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Abstract This work studies a mortgage borrower’s optimal refinancing strategy,
which is formulated as the solution to a stochastic minimization problem with contin-
gent conditions. The problem is framed in a business economic environment where
the underlying discounting factor and mortgage interest rate are assumed to follow a
two-dimensional stochastic process of Vasicek type. A complete Monte Carlo algo-
rithm is developed and implemented. This algorithm generates the optimal refinancing
surface as a function of time and the risk-free rate. Numerical examples with financial
implications are provided.

Keywords Mortgage refinancing · Stochastic modeling · Monte Carlo simulation ·
Financial optimization

1 Introduction

Mortgage securities are one of the most heavily traded financial instruments through-
out the world’s major markets, both in terms of volume and frequency. Valuation of
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mortgage securities has been increasingly crucial to investors, bankers, and finan-
cial regulators (for discussion with respect to this aspect, see Saunders and Allen
1999, 2010; Lea 1999; Crotty 2009, for instance) in helping their decision making
from various perspectives. The efficacy of using mortgage securities as financial indi-
cators certainly depends on whether such securities are valued properly, and, more
importantly, whether the contract holders react rationally to the market movement. In
particular, the valuation of mortgage securities needs to take into account the choices
available to the mortgage loan borrowers as part of their contracts. In fact, without
simultaneously accommodating these choices, the mathematical analysis (via a partial
differential equation approach, for instance) is usually incomplete or ill-posed (Xie
et al. 2007).

Usually the borrowers are granted the right to prepay, i.e., to settle the remaining loan
balance at any time during the contract period of the mortgage loan. The valuation of
mortgage securities with the possibility of prepayment has been studied considerably
in the literature, especially via the so-called structural approach. In that approach,
the problem is mathematically formulated as a free-boundary problem where the free
boundary denotes the interest rate at which the mortgage security value equals the face
value of the loan (Lo et al. 2009; Xie et al. 2007).

On the other hand, there has not been enoughmathematical attention to the valuation
of mortgage securities embedded with the possibility of refinancing. As we will treat
it, mortgage refinancing refers to replacing the existing loan with a new loan which
has

– an initial loan amount equal to the remaining face value of the original loan,
– a term which is the remaining duration of the original loan, and
– an interest rate equal to the market interest rate at the time of refinancing.

The reasons accounting for the lack of scholarly interest can be: (1) historically, refi-
nancing was less commonly claused in industry contracts compared to prepayments;
and (2) competition between banks was less severe in earlier times compared to the
present. But the contemporary financial market has reversed both these factors, and
refinancing has become increasingly common. It is with this observation of market
reality that we assume the significance of the current study on the optimal refinancing
strategy for mortgage borrowers.

The rest of the paper is organised as follows. Section 2 discusses some of the related
work found in the literature. Section 3 lays out key assumptions for the problem under
study. Section 4 formulates the problemswith postulations on likely solution scenarios.
Section 5 outlines the numerical schemes based on Monte Carlo simulation. Section 6
provides example outputs of our algorithm. Section 7 concludes the paperwith possible
directions of further studies.

2 Literature Review

There has been considerable work done on the topic of modelling mortgage refinance
and prepayment behaviours. These works endeavoured to understand the conditions
under which a borrower will pay back his/her outstanding debt before the end of the
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contract period. Most of this earlier work modelled the optimal mortgage prepayment
problem out of a different motivation from ours. Their purpose was to determine the
fair price of a mortgage contract under the condition that the loan may be prepaid.
Thismortgage contract pricing problem is closely related to the valuation of residential
mortgage backed securities (MBSs): an important problem, as the MBS market has
been one of the largest and fastest growing bond markets in the US. One approach to
mortgage contract pricing is to view the prepayment opportunity as a built-in option
in the mortgage contract that can be exercised by the borrower under favourable con-
ditions. This approach inevitably borrows techniques from option pricing to calculate
prices of mortgage contracts.

For example, Dunn and McConnell (1981a, b) applied contingent claim techniques
to estimate the present value of the mortgage contract. The resulting partial differen-
tial equations were solved using the finite-difference method. Following the option
pricing approach, Chen and Ling (1989) applied the binomial tree method to calculate
the prices of the prepayment option and the mortgage contract. They assumed that a
borrower will prepay the outstanding debt when the contract rate drops deep enough.
Their model incorporated the possibility of recursive refinancing. However, the opti-
mal refinancing threshold rate r∗ (the rate under which refinancing, if it takes place,
will be optimal) cannot be obtained directly from the constructed binomial tree. To
approximate r∗, multiple trees have to be constructed with varying initial mortgage
rates until the initial rate is high enough for refinancing to be optimal at the present
time. The difference in basis point between this rate and the original contract rate is
deemed as how much the mortgage rate has to drop in order to make refinancing at
the present time optimal.

More recently, Lee and Rosenfield (2005) applied dynamic programming tech-
niques to estimate the overall cost to a borrower if he/she refinances his/her outstanding
debt at a particular time with a new mortgage rate. The authors assumed that refinanc-
ing will happen if this cost is lower than the overall cost without refinancing. As in
Chen and Ling (1989), r∗ can be approximated only through multiple tests.

In contrast to these earlier works, our method computes r∗ directly without calcu-
lating the value of the mortgage contract. Monte Carlo simulation is the fundamental
approach for realizing our goal. As a powerful computing tool, Monte Carlo simula-
tion has been used in many applied fields such as system engineering and managerial
sciences (cf. Chen et al. 2003; Barat et al. 2006). Longstaff (2004) applied the
least-squares Monte Carlo method to compute the prices of prepayment options and
mortgage contracts.

A seminal work of refinancing strategywhich is close inmethodology to our current
study is presented in Zheng et al. (2012), Gan et al. (2012), where a Monte Carlo
simulation scheme is introduced to find the probability distribution of the optimal
refinancing time as a function of t . To find the optimal refinancing strategy according
to Zheng et al. (2012), Gan et al. (2012), one can simulate the alternative market
interest rate and compare the total discounted value of all installments under the
existing payment stream to alternative ones. Then the installment path with minimum
net present value of total payment is chosen.

While the seminal work in Zheng et al. (2012), Gan et al. (2012) is interesting, there
are a couple of important issues deserving solid theoretical clarification. Among other
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things, the mathematical assumptions and framework surrounding the refinancing
strategy are not explicitly stated. Also the previous work in Gan et al. (2012) does
not differentiate between the alternative mortgage interest rate and the discounting
factor—they are usually not the same, despite possible strong statistical correlations
between these two processes. In addition, the Matlab-based simulation algorithm can
be improved in terms of runtime and convergence, as admitted in Gan et al. (2012).

The current work overcomes these weaknesses by generalising the refinancing
problems discussed in Gan et al. (2012). We then reformulate the problem rigorously
with a discrete stochastic optimisation approach, and provide solutions with enhanced
Monte Carlo simulations.

3 Economic and Model Assumptions

3.1 Business Economic Assumptions

As the mortgage market increasingly diversifies, the mortgage contract itself has
become rather complicated in actual practice, the documentation of which concerns
not only financial and business consultants, but also commercial lawyers and regu-
latory officers, etc. This said, it is agreeable for us to summarise, with reasonable
simplifications, the following key assumptions regarding common contract specifics
and the economic environment in which the mortgage deals are cultivated.

1. The payment streams, installments, underlying interest rates and discounting fac-
tors, as well as any other financial calculations pertaining to the contract, are all
based on a finite discretisation of the duration of the original loan contract.

2. The duration of the original loan contract is divided into subintervals (usually
months). Payments and refinancing can be made only at the end of a subinterval.

3. The mortgage loan is fully amortised, which yields equal installment of cash flow
per subinterval.

4. Neither the original lender nor the second lender (who are allowed to be the same)
charges a fee from the borrower in the event of refinancing.

5. Only one refinancing is granted throughout the whole duration of the original loan.
6. The market is complete, and both the lender and the borrower have equal access

to the market information.
7. The borrower does not have enough funds to pay off either the original loan or the

second loan after refinancing.

Among these assumptions, 1–5 are contract clauses or interpretations of these clauses,
and 6–7 are assumptions about the market and economic environment. In particular,
assumption 6 guarantees themethod and solutions contained in this work are arbitrage-
free. We realize that assumption 4 may not be realistic in practice. However, such an
assumption helps to simplify the mathematical formulation of the problem (which
is not uncommon in financial mathematics, as demonstrated by the seminal Black–
Scholes model). It is our hope that more complicated market conditions can be added
in future research after fundamental patterns are well understood using the current
study.
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3.2 The Mortgage Rate and Risk-Free Rate Processes

Consider the risk-neutral processes for the mortgage rate rt and risk-free rate ft , both
of which we treat as annual rates with units year−1. We assume they follow Vasicek’s
instantaneous short rate model (Vasicek 1977); hence we have

drt = κ1(θ1 − rt )dt + σ1dW
1
t ,

d ft = κ2(θ2 − ft )dt + σ2dW
2
t ,

(1)

where the reversion rates κ1, κ2, long-term mean levels θ1, θ2, and volatilities σ1,
σ2 are positive constants, and W 1, W 2 are ρ-correlated Brownian processes. Here
t is measured in years, and hence the units for the parameters θ , κ , σ , and W are
respectively year−1, year−1, year−1.5, and year−0.5.

The Vasicek stochastic process admits an explicit solution of the form

rt = θ1 + (r0 − θ1)e
−κ1t + σ

∫ t

0
e−κ1(t−s)dWs .

This model incorporates mean reversion in that the short rate r (respectively, f ) is
pulled to the long-term mean level θ1 (respectively, θ2) at the speed κ1 (respectively,
κ2). The second part σ1dW 1 (respectively, σ2dW 2) is a normally distributed stochastic
term superimposed upon the mean reversion.

Our Monte Carlo simulations will require a discretized version of (1); in that case,
the short rates rt+Δt , ft+Δt at time t + Δt are calculated from the rates rt , ft at time
t as

rt+Δt = rt + κ1(θ1 − rt )Δt + σ1ε
1
t

√
Δt,

ft+Δt = ft + κ2(θ2 − ft )Δt + σ2ε
2
t

√
Δt,

ε1t = u, ε2t = ρu +
√
1 − ρ2v.

(2)

whereΔt is the time interval between changes in the rates (typically taken to be a day).
Here u and v are sampled as uncorrelated variables with standard normal distributions,
and ρ is the correlation between ε1t and ε2t .

3.3 Model for Mortgage Payment and Refinancing

In this work we consider a fully amortised model, in which a fixed payment is made
each month during the whole period of the mortgage contract. Typically, a principal
p0 is borrowed at time t = 0 with annual interest rate r0, and the principal is to be
paid back over a period of N months. The first payment is made at month 1, and the
last at month N . In each month a fixed paymentm1 is made and this monthly payment
m is calculated by

m1 = p0r0/12

1 − (1 + r0/12)−N
, (3)

where the extra factor of 12 comes from the fact that r0 is the annual interest rate.
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Let t = tk correspond to the end of the kth month, k ∈ {1, 2, . . . , N }. After the
kth monthly payment m has been made, the outstanding balance owed to the lender is
ptk . Since by assumption 2, the ends of the months are the only times when payments
and refinancings can occur, we choose to simplify our notation by writing ptk = p�k�,
with similar notation for r and f . Calculating the remaining balance, we have

p�k� = m1

r0/12

[
1 − (1 + r0/12)

k−N
]
. (4)

We model the refinancing process as follows. Suppose after the kth monthly pay-
ment, the mortgage rate for new loans is r�k�. If r�k� < r0, the debtor may decide
to refinance by borrowing p�k� from a second bank to settle the balance owed to the
first lender. The borrower enters into another mortgage contract with the second bank,
which is parametrised with principal p�k� and repayment months k + 1, k + 2, . . ., N .
(The assumption that both mortgages would end at the same time may be unrealistic
in practice, but will not appreciably affect our results.)

In the assumed case, the total payment M made by the borrower under the two
contracts is

M = km1 + (N − k)m2, (5)

where

m2 = p�k�r�k�/12

1 − (1 + r�k�/12)k−N
, r�k� < r0, (6)

and m1 and p�k� are given by (3) and (4).

4 Mathematical Setup

4.1 Preliminary Analysis

Suppose at tk (the end of the kth subinterval), a decision to refinance must be made.
Intuitively, one would possibly refinance then only if r�k� < r0, though in this case a
borrower may keep waiting, betting on a even better deal in the future. To heuristically
illustrate, we display, in the following Fig. 1, the comparative level plots of initial
mortgage rate r0 and the interest rate process. For the convenience of explanation,
all these plots are based on an analysis with the assumption that σ1 = 0 and the
discounting factors are constant across time.

1. Case where r0 < r�k� (see Fig. 1a). In this scenario, the borrow cannot optimally
refinance today. If he refinances, he immediately pays a highermonthly installment,
giving up the existing lower interest rate r0, and also the possibility of any future
refinancing at a lower rate.

2. Cases where r�k� < r0 and rt is set to climb in the future trend (see Fig. 1b,c).
These are typical scenarios where the borrower would possibly refinance today.
If he does so, he immediately enjoys a lower interest rate and a lower monthly
payment. The longer he waits, the higher the new interest rate would be. Also,
the longer he waits, the lower the face value of the original loan, which reduces
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Fig. 1 Comparison between r0 and interest process for σ1 = 0.Dotted lines: r0. Solid curves: rt . a r0 < rt
for all t > tk (no refinancing). b r0 > rt for some t > tk . c, d r0 > rt for all t > tk (refinancing)

the benefit of refinancing. This observation has been numerically verified in Gan
et al. (2012) with plots of the density functions of the optimal refinancing time,
showing that the optimal refinancing, if it exists, usually occurs at the early stage
of the contract. However, an immediate refinancing may not be optimal due to the
uncertainty caused by market volatility.

3. Case where r�k� < r0 and rt is strictly decreasing (see Fig. 1d). Even if σ = 0
for this case (a higher σ > 0 is usually the main reason for borrower to take a
wait-and-see strategy), chances are the borrower can wait for a while to optimally
refinance. How long to wait depends on how fast and how low rt decreases in the
future. This is the most interesting case, and will be the focus of our analysis in
subsequent sections.

It is noted, however, that the presence of transaction costs may complicate the issue
and change the optimality of the strategies discussed above (except for case 1). In par-
ticular, the “earlier the better” strategymay not be the best choice for case 2, especially
when the transaction cost is charged in proportion to the remaining loan balance. In
addition, for case 3, it may never be worth refinancing if the rates do not drop enough,
the likelihood of which will only increase when the transaction cost is imposed.
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4.2 Problem Discretization

Let dt = T/q be the unit subinterval length for partitioning the duration of the contract
[0, T ], where q is a positive integer. Suppose refinancing is made at the time of n∗dt .
Viewing the total discounted payment as a function of n∗, with all other parameters
prescribed, we are to solve the following minimisation problem. For n∗ = 1, 2, . . .,
find

min
n∗

M(n∗) =
n∗−1∑
i=0

m1 f (0, i) +
N∑

i=n∗
m2 f (0, i) (7)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 = P0c/q
1−(1+c/q)−Nq

m2 = P∗r∗
1−(1+r∗)−(N−n∗)

P∗ = m1
c/q

[
1 − (1 + c/q)−(N−n∗)

]

r∗ = θ1
q +

(
r0
q − θ1

q

) (
1 + k1

q

)−n∗
+ σ1

q

(
1 + k1

q

)−n∗ ∑n∗
i=1

(
1 + k1

q

)i (
W 1

i − W 1
i−1

)
f (0, i) = ∏i

j=1(1 + f j )−1

f j = θ2
q +

(
f0
q − θ2

q

) (
1 + k2

q

)− j + σ2
q

(
1 + k2

q

)− j ∑ j
l=1

(
1 + k2

q

)l (
W 2

l − W 2
l−1

)
(8)

and the sequences of {W j
i , j = 1, 2|W j

0 = 0, j = 1, 2} are determined by

(
W 1

i

W 2
i

)
=

(
W 1

i−1

W 2
i−1

)
+

(
1 0
ρ

√
1 − ρ2

) (
ui
vi

)
,

with (ui , vi )T being an i.i.d. sample from N (0, δt). Here f (0, i) is the accumulated
discount rate from t = 0 to t = i . Once the n∗ is found for a particular pair of paths,
we can repeat the simulation for a given number of times. Statistically, a period with
highest frequency of n∗ is the optimal refinancing time to refinance. That is, let n∗ be
a function in c while all other parameters pertaining to the problem in equation (7) are
fixed, we are to find the value of c such that

sup
c≤θ1

argMode(n∗) = 0

Refer to Fig. 12 in Gan et al. (2012), where the initial borrowing rate is set as
c = 0.051, with the corresponding parameters θ1 = 0.05, σ1 = 0.003. That example
clearly shows that when the initial borrowing borrowing rate is high enough compared
to a long-term trend, a minimum total payment cost would occur sometime later than
t = 0. Thus it is a better deal for the borrower to take the wait-and-see strategy. Once
the optimisation problem is solved for a given initial borrowing rate c, one naturally
arising question to ask is at what level of interest c is the optimal time of refinance,
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denoted as t∗, is 0. Equivalently, at what a low level of c the solution of the minimiser
n∗ in (7) actually n∗ = 0? In our work, the search for the optimal threshold is done by
a bisection scheme. For the special cases when (1) σ1 = 0 and the discounting factor is
identically 0; or (2) both σi = 0, i = 1, 2, it can be shown that a closed-form solution
in the form of algebraic equations is attainable. In these cases, it can be numerically
verified that t∗, the continuation of n∗ when N → ∞, is indeed a decreasing function
of c for the interested scenarios (Gan et al. 2012).

5 Numerical Solution Based on Monte-Carlo Simulation

5.1 Aggregated Discounted Monthly Payments

In order to determine the optimal refinancing strategy,we follow the generalmotivation
in Gan et al. (2012). In particular, given a series of mortgage rates rt and risk-free rates
ft , we wish to find the refinancing month k which minimizes the present value of the
payment stream M given by (5).

Taking the time value of money into consideration, the monthly payments m1, m2
in (3) and (6) need to be properly discounted. Since payments are made monthly, we
discount a payment m made at month k first to month k − 1, and then from month
k − 1 to month k − 2, continuing on until we discount from month 1 to time 0. To
generate the monthly risk-free discounting rate applied to the period from month k to
month k − 1, we take the arithmetic average of the rates ft , tk−1 ≤ t < tk , where the
ft are generated using (2). We denote this discounting rate by f�k�.
In particular, let tk − tk−1 = qkΔt (in other words, there are qk days in month k).

Then

f�k� = 1

qk

qk−1∑
i=0

ftk−1+iΔt . (9)

Therefore, at month k the time 0 discounting factor F(0, k) is

F(0, k) =
k∏

i=1

[
1 + f�i�(ti − ti−1)

]
(10)

where fi is the averaged annualised discounting rates applied from month i to month
i − 1. Here ti − ti−1 is the fraction of a year occupied by month i .

If we use F(0)−1Mk to denote the present value at time 0 the monthly payments
made under the two contracts when the refinancing takes place at month k, we have

F(0)−1Mk = m1

k∑
i=1

1

F(0, i)
+ m2

N∑
i=k+1

1

F(0, i)
, (11)

where m1 and m2 are defined in (3) and (6).
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5.2 Optimal Refinancing

Throughout the following discussion about optimal refinancing, we allow only one
single refinancing to take place during the contract period. At month k, the borrower
can choose to refinance all of his/her outstanding debt, or wait until a future month
to do so. Hence we must compare the present value at time 0 of such monthly pay-
ment streams {F(0)−1Mk, F(0)−1Mk+1, . . . , F(0)−1MN }. We say that refinancing
at month j is optimal for the given paths of mortgage rates and risk-free rates if for
r� j� < r0,

F(0)−1Mj = min
{
F(0)−1Mk, F(0)−1Mk+1, . . . , F(0)−1MN

}
.

In fact, in determining optimality we do not need to consider the monthly payments
made before month k, as they have already been paid, and we need discount only to
month k, when the decision is taking place. Hence as in (10), for a given sequence of
risk-free rates we define the month k discounting factor F(k, j) for a future month j
with j ≥ k to be

F(k, j) =
{
1, j = k,∏ j

i=k+1

[
1 + f�i�(ti − ti−1)

]
, j > k.

(12)

If refinancing happens at month j , j ≥ k, the present value at month k of the payment
stream under the two contracts is given by

F(k)−1Mj = m1

j∑
i=k

1

F(k, i)
+ m2

N∑
i= j+1

1

F(k, i)
, (13)

where monthly payments m1 and m2 are defined in (3) and (6). Therefore, for given
paths of mortgage rates and risk-free rates, starting from month k, a refinancing at
month j , k ≤ j ≤ N , with new mortgage rate r� j�, r� j� < r0 is optimal if

F(k)−1Mj = min
{
F(k)−1Mk, F(k)−1Mk+1, . . . , F(k)−1MN

}
. (14)

5.3 Optimal Refinancing Threshold Rate

Now consider a borrower who wishes to decide whether to refinance at tk (the end of
month k). As discussed in Sect. 4.1, this decision will be based upon a consideration
of the size r�k�. More precisely, the borrower would like to know if it is optimal
to refinance at tk in the sense of (14), where r�k� enters into the problem via m2.
Unfortunately, this cannot be known deterministically because the F functions in (14)
depend on future values of ft .
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Algorithm 1: Finding optimal refinancing threshold rate rO
�k� for month k and risk-

free rate f�k�.

Input: Model parameters (p0, r0, θ1, θ2, κ1, κ2 (reversion rate), σ1, σ2, ρ, N , Δt), month k and
risk-free rate f�k�, number n of sets of paths.

Output: Optimal refinancing threshold rate rO
�k�

for month k and risk-free rate f�k�.

begin
rL
�k�

← 0 // rL
�k�

is the lower bound of the searching range.

rH
�k�

← r0 // rH
�k�

is the upper bound of the searching range.

rO
�k�

← 0

P(k, f�k�, r
O
�k�

) ← 0

while (P(k, f�k�, r
O
�k�

) < 90.2% or P(k, f�k�, r
O
�k�

) > 90.4%) and (rH
�k�

− rL
�k�

> 0.00001)

do
rO
�k�

← (rL
�k�

+ rH
�k�

)/2

Launch n sets of paths for period from month k to month N
Compute P(k, f�k�, r

O
�k�

) by simulations

if P(k, f�k�, r
O
�k�

) < 90.2% then

rH
�k�

← rO
�k�

else if P(k, f�k�, r
O
�k�

) > 90.4% then

rL
�k�

← rO
�k�

return rO
�k�

However, using Monte Carlo techniques, we can compute a probability that it is
optimal to refinance at the end of month k. In particular, given { f�k�, r�k�} (which are
known at t = tk), we generate n sequences { ft , rt } for tk ≤ t ≤ tN using (2). Then
we compute the number nk of sequences such that

F(k)−1Mk = min
{
F(k)−1Mk, F(k)−1Mk+1, . . . , F(k)−1MN

}
. (15)

We then define P(k, f�k�, r�k�), the probability that it is optimal to refinance tk given
{ f�k�, r�k�}, to be P(k, f�k�, r�k�) = nk/n.

We wish to know the threshold rate r∗ for optimal refinancing. We define r∗ by
stating that if r�k� < r∗, month k will most likely be optimal in the sense of P(k, f�k�,
r�k�).

We find r∗ using an algorithm motivated by Gan et al. (2012). In particular, we
set the optimal probability range to be [90.2%, 90.4%]. If P(k, f�k�, r�k�) falls within
this range, we say that r∗ = r�k�. We use an iterative bisection algorithm to find r∗.
Motivated by our discussion in Sect. 4.1, we set the initial interval to [0, r0]. For a given
month k and a risk-free rate f�k�, Algorithm 1 summarizes the bisection searching we
use in determining the optimal threshold rate.
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Table 1 Parameter meanings
and their values used in the
reported test

Parameter Meaning Value

p0 Initial principal of the loan 100,000

r0 Original contract mortgage rate 0.05

θ1 Long-term mean value of the mort-
gage rate

0.05

κ1 Mean-reverting rate of the mortgage
rate

0.1

σ1 Volatility of the mortgage rate 0.002

θ2 Long-termmean value of the risk-free
rate

0.03

κ2 Mean-reverting rate of the risk-free
rate

0.1

σ2 Volatility of the risk-free rate 0.001

ρ Correlation between themortgage rate
and the risk-free rate

0.8

N Number of months in the contract
mortgage period

240

n Number of paths generated in the sim-
ulation to compute the probability

10,000

Δt Time interval between two adjacent
points on a generated path of interest
rates

1/365

6 Numerical Output and Theoretical Calibrations

Although we did a number of simulation tests using different parameter settings, here
we present the result from one of the tests. The meanings of the parameters and their
values used in this test are summarised in Table 1. Figure 2 shows plots created from
the reported data.

The three-dimensional surface in Fig. 2a shows the variation of r∗ under different f0
and refinancing months. The curves in Fig. 2b show that r∗ increases as the refinance
month moves towards the end of the contract period. On the other hand, for fixed k,
the monotonicity of r∗ as a function of f0 is not apparent, as shown in Fig. 2c, d. Note
that this result is obtained under the assumptions we made in Sect. 3.1. If transaction
costs had been considered, the shape of the curves would be different.

In particular, when transaction costs are included, early refinancing may be no
longer a general optimal choice for the case 3 discussed in Sect. 4.1. In addition, the
monotonicity of r∗ as a function of N as indicated by Fig. 2b may no longer hold when
transaction costs are accounted for. As shown by the curves, the initial risk-free rate
f0 has impact on r∗ only when refinancing takes place early in the contract period.
When refinancing takes place close to the end of the period, f0 has almost no effect
on r∗. This pattern is demonstrated more clearly by the plots in Fig. 2c, d, where
the refinancing takes place at month 1 and month 217, respectively. To make a fair
comparison, in both Fig. 2c, d we set the r∗-range equal to 0.005. Fig. 2c shows that,
roughly, r∗ increases as f0 increases. But f0 almost has no effect on r∗ in Fig. 2d.
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(a) (b)

(c) (d)

Fig. 2 Optimal refinancing threshold rate plots from the reported data. a Threshold rate versus f0 and k. b
Threshold rate versus N with different f0. c Threshold rate versus f0 when k = 1. d Threshold rate versus
f0 when k = 217

7 Conclusion

This work examines the mortgage borrower’s optimal refinancing strategy under the
restriction that only one refinancing opportunity is allowed across the duration of a
mortgage loan. Using Monte Carlo simulations we find the optimal refinancing time
is more likely to appear at the early stage of the contract, if such an optimal time exists
at all. Optimal refinancing curves as a function in time are generated, the properties
of which are analysed and interpreted financially.

The current paper overcomes several weaknesses seen in the earlier treatment
of a similar problem in Gan et al. (2012). In addition to the theoretical fortifica-
tions in economic analysis and numerical enhancement, the current work provides a
complete and rigorous stochastic optimization formulation of the problem, including
the generalisation of the one-dimensional problem to a more business realistic two-
dimensional problem in ft and rt . One of the possible future directions is to boost
the speed and efficiency of the Monte Carlo simulation by implementing various
error reduction techniques. In addition, it is worthwhile to attempt the cases where a
refinancing fee is charged or multiple refinancings are allowed. It is anticipated, for
instance, that an early refinancing may no longer be an optimal choice in general,
especially when the transaction fee is charged in proportion to the remaining loan
balance.
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