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Maximal 3D printing extrusion rates
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Many applications of 3D printing are enhanced by increased printing speed. In the hot end of a 3D
printer, the polymer feed stock flows in a heated cylinder at a set temperature. Since the polymer must
be hot enough to reach a pliant state before extrusion, this establishes a maximum velocity beyond which
the polymer is too rigid to be extruded. A mathematical model is presented for this system, and both
amorphous and crystalline polymer systems are examined. The former is a heat transfer problem; the latter
is a Stefan problem. Several different conditions for establishing the maximum velocity are considered;
using the average polymer temperature in the hot end matches well with experimental data.
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1. Introduction

In recent years, 3D printing (or additive manufacturing) has become popular for various types of
production, from industrial production of prototypes to consumer production of various devices and
gadgets (Gibson et al., 2009). In many situations, it is desirable to manufacture the products as quickly
as possible. However, due to the design of the printing head, there is a natural upper bound to the
velocity.

In a 3D printer, a rigid polymer fiber is inserted at some pressure into a ‘hot end’, which we consider
to be a cylinder of radius Rmax (see Fig. 1). Within the hot end, the polymer is heated so that it becomes
pliant, and then is extruded through a nozzle of smaller radius. Engineers would like to extrude the
polymer as quickly as possible to reduce processing times. However, increasing the velocity of the
extrusion reduces the heating time, eventually leading to a case where the polymer is rigid enough that
the pressure needed to extrude it is greater than that exerted by the insertion pump. Therefore, given
a temperature differential in the hot end (which is fixed by device specifications), we wish to find the
maximum feed velocity that will guarantee extrusion.

© The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Fig. 1. Cross-section of half of hot end, dimensional coordinates. Light area is rigid polymer, medium area is pliant polymer, dark
area is heater. The extrusion nozzle is downstream.

We model the system as a heat transfer problem in cylindrical coordinates in Section 2. There are
two main types of polymers used in 3D printing: amorphous and crystalline. In the amorphous case
treated in Section 3, the rigid and pliant regions have similar material properties, and the problem has an
analytically tractable solution. However, it is not obvious which constraint on the mathematical system
translates into a velocity bound that matches the experimental data. We consider three possibilities:
the minimum exit temperature, the average temperature in the hot end and a condition on the polymer
viscosity.

As shown in Section 4, a formal treatment of the crystalline case involves a Stefan-like problem.
Introducing the quasistationary approximation yields analytically tractable solutions. In Section 5, the
same possible mathematical constraints are used to compare the solution with experimental data. In
Section 6 we use results from the amorphous model to compare to crystalline polymer data.

Our results demonstrate that using the average temperature as a mathematical condition for the
amorphous model produces an estimate for the velocity upper bound, which matches well with
experimental data, no matter the type of polymer used.

2. Governing equations

We model the system as shown in Fig. 1. We consider heat transfer of an initially rigid polymer passing
through a cylinder, and then becoming pliant under heating. If the polymer is crystalline, we define
‘pliant’ to mean ‘melted’. If the polymer is amorphous, we define ‘pliant’ as having undergone the
glass–rubber phase transition.

Complete models for the entire system may be quite complex, necessitating numerical approaches
(Lotero et al., 2017; Mu et al., 2015; Sandoval Murillo et al., 2017; Schoinochoritis et al., 2017).
However, our goal is quite different: to calculate an upper bound on the extrusion velocity, and relate
it directly to other parameters in the problem. Therefore, a much simpler model (once which allows
analytical solutions) is desirable. Happily, it will be shown that such a reduced model provides accurate
results.

Therefore, in the system at hand, we make the following simplifications:

1. The problem is radially symmetric, so diffusion in the angular direction may be neglected.
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2. The aspect ratio of the heater is small, so diffusion in the vertical direction may be neglected.

3. The velocity is a constant V in the z̃-direction (see Fig. 1). This is a realistic assumption at the
inserted end because the fiber is slightly smaller than the tube, and hence will slide easily inside
it. Once the polymer becomes more pliant and liquid-like, it will develop into Poiseuille or more
complicated non-Newtonian flow. We ignore those details for now, and just consider V to be the
average of the velocity profile.

4. We are interested in the stationary problem; i.e. the steady-state flow after all transients have
decayed away.

5. We ignore the narrowing of the hot end to the small nozzle at the extrusion point. In particular,
we will solve in the portion of the hot end before it narrows, and use facts about the temperature
there to determine whether the polymer will extrude.

With these assumptions, the general dimensional equation is given by

ρcpV
∂T̃

∂ z̃
= k

r̃

∂

∂ r̃

(
r̃
∂T̃

∂ r̃

)
, 0 ≤ r̃ ≤ Rmax, (2.1)

where T̃ is the temperature of the polymer, ρ the density, cp the heat capacity and k the thermal
conductivity.

We assume that the heater is of length H; we denote z̃ = 0 to be its upper end. The heater maintains
the surface r̃ = Rmax at a fixed temperature T̃ = Tmax > T∗, where T∗ is the pliancy temperature.
(Depending on the polymer, it may be considered the glass–rubber transition temperature or the melting
temperature.) The rigid polymer is inserted at z̃ = 0 at an ‘insertion temperature’ Ti < T∗.

Motivated by these conditions, we introduce the following scalings:

r = r̃

Rmax
, z = z̃

H
, T(r, z) = T̃(r̃, z̃) − T∗

ΔT
, ΔT = T∗ − Ti. (2.2)

Substituting (2.2) into (2.1), we have the following:

∂T

∂z
= Pe−1 1

r

∂

∂r

(
r
∂T

∂r

)
, Pe = ρcpR2

maxV

kH
. (2.3)

Obviously if the Péclet number Pe � 1, then the right-hand side dominates. In that case, there is time
for heat to diffuse through the polymer and make it completely pliant before it is extruded. The question
is as follows: how large can V be and still guarantee that process?

In dimensionless coordinates, the boundary and initial conditions described above become

Tp(1, z) = α, α = Tmax − T∗
ΔT

> 0, (2.4a)

Tr(r, 0) = −1. (2.4b)
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Fig. 2. Idealized dimensionless system. Note we consider only up to z = 1.

Since Tmax > T∗, the polymer will always be pliant at the exposed surface; hence, we use the subscript
‘p’. Similarly, since Ti < T∗, the polymer will always be rigid initially; hence, we use the subscript ‘r’.
The last boundary condition required is that the centerline of the cylinder has no flux through it:

∂T

∂r
(0, z) = 0. (2.5)

Given assumption 2 of no z-diffusion, we cannot impose exit conditions on the heater. Hence, we
simply solve the problem for all z, and then just examine the solution for z ∈ [0, 1] (see Fig. 2). In other
words, we determine the behavior of the polymer while heated, and infer from that what conditions are
needed to make sure it is pliant enough to be extruded through the downstream nozzle.

We will discuss the final condition (how to establish the temperature bound) in the next section.

3. The amorphous case

3.1 Solution

We begin with a discussion of the amorphous case, which is simpler. In these polymers, there is no
melting, just a glass–rubber phase transition. Therefore, the pliancy temperature T∗ is just the glass–
rubber transition temperature Tg. Moreover, we assume that the material parameters do not change
drastically as the polymer undergoes the glass–rubber transition, and hence we do not have to track a
moving boundary between the phases. Thus, in this section we drop all subscripts on the dependent
variable T .

The problem then reduces to solving (2.3) subject to (2.4) and (2.5). We may set up a problem with
homogeneous boundary conditions by letting

T(r, z) = α − (α + 1)Θ(r, z). (3.1a)

With this substitution, it is a standard but tedious exercise in separation of variables to show that

Θ(r, z) =
∞∑

n=1

2

j0,nJ1(j0,n)
exp

(
− j20,nz

Pe

)
J0( j0,nr), (3.1b)
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Fig. 3. Graph of solution using exit conditions. Dashed curve: (3.3) (five terms). Solid curve: (3.5) (five terms). Dotted curve:
(3.6b). Crosses: experimental data for acrylonitrile butadiene styrene (ABS) from Mackay et al. (2017) (with linear fit). Note that
neither theoretical curve matches the behavior of the data.

where j0,n is the nth zero of J0, the zeroth Bessel function of the first kind.
The problem may also be written as a series using Laplace transform techniques, as in Carrier &

Pearson (1988), (Section 2.3). However, such series are typically good for large z, which is not the
region in which we are interested.

3.2 Exit temperature as threshold condition

Given this solution, we must specify a condition that corresponds to a state that allows extrusion of the
polymer. As a first possibility, we simply check if the polymer is pliant at the exit of the hot end (z = 1).
Experimental evidence suggests that if the polymer is rigid in any part of the domain, it will clog the
nozzle. Since the polymer is coldest at the center, we must require that

T(0, 1) ≥ 0, (3.2)

with the borderline case being equality.
Substituting (3.1) into the equality form of (3.2), we have

α = Θ(0, 1)

1 − Θ(0, 1)
, Θ(0, 1) =

∞∑
n=1

2

j0,nJ1(j0,n)
exp

(
− j20,n

Pe

)
. (3.3)

(The j0,n increase quickly with n, so we normally need to take only a few terms in the sum.)
A plot of (3.3) is shown as the dashed curve in Fig. 3, which uses the parameters in Tables A1 and A2

in the Appendix. Here the curves are presented in the α-Pe plane. Recall that α is a scaled version of
Tmax, and Pe is a scaled version of V , so this choice provides the experimentalist with the maximum
velocity for a given temperature differential.

Note that the dashed curve does not match the experimental data, which has a Pe-intercept greater
than zero. This corresponds to a non-zero T value for which extrusion stops. Therefore, we replace
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(3.2) with

T(0, 1) ≥ Tt, (3.4)

for some threshold temperature 0 < Tt < α, which can be inferred from experiments. This makes
physical sense, since after leaving the heated region, the polymer will cool as it is forced through the
unheated nozzle. Hence, the polymer must be hotter than T∗ (α in the dimensionless context) in order to
remain pliant at the end of the nozzle. In addition, by adopting the form (3.4), we can essentially ignore
complications associated with device geometry, etc., since those are then incorporated into the threshold
Tt, which is determined from the data.

Replicating our previous analysis, we have the following:

α = Θ(0, 1) + Tt

1 − Θ(0, 1)
, (3.5)

where Θ(0, 1) is given by (3.3). A plot of this solution is shown as the solid curve in Fig. 3. In this case,
the Pe-intercepts match, since we fit Tt to the data. However, the behavior of the curve itself is again
far from the data, especially for low Pe. In this limit, the first term in the sum in (3.3) dominates, so
we have

Θ(0, 1) ∼ 2

j0,1J1(j0,1)
exp

(
− j20,1

Pe

)
, (3.6a)

which is also small, so we can expand the right-hand side of (3.5) to obtain

α ∼ Tt + 2(1 + Tt)

j0,1J1(j0,1)
exp

(
− j20,1

Pe

)
. (3.6b)

Therefore, the graph approaches (α, 0) exponentially from above, as shown. This is illustrated as the
dotted curve in Fig. 3. If we compare the slope of the dotted curve for large Pe to the best-fit line
through the data, we see that they are similar (though the slope of the dotted curve is slightly larger).
However, the curve has shifted from the data.

3.3 Viscosity as threshold condition

The poor agreement in Fig. 3 motivates a reconsideration of the threshold condition. In particular,
we recall that the process stops when the insertion pump pressure is less than that needed to extrude
the polymer. The pressure depends on the viscosity μ, which we assume to follow the temperature-
dependent model (Bird et al., 1960, Section 1.5)

μ(r, z) = exp

(
T̃μ

T̃(r, z)

)
= exp

(
T̃μ

T∗ + (ΔT)T

)
, (3.7)

where T̃μ is some constant. In this case, (3.2) and (3.4) can be seen as specifying a particular viscosity
at the exit that corresponds to T = Tt.
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For now, we treat the polymer as a Newtonian fluid. (The model will become irrelevant, as we see
below.) If we assume that the flow is unidirectional, then the momentum balance becomes

dp

dz
= 1

r

∂

∂r

(
μ(r, z)r

∂vz

∂r

)
, (3.8)

where p(z) is the pressure. (Note that all quantities are considered dimensionless—the exact normaliza-
tion factors are irrelevant, as described in more detail below.) But (3.8) cannot be satisfied, since the
right-hand side depends explicitly on r in a non-parametric fashion.

Hence, in general we would not expect unidirectional flow. This makes sense, since the flow near
the heated surface would have a lower viscosity and would hence flow faster than the core, which
would force a radial flow to the heated surface. However, we expect these deviations to be small, so we
approximate μ by its cross-sectional average:

μ(r, z) ≈ 〈μ〉(z) = 2
∫ 1

0
rμ(r, z) dr. (3.9)

Substituting this expression into (3.8), we have

dp

dz
= 〈μ〉(z)

[
1

r

d

dr

(
r

dvz

dr

)]
. (3.10)

Equation (3.10) now satisfies the assumptions of unidirectional flow, since the bracketed quantity must
be constant, which leads to the normal parabolic Poiseuille flow.

Thus, the pressure head needed to extrude the polymer is given by integrating (3.10):

∫ 1

0

dp

dz
∝

∫ 1

0
〈μ〉(z) dz

p(1) ∝ μ̄, μ̄ = 2
∫ 1

0

∫ 1

0
rμ(r, z) dr dz. (3.11)

Here we have used gauge pressure and absorbed the constant bracketed quantity in (3.10) into the
proportionality symbol. That is because the exact factors are irrelevant. The key insight from (3.11)
is that the pressure head is not related to the viscosity (and hence the temperature) at the exit; it is
related to the average viscosity.

In particular, we note from our previous discussion that if Pe → 0, then Θ → 0, and α → Tt. As
Pe → 0, the polymer flows very slowly, so by the time it reaches z = 1, its temperature will equilibrate
to α. Hence for extrusion to occur, Tt = α in this case. Therefore, we see from (3.7) that the threshold
for the viscosity would be

μt = exp

(
T̃μ

T∗ + (ΔT)Tt

)
. (3.12)

Given the form (3.7), calculating μ̄ using (3.11) is quite difficult. However, we may obtain results
by exploiting the averaging idea. In particular, we wish to preserve the assumption that μ is a function
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only of z. So we define

μ(z) = exp

(
T̃μ

T∗ + (ΔT)〈T〉

)
, (3.13)

where 〈T〉 is defined as in (3.9). (Note that we do not denote the quantity in (3.13) as 〈μ〉, because we
construct it by averaging the temperature, not μ.) Then at extrusion, the averaged viscosity μ̄ must equal
μt, so we have

μt =
∫ 1

0
exp

(
T̃μ

T∗ + (ΔT)〈T〉

)
dz (3.14a)

=
∫ 1

0
exp

(
T̃μ

T∗ + (ΔT)[α − (α + 1)〈Θ〉]

)
dz, (3.14b)

where we have used (3.1a).
Motivated by previous work, we take the limit of small Pe, which corresponds to small Θ . Also, we

know that in this case, α → Tt. Therefore, motivated by (3.6b), we let

α = Tt + (Tt + 1)α1, α1 � 1. (3.15)

(We expect that α1 = O(Pe), but we will establish that in the analysis below.) Substituting these
assumptions into (3.14b) and expanding using the binomial theorem, we obtain

μt ∼
∫ 1

0
exp

(
T̃μ

T∗ + TtΔT

(
1 − ΔT(Tt + 1)(α1 − 〈Θ〉)

T∗ + TtΔT

))
dz,

which can be simplified into the following expression:

eβα1 =
∫ 1

0
eβ〈Θ〉 dz, β = T̃μ(ΔT)(Tt + 1)

(T∗ + TtΔT)2 . (3.16)

To approximate the integral, we exploit the fact that the terms in (3.1b) decay quickly with increasing
n for small Pe. (This is true even in the case that z → 0, but then the decay isn’t exponential.) Therefore,
we replace the sum (3.1b) with its first term in the integral above to yield

eβα1 = Pe

j20,1

[
Ei

(
4β

j20,1

)
− Ei

(
4β

j20,1

exp

(
− j20,1

Pe

))]
,

where Ei is the exponential integral, defined as

Ei(y) =
∫ y

−∞
ey′

y′ dy′.
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Fig. 4. ABS data fitting using (3.18). Dotted line: β = 8.16 given in Table A2. Solid line: data with best fit (β = 0.58).

Then expanding for small Pe, we have the following:

eβα1 = 1 + Pe

j20,1

[
Ei

(
4β

j20,1

)
− log

(
4β

j20,1

)
− γ

]
, (3.17)

where γ is Euler’s constant. Since the right-hand side is very close to 1, that establishes that α1 = O(Pe).
Expanding the left-hand side for small α1 and then substituting the result into (3.15) and rearranging,
we have

α = Tt + (Tt + 1)
Pe

j20,1β

[
Ei

(
4β

j20,1

)
− log

(
4β

j20,1

)
− γ

]
. (3.18)

A plot of (3.18) is shown as the dotted line in Fig. 4. Given the poor fit, it is clear that this condition is
not appropriate for determining the maximum extrusion velocity.

To determine the problem, we re-examine (3.13) in light of our results. Not only does μ depend
exponentially on T , but the argument of the exponent will be very large due to the size of T̃μ

(see the Appendix). Hence, even small errors will have a large effect. For instance, with reasonable
parameter values, even a 1% error in 〈T〉 can cause a 25% error in μ. Thus, though our various
averaging approximations may simplify the analysis, they introduce small errors, which magnify in
the exponential.

3.4 Average temperature as threshold condition

Nevertheless, the averaging idea remains intuitive. The failure mode for the device is pressure buildup,
which is driven by the material properties throughout the hot end, not just at one point or cross section.
Therefore, we retain the averaging idea, but in a simpler context. Instead of using the average viscosity,
as a substitute we simply require that the average temperature be above Tt:

T̄ ≥ Tt, (3.19)
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Fig. 5. Graph of solution using averaged conditions. Dashed curve: (3.20) (five terms). Dotted curve: (3.22). Crosses: ABS
experimental data (with linear fit). Note the reasonably good agreement.

where the bar notation is defined as in (3.11).
Substituting (3.1) into (3.19) and rearranging, we obtain

α = Θ̄ + Tt

1 − Θ̄
, Θ̄ =

∞∑
n=1

4 Pe

j40,n

[
1 − exp

(
− j20,n

Pe

)]
. (3.20)

A plot of (3.20) is shown as the dashed curve in Fig. 5. Here this curve begins to diverge from the
linear fit as Pe increases. Motivated by the good agreement between the asymptotic and full solution in
Fig. 3, we do the same asymptotic work here for small Pe. In this case, the exponentials are all negligible
and we have

α ∼ Tt + 4 Pe(1 + Tt)

∞∑
n=1

1

j40,n

. (3.21)

The sum in (3.21) can be found to be 1/32 (Sneddon, 1960, Eq. (41)); hence, the expression can be
written in terms of Pe as follows:

Pe ∼ 8(α − Tt)

1 + Tt
. (3.22)

Equation (3.22) is illustrated as the dotted curve in Fig. 5. Note the agreement is much better.

4. Crystalline case

4.1 Governing equations

We next consider the crystalline case, so we interpret T∗ as the melting temperature Tm. In this case,
there is a melting front r = s(z) separating the rigid and pliant regions:

Tr(s(z), z) = Tp(s(z), z) = 0, s(0) = 1. (4.1)
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Note that Tr holds in the rigid lightly shaded region 0 < r < s in Fig. 1, while Tp holds in the pliant
medium shaded region s < r < 1.

The formulation of the Stefan condition is not straightforward in the laboratory frame. In particular,
the typical time-derivative operator in the heat equation has been replaced by the spatial derivative that
arises from the convection of the polymer down the cylinder [see (2.1)]. However, by switching to a
moving reference frame, one may derive the proper Stefan condition:

[
−k

∂T̃

∂ r̃

]
s̃

= ρcLV
ds̃

dz̃
,

where cL is the latent heat of melting and [·]s̃ means the jump across the front. (Recall that by
assumption, the only flux is in the r̃-direction.) Introducing the scalings from Section 2, we obtain

St

[
Pe−1 ∂T

∂r

]
s
= −ds

dz
, St = ΔTcp

cL
, (4.2)

where St is the Stefan number. (Note that the amorphous system is just a special case, since then cL = 0,
St = ∞ and the condition is that the fluxes must match across any boundary.)

The change in boundary conditions makes the full solution of this problem quite difficult. Motivated
by Mackay et al. (2017), we treat cp (and hence Pe) as a constant across phases. Summarizing our
system with this assumption, in the rigid region, we have

∂Tr

∂z
= Pe−1

r

∂

∂r

(
r
∂Tr

∂r

)
, 0 < r < s(z);

∂Tr

∂r
(0, z) = 0, Tr(r, 0) = −1. (4.3)

In the pliant region, we obtain

∂Tp

∂z
= Pe−1

r

∂

∂r

(
r
∂Tp

∂r

)
, s(z) < r < 1; Tp(1, z) = α. (4.4)

At the front r = s(z), we have the following conditions:

Tr(s(z), z) = Tp(s(z), z) = 0, s(0) = 1, (4.5a)

Pe−1
∂Tp

∂r
(s(z), z) − Pe−1 ∂Tr

∂r
(s(z), z) = − 1

St

ds

dz
. (4.5b)

4.2 The quasistationary approximation

The system as posed has no analytic solution, which is the most desirable kind due to the ability to
discern parameter dependence easily. To make the problem tractable, we employ the ‘quasistationary
approximation’. In particular, we neglect the left-hand side of the partial differential equations (PDEs)
in (4.3) and (4.4). This is equivalent to taking Pe → 0, which is equivalent to taking V → 0, so this is
the regime in which we are interested. However, by neglecting the evolution term, we will overestimate
the speed of s(z) (Alexiades & Solomon, 1992).
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When we take the left-hand side of the PDE in (4.3) equal to zero, the resulting operator is a second-
order ordinary differential equation (ODE). But there are three boundary conditions to solve in (4.3) and
(4.5a). Since we wish to solve the problem for all time, we ignore the initial condition in (4.3) to obtain
the following solution in the rigid region:

Tr ≡ 0, r < s(z). (4.6)

To satisfy the initial condition, we would have to insert a thin initial layer near z = 0. In this region
(where the full differential equation in (4.3) would hold), there is rapid diffusion from the initial
condition to (4.6). In the previous section, this layer was important in determining the behavior of the
data away from Pe = 0, so we may be suspicious that this approximation will perform well. Moreover,
this effect will also tend to overestimate the speed of s(z), since it omits the time needed to raise the
polymer to the melting temperature.

Taking the left-hand side of the PDE in (4.4) equal to zero and satisfying the conditions in (4.4) and
(4.5a), we have

Tp(r, z) = α

(
1 − log r

log s

)
, s(z) > 0. (4.7)

Depending on the experimental conditions, it may be possible for the front to hit the centerline at some
z1 < 1:

s(z1) = 0. (4.8)

In that case, the steady-state operator must also satisfy the no-flux condition in (4.3), so we have the
following:

Tp(r, z) = α, z > z1. (4.9)

To find s(z), we first substitute (4.6) into (4.5b) to yield

Pe−1
∂Tp

∂r
(s(z), z) = − 1

St

ds

dz
.

With Tr given by (4.6), the problem essentially reduces to a one-phase Stefan problem. Substituting
(4.7) into the above, we obtain

− α

s log s
= −Pe

St

ds

dz
.

Note that this equation makes sense only if St �= ∞; i.e. only in the melting context.
Continuing to simplify, we obtain

du

dz
= 4α

log u

St

Pe
, u = s2, (4.10a)

4α
St

Pe
z − 1 = u(log u − 1), (4.10b)

where in the last line we have used the initial condition in (4.5a) to determine that u(0) = 1. The solution
for u can be written explicitly in terms of Lambert W-functions, but it is not illuminating.
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We note from (4.10b) that the melting front hits the center of the cylinder when

4α
St

Pe
z1 − 1 = 0 �⇒ z1 = Pe

4 St α
, (4.11)

which matches with Alexiades & Solomon (1992, Section 3.2.C(14)) in the case where α = 1. Hence,
if Pe < 4 St α, then the entire polymer melts before it exits the heated region of the cylinder. We note
that z1 depends on the quantity St α, which is independent of ΔT (and hence Ti). This makes sense since
with the one-phase approximation we are effectively assuming that the polymer enters the chamber at
temperature T∗.

5. Crystalline case, proper conditions

5.1 The exit temperature

We use the same conditions as in Section 3 to determine if they are appropriate for the crystalline case.
First we note from (4.6) and (4.9) that

Tr(0, z) = 0, z < z1; Tp(0, z) = α, z > z1. (5.1)

If Tt > 0, conditions (3.2) and (3.4) are really the same (since Tt < α), and are equivalent to

α ≤ Pe

4 St
(5.2)

from (4.11) with z1 = 1. But as this bound is independent of Tt, we can’t shift it to fit the data. This
invariance is due to the jump condition inherent in (5.1); however, if we replace (3.4) with T(δ, 1) ≥ Tt
for some small parameter δ, (5.2) still holds in the limit that δ → 0.

Now we attempt to fit (5.2) to our data using the parameters from Table A3 in the Appendix. Given
that Tm = 155◦ C, we use only that data for which Tmax = 170◦ C or higher to ensure that melting has
taken place. The results are shown in Fig. 6.

To explain the poor fit, note that since the zero set point for temperature is now Tm, Tt can be
negative, which corresponds to it lying between the glass transition temperature Tg and Tm. This is
exactly what the data shows. As this case is not contemplated by this condition, the fit is poor. (In
particular, if Tt < 0, then the one-phase approach says that flow would occur for all values of Pe.)

5.2 The viscosity

We next consider the viscosity approach. As a preliminary approach, we average (4.7) and (4.9) to obtain

〈Tp〉 = α

(
1 + 1 − s2

2 log s

)
, s(z) > 0, (5.3a)

〈Tp〉 = α, z > z1. (5.3b)
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Fig. 6. Graphs of (5.2) (dashed line) with curve fit to polylactic acid (PLA) crystalline data (assumed linear to match models).

Substituting (5.3) into (3.14a) yields

μt =
∫ 0

1

(
4α

log u

St

Pe

)−1

exp

(
T̃μ

T∗ + (ΔT)α[1 + (1 − u)/ log u]

)
du + (1 − z1) exp

(
T̃μ

T∗ + (ΔT)α

)
,

(5.4)

where we have used (4.5a), (4.8) and (4.10a). Motivated by our previous work, we let

α = Tt + Pe α1, Pe → 0. (5.5)

Substituting (5.5) into (5.4) and expanding for small Pe using the binomial theorem, we obtain

μt = Pe I

4 St Tt
+ μt exp

(
− Pe α1(ΔT)T̃μ

[T∗ + (ΔT)Tt]
2

)
− Pe

4 St α
μt, (5.6a)

I = −
∫ 1

0
log u exp

(
T̃μ

T∗ + (ΔT)Tt[1 + (1 − u)/ log u]

)
du, (5.6b)

where we have used (4.11). Note also that I > 0. Solving (5.6a) for α1 using (3.16), we have

α1 = (Tt + 1)a

4 St Tt
, a = I − μt

βμt
. (5.7)

Here we have introduced the variable a to group all the parameters that depend on T̃μ. Note that in order
for α1 > 0 as required, a must be negative (since Tt < 0).

A graph of the comparison is shown in Fig. 7. As previously, it is wildly inaccurate, in part due to
the fact that in the experiments chosen, Pe is not small.
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Fig. 7. Graphs of (5.7) (dotted line) with curve fit to PLA crystalline data.

5.3 The average temperature

Hence, we conclude with a discussion of the average temperature. Calculating T̄ from (5.3), we obtain

T̄ =
∫ z1

0
α

(
1 + 1 − s2

2 log s

)
dz +

∫ 1

z1

α dz = α − Pe

8 St
. (5.8)

Then imposing (3.19), we have

α = Tt + Pe

8 St
. (5.9)

A comparison with the curve fit is shown in Fig. 8. Even with the shift between (5.2) and (5.9), the
fit does not improve. As discussed in Section 5, the quasistationary approximation overestimates the
speed of s(z). Hence, for a given V the model overestimates the amount of polymer that is pliant, which
would then cause an overestimate of the bound in Pe, as shown in Fig. 8.

6. Using the amorphous model for crystalline polymers

Though PLA can behave in a crystalline manner, the quasisteady approximation outlined in Sections 4
and 5 does not fit the data. The experimental data has Tt < Tm, which indicates that in some
circumstances, the polymer is pliable enough without melting. Therefore, we attempt to match the
experimental results by using the amorphous model for PLA.

We replicate the analysis from Section 3.2 and present the results in Fig. 9. Note that in this case
we use all the experimental data for PLA, not just those above the melting point. A plot of (3.3) for the
PLA data in Tables A3 and A4 is shown as the dashed curve. Note that its behavior does not match the
experimental data, which has a Pe-intercept greater than zero. Therefore, we plot (3.5) as the solid curve
in Fig. 9. In this case, the Pe-intercepts match, since we fit Tt to the data. Lastly, we use (3.6b), which is
illustrated as the dotted curve in Fig. 9. Note that the slope for large Pe is nearly correct.
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Fig. 8. Graphs of (5.9) (dashed line) with curve fit to PLA crystalline data.

Fig. 9. Graph of solution using exit conditions. Dashed curve: (3.3) (five terms). Solid curve: (3.5) (five terms). Dotted curve:
(3.6b). Crosses: PLA experimental data (with linear fit). Note that neither theoretical curve matches the behavior of the data.

Next we use the viscosity model and plot the equivalent of Fig. 4, which is given in Fig. 10. Again,
the fit is poor. Moreover, in contrast to Fig. 4, there does not exist a value of β that will actually fit
the data.

Because of the poor agreement in both of the above figures, we again use the average temperature as
a condition. A plot of (3.20) is shown as the dashed curve in Fig. 11. Though this plot curves somewhat,
it does not curve as much as the data. Motivated by the good agreement between the asymptotic and full
solution in Fig. 9, we do the same asymptotic work here for small Pe; the expression (3.22) is illustrated
as the dotted curve in Fig. 11. Here the agreement is not as strong as in the ABS case, mainly due to the
curved nature of the data. However, in the cases of higher temperatures (where we expect the PLA to
have melted), the experimental upper bound is sandwiched between the two curves.
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Fig. 10. Data fitting using (3.18). Dotted line: β = 8.81 as given in Table A4. Solid line: PLA data with linear fit.

Fig. 11. Graph of solution using averaged conditions. Dashed curve: (3.20) (five terms). Dotted curve: (3.22). Crosses: PLA
experimental data (with linear fit). Note the lack of curve-like behavior in the solutions.

7. Conclusions and further research

To optimize production using a 3D printing process, it is important to know the maximum rate at which
the polymer construction material can be extruded. Given the maximum rated temperature for the hot
end, there exists an upper bound on the velocity at which the polymer may be extruded. Beyond that
velocity, the polymer has not been heated enough to become pliant enough to be extruded through
the nozzle.

After making several physically realistic simplifying assumptions, we modeled the system by
the heat equation in cylindrical coordinates. In the amorphous case, the problem may be solved by
separation of variables; in the crystalline case it becomes a Stefan problem, which we solved using the
quasistationary approximation.
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The more subtle point is to determine what type of conditions need to be placed on the solution
to match the calculated upper bound to experimental data. In particular, what must be true about the
temperature or viscosity to guarantee that the polymer will remain pliant enough to extrude through the
unheated nozzle?

We examined three possibilities. The pliancy of the polymer depends on it being above a certain
temperature. Therefore, a reasonable possibility would be to require that the minimum exit temperature
(along the axis) be above a certain threshold. However, as shown in Figs. 3, 6 and 9, using this condition
led to curves in the α-Pe plane that did not match the experimental data.

The extrusion process fails when the insertion pump cannot provide enough pressure to force the
polymer through the nozzle. Thus, another reasonable possibility would be to require that the pressure
head be above a certain value. We showed that this condition is equivalent to the average viscosity in the
polymer being above a certain value. By using some simplifying averaging assumptions, we established
a bound on the velocity, which produced straight-line data. However, given the material constants of
the various polymers, such a condition produced wildly different estimates of the velocity bound as
compared to experimental data (see Figs. 4, 7 and 10).

Lastly, we note that the extrusion process must rely upon the polymer being reasonably pliant not
only at the exit of the hot end, but throughout. Therefore, the final condition we tested was to require
that the average temperature of the polymer in the heated region be above a certain temperature. In the
amorphous case, this condition produced predictions that matched well with experimental results (see
Figs. 5 and 11).

However, in the crystalline case, even this third condition did not produce reasonable results.
Happily, we noted that if we treated a crystalline polymer such as PLA as if it underwent only the
amorphous transition, the ensuing mathematical results would fit the experimental data. PLA is a slowly
crystallizing polymer, and during its manufacture the fiber is quenched rapidly from the melt to produce
amorphous material. So the feed material into the hot end is amorphous (as our results have shown) and
one may suggest that the amorphous case should apply. However, a quenched crystalline polymer will
crystallize when heated above Tg (but still below Tm) (Hiemenz & Lodge, 2007). The analysis provided
here demonstrates that this effect is negligible.

Our results demonstrate that using the average temperature as a mathematical condition for the
amorphous model produces an estimate for the velocity upper bound, which matches well with
experimental data, no matter the type of polymer used.

The model in this manuscript contains several listed simplifications and assumptions. Relaxing them
and considering more complicated models is an area for fruitful further research. For instance, given that
the failure mode of the device is pressure buildup, we surmise that global properties in the hot end are
crucial. Therefore, another condition to consider would be to maximize the volume of pliant polymer in
the hot end—in other words, to maximize the medium shaded area in Fig. 1.

Obviously, improving the mathematical sophistication of the solution will be beneficial. In particu-
lar, the quasistationary assumption for crystalline polymers could be relaxed, with an eye to doing so in
a way that would make the model for crystalline polymers more experimentally realistic.

Nomenclature

Variables and parameters

Units are listed in terms of length (L), mass (M), time (T) and temperature (θ ). If a symbol appears
both with and without tildes, the symbol with tildes has units, while the one without is dimensionless.
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Equation numbers where a variable is first defined is listed, if appropriate.

a: parameter used in crystalline model (5.7).

cL: latent heat of melting, units L2/T2 (4.2).

cp: heat capacity of polymer, units L2/(T2θ) (2.1).

H: length of heater, units L (2.2).

I: integral used in viscosity calculation of crystalline model (5.6b).

k: thermal conductivity, units ML/(T3θ) (2.1).

n: indexing variable (3.1b).

p: pressure (3.8).

Pe: Péclet number (2.3).

R: radius of cylinder.

r̃: radial coordinate, units L (2.1).

St: Stefan number (4.2).

s(z): front between phases, units L (4.1).

T̃(r̃, z̃): temperature, units θ (2.1).

u(z): [s(z)]2 (4.10a).

V: velocity in z̃-direction, units L/T (2.1).

vz: velocity profile in z-direction (3.8).

y: dummy variable.

z̃: distance along the channel, units L (2.1).

α: dimensionless temperature at heater (2.4a).

β: coefficient in viscosity calculation (3.16).

ΔT: differential between transition and room temperature, units θ (2.2).

δ: small radius.

Θ(r, z): heat function used in amorphous case (3.1a).

μ: viscosity (3.7).

ρ: density of polymer, units M/L3 (2.1).

Other Notation

g: as a subscript on T , used to indicate the temperature of the glass–rubber transition.

i: as a subscript on T , used to indicate the initial temperature (2.2).

m: as a subscript on T , used to indicate the melting temperature.
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max: as a subscript, used to indicate the heater (2.1).

p: as a subscript on T , used to indicate temperature in the pliant region (2.4a).

r: as a subscript on T , used to indicate temperature in the rigid region (2.4b).

t: as a subscript, used to indicate the extrusion transition (3.4).

μ: as a subscript on T , used to indicate a characteristic temperature in the viscosity formula (3.7).

*: as a subscript on T , used to indicate the pliancy temperature (2.2).

〈·〉: used to indicate a cross-sectional average (3.9).

¯ : used to indicate an average over the whole device (3.11).
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Appendix

In Table A1 we list the parameters for the hot end. Some are from the experimental paper Mackay
et al. (2017), while others come directly from measurements in the lab. As hypothesized, the aspect
ratio of the cylinder is small O(10−2).

Table A1 General device parameters

Mackay et al. (2017) Used

D (mm) 3.175
H (mm) 30
Ti (◦C) 20

In Table A2 we list the parameters for ABS. In the left column are experimental parameters; the
values of the calculated parameters are listed at right. As expected, we are in the regime of relatively
small Pe and α.

Table A2 Parameters for ABS

Experimental
Mackay et al. (2017) Used Calculated

cp [J/(kg·K)] 2100 Pe 0.219–3.26
k [W/(m·K)] 0.205 Tt 0.906
Tmax (◦C) 175–245 α 0.938–1.81
T∗ (◦C) 100 β 8.16
T̃t (◦C) 169–174 ΔT (K) 80
T̃μ (K) 10700
V (mm/s) 0.23–3.44
ρ (kg/m3) 1100

In Table A3 we list the parameters for PLA needed to use the crystalline model. As noted in the text,
for this model we take only those experiments with high enough values of Tmax that we think we may
be in the melt regime, namely those with Tmax sufficiently greater than Tm. Again we are in the regime
of relatively small Pe and α.

Table A3 Parameters for PLA (crystalline model: Section 5)

Experimental
Mackay et al. (2017) Pyda et al. (2004) Calculated

cL (kJ/kg) 91 a −9.37 × 10−2

cp [J/(kg·K)] 1700 Pe 0.551–5.08
k [W/(m·K)] 0.13 St 2.52
Tmax (◦C) 170–230 Tt −0.283
T∗ = Tm (◦C) 155 α 1.11 × 10−1–5.56 × 10−1

T̃t [◦C] 138–143 β 7.90
T̃μ (K) 12400 ΔT (K) 135
V (mm/s) 0.4–3.69
ρ (kg/m3) 1250
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Table A4 Parameters for PLA (amorphous model: Section 6)

Experimental
Mackay et al. (2017) Calculated

Tmax (◦C) 150–230 Tt 1.93
T∗ = Tg (◦C) 59 α 2.33–4.38

β 8.81
ΔT (K) 39

In Table A4 we list the parameters for PLA needed to use the amorphous model. For this model, we
use all the experiments, no matter their value of Tmax.
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