the
results of our reheated solution to that if there is no heater at all.
(In that case, we just set Ty, = 0 in Eq. (9), so T(r,z) = O(r,z)
after exiting the hot end.)

The results are shown in Fig. 5. The thicker curves indicate the
heated solution, which reaches T, at H,, as desired. But when
exposed to the open air, the temperature decreases rapidly.

1(7.2) (° ©)
2507 |

T,
200+

1504

1004

50

Fig. 5 Thick curves: exact (solid) and asymptotic (dotted)
expressions for T(rs,z) using the parameters in Eq. (23). (The
exact solution uses 15 terms; the unphysical jump in the solu-
tion at the washer exit is an artifact of the slow convergence of
Eq. (11) for small argument.) Thin curves: exact (solid) and
asymptotic (dotted) expressions for T(rs, z) if no washer heater
present. (z-axis has been shifted for easy comparison with
heated solution.)
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The thin curves show what would happen to the thread if there
were no washer present (the z-axis has been shifted for easy com-
parison with the thick curves). Though the thread has been heated
by 50° C as it exits the heater, by the time it reaches the substrate it
is only around 10° C hotter than an unheated thread. In particular,

T (s, Hy + Ho) = 76°C (heated);

- - - 24
T(Fs,Hw + Hy) = 66 °C (unheated) @9
For a given rated temperature T, for any particular washer, one
might imagine that making the washer thicker would ameliorate
this problem. Unfortunately, as shown in Fig. 6, the bulk of the
temperature rise occurs near the front of the washer; after that, the
increase in temperature levels off. Thus making the washer sev-
eral times as thick would increase the temperature only a small
amount. Hence, we must conclude that the main focus of the
heater must be to eliminate the sharkskin, rather than to raise the
temperature at deposition significantly.

4.2 Duration. Physically, we expect that if the temperature of
the sharkskin is above some temperature 7, long enough for the
polymer to relax, then the roughness will be removed. The Appen-
dix indicates that the temperature 7. is much higher than the
glass-rubber transition temperature T, of the polymer. Hence, we
expect that the exit temperature condition is just an experimental
substitute for keeping the temperature at a lower level long
enough to exceed the polymer’s relaxation time.

As we have removed time from the problem, this is equivalent
to stating that the temperature in the sharkskin layer remains
above some relaxation temperature 7; for some interval in z:

T(re,z) 2T, z21<z<1z;, n—121=2 (25)
where z; denotes the (specified) dimensionless height of the relax-
ation region. Hence, the (dimensional) time the polymer remains
over the relaxation temperature would be 1, = z,;/V. Equation
(25) replaces Eq. (21) as the new condition on the temperature.

The position z; must be in the heated region, while the position
7, must be in the exposed region. Hence, Eq. (25) can be stated in
a more convenient manner as follows. First, we can use the heated
condition (22), but with H,, replaced by z; and T, replaced by T;:

Tr - @(I‘S.Zl)
Ty=——7"7—"—">- 26
A - O(rs,21) (26a)
Then using Eq. (20), in the exposed area we must have
T, — O(r :
T, = r (75721 +Zz) (26b)
O(rg,z1 + 2z, —Hy) — O(rg, 21 + 2,)
T(7%,2) (° C)
2307 :
|
1 [
T 200————— i

it
210 :
|
2001 I
|
1904 I
|
|
1804 |
|

170 | .

0 1 2 3 Geims)

H

w

Fig. 6 Exact (solid) and asymptotic (dotted) expressions for
T (rs, Z) for parameters in the Appendix and Eq. (23)
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gﬂz

(°C)
270 |
2601
2501
2401
2301
220

2104

0.03 0.047 )
Fig. 7 Graph of T,, required to satisfy the duration conditions
(26) for a given relaxation time z,. Solid curve: full solution from
Eq. (11). Dotted curve: asymptotic solution from Eq. (16).

where we have used Eq. (25). The system (26) will then be solved
for the unknowns T, and z;.

For these calculations, we must assume a temperature 7. One
plausible possibility would be the glass-rubber transition tempera-
ture. However, given the parameters in the Appendix, we see
from Fig. 5 that the temperature in the polymer remains above the
glass/rubber transition temperature even in the case when no
washer heater is present. Therefore, for simplicity, we assume

= T1+f* 1+T*
Tr: 2 = Tr:T

@27

where we have used Eq. (2) ~

For the possible lengths Z;, a reasonable upper bound is Hy,.
Since the thread cools very quickly once it exits the washer, most
of the interval must be in the heated phase. Then translating to
time, we have 0 < 7, < H,,/V = 0.04 s, where we have used the
parameters in the Appendix.

The results are shown in Fig. 7. As in Sec. 4.1, the asymptotic
solution produces an overestimate of the temperature needed. As
expected, the longer the time desired above the relaxation temper-
ature, the higher the washer temperature must be. For small t, the
slope of the curve is small, since the desired temperature does not
need to be reached until the thread is a fair distance into the cylin-
der. However, as t reaches its maximum, the thread must be over
the relaxation temperature for nearly all the length of the washer.
Hence, the thread must be heated nearly instantaneously, which
takes a much greater temperature in the washer.

This phenomenon is demonstrated more clearly in Fig. 8, which
shows the temperature profiles with distance for three equally
spaced values of Ty,. Due to the underlying structure of the pro-
files, increasing the temperature 25°C from 206°C to 231°C
causes a much greater increase in the length of the relaxation
region than raising the temperature an additional 25 °C to 256 °C.
As expected, the vast majority of the relaxation region occurs in
the heated region due to the rapid cooling once the thread exits
the washer.

5 Crystalline Case

Another common polymer used in 3D printing is PLA [6,7],
which is a crystalline polymer. The parameters in the Appendix
indicate that a PLA thread will be above its melting temperature
for the entire heated region—it will become crystalline only after
cooling in the air (all common polymers used in 3D printing have
similarly low melting temperatures). Hence, at least for the exit
temperature condition, crystallization will be irrelevant.

MAY 2020, Vol. 142 / 052101-5
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7, 2004 _

150

100

50+

Fig. 8 Exact expressions for T(rs,Z). In increasing order of
thickness: T,, =206°C, 231°C (as in Sec. 3), and 256 °C. (The
exact solution uses 15 terms; the unphysical jump in the solu-
tion at the washer exit is an artifact of the slow convergence of
Eq. (11) for small argument.)

As the duration condition incorporates both the heated and
unheated sections, crystallization can matter. Nevertheless, since
the thread cools so quickly, we expect such effects to be small. To
study this phenomenon, we analyze the Stefan problem in the
exposed region.

5.1 Governing Equations. A polymer like PLA has both
crystalline (subscript “c”) and melted (pliant, subscript “p”) states.
Hence, there is a crystallization front r = s(z) separating them:

(28)

where T, is the melting temperature. The exposed surface is
cooler than the crystallization temperature, so the Stefan problem
begins immediately at z = H,,; thus s(Hy,) = 1. The geometry is
illustrated in Fig. 9. The temperature is 7. in the crystalline gray
region s < r < 1 in the figure, while the temperature is T}, in the
pliant white region 0 < r <s.

The formulation of the Stefan condition is not straightforward
due to the convection in the system. However, by switching to a
moving reference frame, one may derive the proper Stefan
condition [8]

aT ds ATc,
st[ﬂsﬂ, s 2T

where ¢, is the specific heat, ¢y is the latent heat of crystallization,
and [-]; denotes the jump across the front. Here, St is the Stefan
number. (The amorphous system is just a special case, since then
¢ = 0, St = 00, and the condition is that the fluxes must match
across any boundary.)

Summarizing our system, in the pliant region, we have

(29)

or, 19 .an) s Moo =
o) osreser Groa=o

For the initial condition for this problem, we use the temperature
field at the exit

(30a)

Tp(r,Hy) =Ty — (T — 1)O(r,Hy,) (30h)
The equations in the crystalline region become

or. 190 (ﬂaTc

E—;E 75), S(Z)<l'< 1, TC(I,Z):O (31)
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OT for =0
T S

T =0

<

Fig. 9 Two-phase polymer
crystallized.

system. Shaded area has

At the front = s(z), we have the following conditions:

Te(s(2),2) = Tp(s(2),2) = 0, s(Hy) =1 (32a)
aT. ar, 1 ds
5, (5(2),2) =52 (5(),2) = 5 (32b)

Our system reduces to just the standard one-dimensional two-
phase Stefan problem in polar coordinates with z replacing ¢ (see
also Ref. [15]).

5.2 The Quasi-Stationary Approximation. The system as
posed has no analytic solution, which is the most desirable kind
due to the ability to discern parameter dependence easily. To
make the problem tractable, we employ the quasi-stationary
approximation. In particular, we neglect the left-hand side of the
partial differential equations (PDEs) in Egs. (30a) and (31). This
corresponds to taking V' — 0 in the dimensional equation. How-
ever, by neglecting the evolution term, we will overestimate the
speed of s(z) [16].

When we take the left-hand side of the PDE in Eq. (30a) equal
to zero, the resulting equation is a second-order ordinary difffer-
ential equation. But there are three boundary conditions to solve
in Egs. (30b) and (32a). Since, we wish to solve the problem for
all time, we ignore the initial condition in Eq. (30b) to obtain the
following solution in the pliant region:

To(r,z) =Tm, 1r<s(z) (33)

To satisty the initial condition, we would have to insert a thin
initial layer near z = H,,. In this region (where the full differential
equation in Eq. (30b) would hold), there is rapid diffusion from
the initial condition to Eq. (33). (This can be thought of as an
exaggerated example of the rapid cooling in the unheated region.)
This effect, which is the direct result of ignoring the evolution
term, will tend to overestimate the speed of s(z), since it omits the
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time needed to raise the polymer to the melting temperature. This
will then produce a conservative estimate of the heater tempera-
ture needed, since it overstates the crystallization process.

Taking the left-hand side of the PDE in Eq. (31) equal to zero
and satisfying the conditions in Egs. (31) and (32a), we have

T logr

Te(r,z) = , s(z)y<r<l1 (34)

logs

Depending on the experimental conditions, it may be possible for
the front to hit the centerline at some zg < Hy + Ho:

S(Zo) =0 (35)

In that case, the steady-state operator must also satisfy the no-flux
condition in Eq. (30a), so we have the following:

Te(r,z) =0, z>z (36)

To find s(z), we first substitute Eq. (33) into Eq. (32b), which
yields

T, _lds
o 8@ =g~

With T, given by Eq. (33), the problem essentially reduces to a
one-phase Stefan problem. Substituting Eq. (34) into the above,
we obtain
Tn 1 ds
slogs Stdz

Note that this equation makes sense only if St # oco; that is, only
in the melting context.
Continuing to simplify, we have the following:

du 4Ty, 2

—_—= t = § 37

dz  logu n=s (374)
ATwSt(z — Hy) — 1 = u(logu — 1) (37b)

where in the last line we have used the initial condition in Eq.
(32a) to determine that u(Hy) = 1. The solution for u can be writ-
ten in terms of Lambert W-functions, but it is not illuminating.

Note from Eq. (37b) that the melting front hits the center of the
cylinder when

1
z0=Hy+——

AT, St(zo—Hy) —1=0 =
mSt(z0 ) 4StT,,

(38)

which matches with [16] in the case where T, = 1. Hence, if
Pe < 4StTy,, the entire polymer crystallizes before it is applied to
the substrate. Note that z; depends on the quantity St7y,, which is
independent of AT (and hence T,,). This makes sense since with
the one-phase approximation, we are essentially assuming that the
polymer leaves the washer at temperature 7p,.

5.3 Duration Condition. As discussed above, crystalline poly-
mers will be in the melt phase upon exiting the washer since
Tw < T;. Hence, the exit condition can be applied to both anoma-
lous and crystalline polymers using the same model. However, the
duration condition can encompass both the crystalline and melt
phases.

In this case, we choose T, = Ty, so z; = 0 (since Ty, < Tj).
Moreover, since T(s(z),z) = Tm, z» is given by the distance at
which the crystallizing front s(z) reaches r, (see Fig. 9). Rewriting
Eq. (37b) with this in mind, we have

1+ r2(2logrs — 1)

=Myt 4T, St
m

(39)
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Fig. 10 Solid curves: exact expressions for T(rs, z) using Eqgs.
(9), (33), and (34). In increasing order of thickness: T, =140°C,
155°C (actual value), and 170°C (T;). The quasi-stationary
approximation forces the temperature to be T, at the exit, lead-
ing to an unphysical discontinuity there. Dotted curve: extrapo-
lation of temperature in crystallized region to illustrate the form
of the true temperature profile.

where we have used the fact that z; = 0. Unfortunately, the right-
hand side is strictly determined by the material parameters and
hence independent of T,. This is because the quasi-stationary
approximation implies that the temperature of the pliant core of
the polymer is fixed at Ty, immediately upon entering the air (see
Eq. (33)). Note this is true regardless of the temperature at which
the polymer exits the washer (which is controlled by Ty,).

We present this behavior in Fig. 10, which illustrates the tem-
perature profiles at 7 for different T',. The temperature drops dis-
continuously at z=H, to Ty due to the quasi-stationary
approximation. It then remains at 7, until the crystallizing front
reaches 75, at which point the temperature begins to decay.

Hence, the quasi-stationary approximation will underestimate
7,, since it really takes some time for the thread temperature to
decrease to T,,. However, we do not expect the discrepancy to be
that large. To see why, examine the dotted curve in Fig. 10, which
extrapolates the temperature in the crystallized region (at far right)
to the left until it reaches the exit temperature at only a slight dis-
tance from H,,.

Motivated by the conclusions in Ref. [8], we compare the effect
of introducing the crystalline behavior at all. In particular, given
that the bulk of the relaxation interval occurs in the heater, how
appreciable are the effects of considering crystallization in the
cooling region?

To answer this, we fix Ty, and choose Ty, < T;. We then com-
pare the values of 7, using the crystalline model versus using the
amorphous model with T, = T),,. In particular, in this case, z; = 0,
which we may substitute into Eq. (26b) to obtain

T — O(rs, zy)

T, =
O(rs,z, —Hy) — @(rs,z,‘)

(40)

for the amorphous case.

The results are shown in Fig. 11. Since T}, < Tj, the polymer is
above the relaxation temperature throughout the washer. Hence,
z, > 1, or equivalently 7, > 0.04 s. As expected, the crystalline
model produces a smaller estimate of 7, due to its unrealistic treat-
ment of the initial drop once the polymer cools. However, this
assumption does not overstate the time too much, as shown in
Fig. 11. The difference is quite small (less than 7.5 ms).
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Fig. 11 Graph of the relaxation/melting temperature achieved
for a given 7, given the parameters in the Appendix. Solid curve:
anomalous solution from Eq. (40). Dotted curve: crystalline
solution from Eq. (39).

6 Conclusions and Further Research

It is desirable to perform additive manufacturing at the highest
rate possible. However, at such high rates, the polymer feedstock
does not has time to relax the stresses caused by the transition
from no-slip to plug flow at the exit of the hot end. These residual
stresses cause surface roughness called sharkskin, which can
reduce the effectiveness of binding the polymer to the underlying
substrate.

One promising approach to eliminate this problem is to reheat
the polymer after it exits the hot end extrusion nozzle. This allows
the polymer to relax more fully before deposition. (It may be
thought that such reheating would also enhance bonding to the
substrate due to the increased temperature, but we showed that the
polymer is so thin that it cools very rapidly in the open air, no
matter its initial temperature; see Fig. 5.)

In this paper, we investigated appropriate conditions for the
design of such a postextrusion heater. After making several physi-
cally realistic simplifying assumptions, we modeled the system by
the heat equation in cylindrical coordinates. The system must be
solved in two regions: within the postextrusion heater where the
polymer is heated, and in the open air where the polymer cools
before deposition.

In the case of amorphous polymers like ABS, the resulting prob-
lem can be solved by separation of variables, which provides an
exact answer which is difficult to interpret. Happily, the stresses
can be relaxed even when the heater is very thin. Such a regime
yields an asymptotic solution which is more easily understood.

Once the solution has been established, the more subtle point is
to determine what type of conditions needs to be placed on the
solution to establish a desirable experimental outcome. In particu-
lar, what must be true about the temperature in the polymer to
guarantee that the sharkskin will be eliminated?

We examined two possibilities. It has been observed experi-
mentally that the sharkskin will relax once the polymer has
reached a certain temperature. For feasibility reasons, such experi-
ments measure the temperature of the polymer at the point right
after the polymer exits the postextrusion heater. Hence, we estab-
lished a condition based upon this temperature.

Using this condition, we were able to produce a curve (Fig. 3)
that showed (for a heater of a given thickness) the required tem-
perature of the heater to raise the polymer temperature to the
desired value. As expected, the required temperature decays rap-
idly with thickness. Moreover, the easily computed asymptotic
solution provides conservative results, and hence can be used
without concern about violating the design requirements.
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Fortunately, we found that the required postextrusion heater
design is realizable with current technology.

In reality, the polymer will relax once the sharkskin region is
heated over a certain temperature for a long enough period of
time. This more realistic condition is naturally more difficult to
measure, especially, since most of the time period occurs when the
polymer is being heated. Given a range of relaxation times charac-
teristic of polymers used in 3D printing, we presented results on
heater temperatures which are consistent with both experimental
results and the previous, simpler condition. Thus, we may feel con-
fident that the substitute condition on the exit temperature provides
useful results in the systems we wish to analyze.

Certain polymers used in the 3D printing process, such as PLA,
are crystalline at low temperatures. In that case, the problem of
the cooling thread becomes a Stefan problem. In order to achieve
analytical solutions which we can easily interpret for parameter
dependence, we used the quasi-stationary approximation to sim-
plify the problem. It was demonstrated that the error in the tempera-
ture profiles from using such an approximation was negligible.
Explicit solutions were constructed for the evolution of the front.

If we use the exit condition as our criterion, the Stefan problem
does not enter into the analysis at all, since the heater remains
over the crystallization temperature. The crystallization transition
comes into play only when using the duration condition. In that
case, we showed that treating a crystalline polymer using an amor-
phous model led to very small errors in our results, which is con-
sistent with previous work [8]. Hence, using the simpler
amorphous model for all types of 3D printing polymer feedstock
will yield applicable results.

The model in this paper contains several listed simplifications
and assumptions. Relaxing them and considering more compli-
cated models is an area for fruitful further research. Clearly the
quasi-stationary assumption for crystalline polymers could be
relaxed, with an eye to doing so in a way that would make the
model for crystalline polymers more experimentally realistic.

Nomenclature
Variables and Parameters

Units are listed in terms of length (L), time (T), and tempera-
ture (0). If a symbol appears both with and without tildes, the
symbol with tildes has units, while the one without is dimension-
less. Equation numbers where a variable is first defined is listed, if
appropriate.

a = exponent related to width of boundary layer, Eq. (5)
cL. = latent heat of melting, units L>/T?, Eq. (29)
¢, = heat capacity of polymer, units L?/(T%6), Eq. (29)
H = height measurement, units L
R = radius of cylinder, units L
7 = radial coordinate, units L, Eq. (1)
s(z) = crystallization front, units L, Eq. (28)
St = Stefan number, Eq. (29)
T = temperature, units 6, Eq. (1)
u(z) = [s(z)]%, Eq. (37a)
V = velocity in Z -direction, units L/T, Eq. (1)
W(r, z) = heat function used in transformation, Eq. (18)
x = scaled radial variable, Eq. (5)
y = scaled longitudinal variable, Eq. (5)
Z = distance along the channel, units L, Eq. (1)
o = thermal diffusivity, units L?/T, Eq. (1)
AT = differential between initial and room temperature,
units 6, Eq. (2)
e = ratio of diffusive to convective effects, Eq. (3b)
©® = heat function used in transformation, Eq. (9)
7, = time in relaxation state, units T’

Other Notations

a = as a subscript on O, used to indicate an asymptotic solu-
tion, Eq. (14)

Transactions of the ASME



¢ = as a subscript on 7, used to indicate the crystalline state,

Eq. (28)

e = as a subscript on ®, used to indicate an exact solution,
Eq. (11)

i = as a subscript on 7, used to indicate the initial
temperature

m = as a subscript on 7, used to indicate the melting temper-
ature, Eq. (28)

p = as a subscript on T, used to indicate the pliant state,
Eq. (28)

r = as a subscript, used to indicate relaxation

s = as a subscript on 7, used to indicate the sharkskin, Eq.

(21

as a subscript, used to indicate the washer heater

* = as a subscript on 7, used to indicate the desired

condition, Eq. (21)

as a subscript, used to indicate the exposed air

Appendix

In Table 1 we list the parameters for the general experimental
setup, which come directly from measurements in the lab. As
hypothesized, the aspect ratio of the cylinder is small: 0(1072).
Note that H » is comparable to R, so Hy, = O(€). Examining the
range of H,, in Fig. 3, we have that

Table 1 General device parameters
Experimental Calculated
H o, (mm) 0.4 Hy 2.56 x 1072
R (mm) 0.25 T 0.9
Ty (°C) 300 Ty, 1.87
T.(°C) 220 T. 1.33
T (°C) 20 AT (°C) 150
T, (°C) 170 € 0.016
V (mm/s) 25
o (mm?2/s) 0.1
Table 2 Parameters for ABS
Experimental
[6] Used Calculated
T, (°C) 100
T, (°C) 195 T; 1.17
Table 3 Parameters for PLA
Experimental

[6] [17] Calculated
¢ (KI/kg) 91 St 2.80
¢, (J/(kg'K)) 1700
T, (°C) 59
Tm (°C) 155 T 0.9
7 (5) 1.23 x 1072

Journal of Heat Transfer

0<Hy,<35mm = 0<H,<0224

and hence we see that H,, can be O(e), as required for our asymp-
totic analysis to hold. In particular, the value of H,, = 1 mm given
in Eq. (23) corresponds to Hy, = 4e.

In Table 2, we list the parameters for ABS. In the left column
are experimental parameters; the values of the calculated parame-
ters are listed at right. As expected, T; is far above the glass-
rubber transition temperature T'g.

In Table 3, we list the material parameters for PLA. As
expected, T; is far above both the glass-rubber transition tempera-
ture T, and the crystallization temperature Tp,. To estimate the
relaxation time of the PLA, we use the approximation that

> 4G
"y
where the values of the parameters on the right-hand side are

given in Ref. [6]. Note that the value in Table 3 compares favor-
ably with the time scales shown in Fig. 7.

Tr

(AD)
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