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An enhanced understanding of the microstructure of oxide ceramics will help scientists and

engineers improve their efficiency and design. A phase-field model for the composition and

phase distribution of the oxide ceramic components is studied. The model, which includes

an obstacle in the phase portion of the energy potential, results in a minimisation problem

that characterises the distribution of the bulk phases. The transition region between them is

studied in several mathematically plausible asymptotic limits. The behaviour of the system

in these limits provides insights into the applicability of the model and indicates appropriate

parameter regimes.
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1 Introduction

In recent years, the use of oxide ceramics in industrial applications has exploded. Oxide

ceramics are now commonly used for heat shields [4], catalysis [6], and high-intensity

discharge lamps [9]. This manuscript was motivated by the use of oxide ceramics in

filtration applications. Ceramic media is now used for water filtration [2], diesel particulate

filtration [7], and gas filtration [8].

In order to design more efficient filters, it is useful to understand microstructure

evolution in oxide ceramics. When formulating oxide ceramics, one wishes to keep track

of the composition and the phase distribution of the resulting structures. Though not a

precise definition, for the purposes of this manuscript, we consider the composition at

position x̃ to be the ensemble of neutral moieties at x̃. For instance, such a ceramic may

be composed of silicon dioxide (SiO2) and alumina (Al2O3). Here, phases can represent

states of matter (melt, solid) or types of crystalline structure (quartz and crystalobite for

silicon dioxide, for instance).

For the purpose of this manuscript, we consider a two-phase binary alloy problem. In

order to track the composition and phase distribution, we use the phase-field model of

Wheeler, Boettinger, and McFadden [10, 11], extending it to a fully-infinite bulk domain

through a simple transformation. The mathematical problem then reduces to minimising

the free energy over all possible configurations.

We then introduce an obstacle (infinite barrier, as in [1]) in the phase portion of

the energy potential. This ensures that the phase variables remain in the proper range.
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The barrier potential introduces several complications into the minimisation problem. In

particular, the domain splits into two bulk phases and a transition phase. We examine this

transition phase in two asymptotic limits: a large barrier in the phase potential between

the minima corresponding to the two bulk phases, and large concavity in one of the energy

potentials for the concentration. In each case, we provide results for the concentration and

the phase distribution in both the bulk regions and the transition region between them.

These asymptotic results compare favourably to numerical simulations. The character of

these results allows us to draw conclusions about the appropriateness of using these limits

in modelling physically realisable systems.

2 Governing equations: general considerations

As described above, we wish to track the composition and phase distribution of the alloy.

We denote the molar fraction of component i by

ci(x̃), i = 1, 2, . . . , N. (2.1)

(Note that, we will index components by Roman symbols.) As these are all molar fractions,

we have that
N∑
i=1

ci(x̃) = 1, (2.2)

and hence we need consider only N − 1 independent variables ci for any problem, since

cN can trivially be obtained by (2.2).

We consider the phase distribution at position x̃ to be the ensemble of different phases

at position x̃. Each phase α is tracked through an order parameter

φα(x̃), α = 1, 2, . . . ,M; 0 � φα � 1, (2.3)

which represents the fraction of the ceramic that is in phase α. (Note that, we will index

phases by Greek symbols.) For this reason, an equation analogous to (2.2) holds:

M∑
α=1

φα(x̃) = 1, (2.4)

and so similarly we need to consider only M − 1 phase variables.

Therefore, at any position x̃ there are N different values of the compositions and M

different values of the phases. To obtain the molar fraction of composition i in phase

α, we just take the product φαci. However, in a general system there will be MN such

combinations, while the present model has only M + N variables. The paradox can be

explained by noting that since there is a single value of φα for the entire system, this model

implies that each component has the same division between phases. In practice, that is

not true: under certain conditions, silicon dioxide may be much more likely to be in the

crystal form than alumina. Other more complicated models [5] address this discrepancy.

The equilibrium configuration of the ceramic must minimise the free energy of the

system, which consists of the following parts (for more details, see [3, 10, 11]):
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(1) A bulk energy term

f̃(�c,�φ), �c = (c1, c2, . . . cN−1), �φ = (φ1, φ2, . . . φM−1). (2.5)

For any particular alloy, the particular form of the bulk energy term f̃(�c,�φ) must

be specified and will be discussed later.

(2) A term

1

2

N−1∑
i=1

N−1∑
j=1

κ̃ij(∇̃ci) · (∇̃cj), (2.6)

which penalises gradients in the compositions. Here the κ̃ij are the gradient energy

coefficients associated with the compositions, and they form the entries of a positive

definite matrix. In their earlier work, Wheeler et al. [10] proposed a similar free

energy functional that did not include this term. They then argued in later work [11]

that inclusion of the gradient energy in composition is appropriate, especially for

the case of rapid solidification where the length scale of the solute boundary layers

at a moving interface may approach atomic dimensions.

(3) A term

1

2

M−1∑
α=1

M−1∑
β=1

λ̃αβ(∇̃φα) · (∇̃φβ), (2.7)

which plays a similar role, but penalises gradients in the phases. Here the λ̃αβ are

the gradient energy coefficients associated with the phases, and they also form the

entries of a positive definite matrix.

In [11] Wheeler, Boettinger and McFadden then use the components of the free energy

discussed above to analyse a free energy functional. In our multi-component context, this

functional would be of the form

F̃[�c,�φ] =

∫
Ṽ

f̃(�c,�φ) +
1

2

N−1∑
i=1

N−1∑
j=1

κ̃ij(∇̃ci) · (∇̃cj) +
1

2

M−1∑
α=1

M−1∑
β=1

λ̃ij(∇̃φα) · (∇̃φβ) dṼ . (2.8)

We specialise to the one-dimensional case with M = N = 2, in which case we can drop

the subscripts on c and φ since c2 = 1 − c1, etc. For later computational simplicity, we

wish to take the domain as fully infinite. As x̃ → ±∞, we recover the two pure phases:

φ(−∞) = 1, φ(∞) = 0, (2.9)

while the concentrations approach constants

c(−∞) = c−, c(∞) = c+, (2.10)

which must be determined. [The choice of phase is arbitrary, so we could have just as

easily reversed the 0 and 1 in (2.9).]

It can be shown in physically reasonable cases that either f̃(c−, 1) or f̃(c+, 0) is nonzero

[for instance, see (3.6) below]. Therefore, the free energy as defined in (2.8) will be
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unbounded. Hence, we redefine the free energy density as an average:

F̃[c, φ] = lim
L̃→∞

1

2L̃

∫ L̃

−L̃
F̃

(
c, φ,

dc

dx̃
,
dφ

dx̃

)
dx̃, (2.11a)

F̃

(
c, φ,

dc

dx̃
,
dφ

dx̃

)
= f̃(c, φ) +

κ̃

2

(
dc

dx̃

)2

+
λ̃

2

(
dφ

dx̃

)2

. (2.11b)

Thus, our problem reduces to a standard calculus-of-variations minimisation problem for

the free energy. From conservation of mass, we have that

lim
L̃→∞

1

2L̃

∫ L̃

−L̃
cdx̃ = c̄, (2.12)

where c̄ is an average value of c determined at the beginning of the experiment.

Minimising subject to this constraint is equivalent to minimising

G̃[c, φ] = lim
L̃→∞

1

2L̃

∫ L̃

−L̃
F̃ − μ̃cdx̃,

where μ̃ is a Lagrange multiplier. Performing the standard analysis, we obtain

δG̃
δc

= lim
L→∞

1

2L

{[
ψκ̃

dc

dx̃

]L
−L

+

∫ L

−L
ψ

(
∂f̃

∂c
− μ̃− κ̃

d2c

dx̃2

)
dx̃

}
= 0,

where ψ is a test function. (Note that given the form of G̃, a suitable test function can

approach a nonzero constant as |x̃| gets large.) Hence, we have

∂f̃

∂c
− κ̃

d2c

dx̃2
= μ̃, (2.13a)

dc

dx̃
(±∞) = 0. (2.13b)

Equation (2.13a) also results from the analysis in Cogswell and Carter [3], where μ̃ is

related to a normalised version of the difference of the chemical potentials corresponding

to each composition. Equation (2.13b) is consistent with our statement in (2.10); we note

that the second derivative will also vanish as x̃ → ±∞. Thus, we obtain the following:

∂f̃

∂c
(0, c+) =

∂f̃

∂c
(1, c−) = μ̃. (2.14)

Considering δG̃/δφ, the constraint does not come into play and we obtain

∂f̃

∂φ
− λ̃

d2φ

dx̃2
= 0, (2.15a)

dφ

dx̃
(±∞) = 0. (2.15b)

Multiplying (2.13a) by dc/dx̃ and equation (2.15a) by dφ/dx̃ and manipulating the sum
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of the results, we obtain an expression that can be integrated once to yield the following:

μ̃c− f̃(φ, c) +
1

2
λ̃

(
dφ

dx̃

)2

+
1

2
κ̃

(
dc

dx̃

)2

= H, (2.16)

where H is a constant. In particular, if we substitute x̃ = ±∞ into (2.16), we obtain

μ̃c− − f̃(1, c−) = μ̃c+ − f̃(0, c+). (2.17)

Solving (2.17) for μ̃ and combining with (2.14), we have

∂f̃

∂c
(0, c+) =

∂f̃

∂c
(1, c−) =

f̃(0, c+) − f̃(1, c−)

c+ − c−
= μ̃, (2.18)

which is the common tangent constraint. Essentially, it says that the secant line connecting

the values of f̃ corresponding to the two bulk phases must be parallel to the tangent lines

to f̃ at each of the two bulk phases.

3 The barrier potential

We now specialise the general results from Section 2 to the case we wish to study. First,

we assume that f̃ consists of the following two parts:

(1) A term
M∑
α=1

φαG̃α(�c), �c = (c1, c2, . . . cN−1), (3.1)

which is the sum of the bulk free energy density G̃α(�c) of phase α, weighted by the

order parameter φα.

(2) A term

Ũ(�φ), �φ = (φ1, φ2, . . . φM−1), (3.2)

which measures the energy potential associated with the phase.

We again specialise to the one-dimensional case with M = N = 2. The true forms of the

G̃α can be quite complicated, but since we are interested at examining the situation where

they are near their minima, for our purposes they can be approximated as quadratics:

G̃α(c) = G̃∗
α +

h̃2
α(c− c∗

α)
2

2
, h̃α > 0, (3.3)

where c∗
α is the minimum value for the bulk free energy density for phase α.

Typically, away from a thin interface one would normally see the phases in pure form;

hence, local energy minimisers of U(φ) should be φ = 0 and φ = 1, corresponding to the

two pure phases. Moreover, given our interpretation of φ as a phase, we want to force φ

to be bounded between 0 and 1. One approach is to put an infinite barrier at those values

to keep φ trapped in that range:

Ũ(φ) = W̃U(φ), U(φ) =

{
φ(1 − φ), 0 � φ � 1,

∞, else,
(3.4)
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U

φ

Figure 1. U with (solid) and without (dotted) barrier.

as shown in the solid line in Figure 1. Here, W̃ measures the size of the internal maximum

in the potential. Note from (3.4) that U is defined all the way to the endpoints of the

interval, as will be needed for later analysis.

The form of (3.4) can be thought of as the limit of some smooth potential Uε(φ) as

some small parameter ε → 0. Some examples are

Uε(φ) = φ(1 − φ) +
ε

φ(1 − φ)
, Uε(φ) = φ(1 − φ) − log(φ(1 − φ)/ε), (3.5a)

Uε(φ) = φ(1 − φ) + exp

(
ε

φ(1 − φ)

)
. (3.5b)

However, in addition to the algebraic simplicity provided by (3.4), there is an additional

physical advantage as well. In certain applications (beyond the scope of this manuscript),

it is common to apply an outside energy field which is linear in φ. This will shift the

positions of the minima, as long as the potential is smooth. Hence by choosing a potential

of the form (3.4), we can always keep the minima pinned at φ = 0 and 1.

With these assumptions, we have

f̃(c, φ) = φ

[
G̃∗

1 +
h̃2

1(c− c∗
1)

2

2

]
+ (1 − φ)

[
G̃∗

2 +
h̃2

2(c− c∗
2)

2

2

]
+ W̃U(φ). (3.6)



Asymptotic results for a barrier potential model 869

We now scale our problem to introduce dimensionless variables and parameters. We scale

the bulk free energy densities by the difference between their minima:

Gα(c) =
G̃α(c) − G̃∗

1

ΔG̃
, ΔG̃ = G̃∗

2 − G̃∗
1. (3.7)

(This is obviously not the only choice; we could just have easily chosen the sum of

the minima. However, the choice does not appreciably affect our subsequent work.)

Substituting (3.7) into (3.3) yields the functional forms

G1(c) =
h2

1(c− c∗
1)

2

2
, h2

1 =
h̃2

1

ΔG̃
, (3.8a)

G2(c) = 1 +
h2

2(c− c∗
2)

2

2
, h2

2 =
h̃2

2

ΔG̃
. (3.8b)

Since there is no experimental length scale for the problem, we must choose a scale

including κ̃, W̃ , or λ̃. We choose the first:

x = x̃

√
ΔG̃

κ̃
. (3.9)

Substituting (3.4), (3.7), and (3.9) into (3.6), we have the following:

f(c, φ) =
f̃(c, φ)

ΔG̃
= φG1(c) + (1 − φ)G2(c) +WU(φ) +

G̃∗
1

ΔG̃
, (3.10a)

W =
W̃

ΔG̃
, λ =

λ̃

κ̃
. (3.10b)

The last term in (3.10a) represents a shift in the total energy, and will drop out of the

problem once we perform optimisation.

Substituting (3.9) and (3.10a) into (2.13a), we have

φG′
1(c) + (1 − φ)G′

2(c) − d2c

dx2
= μ, μ =

μ̃

ΔG̃
. (3.11)

We may use the same analysis on (2.15a) to produce

G1(c) − G2(c) +WU ′(φ) − λ
d2φ

dx2
= 0, (3.12)

as long as U is differentiable at these points. However, the bulk values φ = 0 and φ = 1

are also critical points of the functional, since the derivative does not exist at these points.

In order to obtain values of the unknown parameters c± and μ, we substitute x = ±∞
into (3.11) and (3.12):

G′
1(c−) = μ, (3.13a)

G′
2(c+) = μ, (3.13b)

G1(c−) − G2(c−) +WU ′(1−) = 0, (3.14a)

G1(c+) − G2(c+) +WU ′(0+) = 0, (3.14b)



870 D. A. Edwards and C. S. Raymond

x

φ

Figure 2. Schematic of the solution φ of (3.12). If the barrier did not exist (dotted curve in

Figure 1), then φ would go negative (dotted curve). With the barrier, φ has compact support (solid

curve). Here φ is taken to be 0 at x = 0 for simplicity.

where we have used (2.9) and (2.10). But if U ′ is smooth, (3.13) and (3.14) form an

overdetermined system.

How do we resolve this? Consider a solution φ that approaches 0 given the potential

in (3.4). As φ → 0+, U ′(φ) → 1, not zero. Hence the solution may not have φ′ → 0

as φ → 0+, which was implicit in the derivation of (3.14). This is because φ = 0 is a

steady state due only to the barrier. Hence, we expect that the solutions to (3.12) will

have compact support (see Figure 2). However, note from (3.11) that c can still vary in

the single-phase regions where φ = 0 or φ = 1, so c will not have compact support.

With our choice of f, the common tangent constraint (2.18) becomes

G′
1(c−) = G′

2(c+) =
G2(c+) − G1(c−)

c+ − c−
= μ. (3.15)

This set of equations determines {c±, μ}. An illustration of the common tangent constraint

is shown in Figure 3. Here, the parameters used are

c∗
1 =

1

2
, c∗

2 =
3

4
, h2 = 10, (3.16a)

h1 = 6. (3.16b)

With this choice of parameters, the computed values of c± are the following:

c− = 0.634, c+ = 0.798. (3.17)
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c

G

G1(c∗2)

c+c−

Figure 3. Two quadratic potentials (solid) and the common tangent (dotted): parameters as listed

in (3.16).

4 Dividing the domain

Due to the form of the barrier function, φ can be identically equal to the extremal values

0 and 1 over various regions; therefore, we define xl and xr as follows:

φ(x) =

{
1, x � xl,

0, x � xr.
(4.1)

Note that, xl and xr are unknown constants to be determined in the analysis. When x > xr

or x < xl, the U term in (3.10a) is zero, as is the dφ/dx term. Hence, in these regions the

functional minimisation is done only over c. We call the region x > xr the right exclusion

zone, and the region x < xl the left exclusion zone, where the terminology reminds us that

φ will be excluded from the analysis in those regions.

Given the existence of the exclusion zones, we provide a schematic of the system in

Figure 4. There are two ways to consider a system with such zones. The first (which we

shall pursue here) is to treat the system as a free-boundary problem and derive appropriate

boundary conditions at x = xl and x = xr. The second is to use the principle of linear

complementarity, as in [1].

In the left exclusion zone, the only governing equation is (3.11) with φ = 1, the solution

of which is

cl(x) = c∗
1 +

μ

h2
1

+ Al exp(h1(x− xl)), x < xl, (4.2a)

where the subscript “l” indicates that we are in the left exclusion zone. Note from (4.2a)

that

c− = c∗
1 +

μ

h2
1

, (4.2b)

and that Al must be determined later.
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φ = φm
c = cm

φ = 1
c = cl c = cr

dc/dx continuous dc/dx continuous
c continuous c continuous

φm = 1

φm = 0
dφm/dx = 0

dφm/dx = 0

φ = 0

xr xl x

Figure 4. Schematic of subdivided diagram and characteristic sketches of φ (solid) and c (dotted).

Similarly, using (3.11) with φ = 0 gives us the solution in the right exclusion zone:

cr(x) = c+ − Ar exp(−h2(x− xr)), x > xr, (4.3a)

c+ = c∗
2 +

μ

h2
2

. (4.3b)

Note that by solving our system on a semi-infinite domain, we have significantly simplified

the expressions in the exclusion zones.

Now we turn our attention to the mass constraint, rewritten in this context:

lim
L→∞

1

2L

[∫ xl

−L
cl(x) dx+

∫ xr

xl

cm(x) dx+

∫ L

xr

cr(x) dx

]
= c̄, L = L̃

√
ΔG̃

κ
, (4.4)

where we denote the solution in the transition region xl < x < xr by cm. The only terms

that will contribute to the first and third integrals will be the constant terms in (4.2a) and

(4.3a). But in that case the xl and xr terms would drop out, which is unreasonable since

we expect their positions (and hence how much of each composition is in the solution) to

matter.

To resolve the paradox, consider the finite domain [−L,L]. For a given value of L, we

would expect particular values of xl and xr to characterise what fraction of the total mass

comes from cl, and what fraction comes from cr. Now, double the length of the domain.

Then to maintain the same fraction, we would have to double each of xl and xr. This

suggests taking

xl = ξlL, xr = ξrL; −1 � ξl � ξr � 1, (4.5)

where the ξs are constant. But since the transition region must be finite, we must have

that

xr − xl = δx =⇒ ξr = ξl +
δx

L
. (4.6)
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Therefore, we see that as L → ∞, ξl → ξr. Also, the middle integral in (4.4) will be finite,

and hence in the limit of large L will not contribute to the left-hand side.

Making these substitutions into (4.4), we have

lim
L→∞

1

2L

[∫ ξlL

−L
cl(x) dx+

∫ L

ξrL

cr(x) dx

]
= c̄,

lim
L→∞

1

2L
[c−(ξlL+ L) + c+(L− ξrL)] = c̄,

where we have used the fact that only the constant terms in cl and cr will contribute to

the expression once we divide by L and take the limit. Writing the common limit of ξl

and ξr as ξb, we obtain

c−(ξb + 1) + c+(1 − ξb)

2
= c̄, (4.7)

which relates the interface position to the initial concentrations of the two bulk phases.

Equation (4.7) is called the lever rule. Note that, ξb is directly related to the fraction of

the ceramic in each phase. ξb = −1 corresponds to all cl, as expected. Similarly, all cr
corresponds to ξb = 1, and if c+ = c−, then c+ = c− = c̄.

In order to solve our problem uniquely, we must specify the proper number of boundary

conditions. There are seven constants to be determined. Six arise from the solutions of the

ODEs (Al, Ar, and four more from the two second-order ODEs in the transition region).

The last is the width δx of the transition zone (since the left endpoint is determined by

the lever rule).

Equation (3.11) is smooth, so c and dc/dx must be continuous at x = xl and x = xr,

which yields four conditions. To find conditions on φ at these points, we note that since

the energies in the exclusion zones must be minimised, we could pose a new optimisation

problem just for xl < x < xr, ignoring how those boundaries are determined. In that case,

we would know nothing about φ on the boundaries a priori, and hence using the same

techniques as in Section 2, we would have the natural boundary conditions

dφm

dx
(xl) = 0, (4.8a)

dφm

dx
(xr) = 0, (4.8b)

analogous to (2.15b). These conditions also appear in Blowey and Elliott [1]. However,

consider how the free boundaries xl and xr are defined: namely, that

φm(xl) = 1, (4.9a)

φm(xr) = 0. (4.9b)

Equations (4.8) and (4.9) provide four additional conditions, which then makes the system

overdetermined.

To resolve this paradox, we evaluate the dimensionless form of (2.16) at xl and xr:

G2(c+ −Ar)−G1(c− +Al)−μ[(c+ −Ar)− (c− +Al)]−
[
λ

(
dφ

dx

)2

+

(
dc

dx

)2
]xr

xl

= 0, (4.10)
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where we have used (3.10a), (4.2a), (4.3a), and (4.9). However, if we then integrate (3.11)

across the left and right exclusion zones, we obtain

−G1(c− + Al) + μ(c− + Al) +
1

2

[
dcl
dx

(xl)

]2

= μc− − G1(c−), (4.11a)

G2(c+ − Ar) − μ(c+ − Ar) − 1

2

[
dcr
dx

(xr)

]2

= G2(c+) − μc+. (4.11b)

Substituting (4.11) into (4.10) and using (3.15), we obtain the following:

[
dφ

dx
(xl)

]2

=

[
dφ

dx
(xr)

]2

.

Hence the two conditions (4.8) are redundant. We then have only seven conditions to set

our seven parameters, as required.

The final condition needed to close the system comes from the constraint (4.7), which

follows directly from (2.12). Note that, it is this condition which keeps the system from

being translationally invariant, as translating the solution will change the total mass.

5 Asymptotics: large internal barrier

Though straightforward in the exclusion zones, the system is substantially more complic-

ated in (xl, xr), since both (3.11) and (3.12) must be solved. Therefore, we examine the

system in various asymptotic limits. We begin by considering the case where W → ∞,

which corresponds to a large internal maximum in the phase potential. In other words,

there is a high energetic penalty for not being near the bulk phases φ = 0 and φ = 1. It is

important to note that W is a parameter specific to this model, and hence is not known

a priori; rather, it must be fit from experimental data.

In the rest of this manuscript we track only the leading-order terms, so we do not write

our dependent variables in formal perturbation series. Taking W → ∞, (3.12) becomes,

to leading order,

U ′(φm) = 1 − 2φm = 0,

which has the constant solution φm = 1/2, which we expect to be unstable from the form

of U. However, the formal verification of this has some later advantages.

The solution for φm has a discontinuity at x = xr which we resolve with the use of a

boundary layer. Inserting the boundary layer, we let

X = W 1/2(x− xr), Φ(X) = φm(x). (5.1)

This definition is equivalent to taking the characteristic length scale to be that associated

with W̃ instead of the one in (3.9). This makes sense, because the original length scale in

(3.9) is associated with κ̃, which characterises variations in c. In contrast, W̃ is associated

with the potential for φm. Assuming that W → ∞ is equivalent to saying the two processes

occur on distinct length scales, and hence the equations decouple.
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Substituting (5.1) into (3.12), we obtain, to leading order,

λ
d2Φ

dX2
+ 2Φ = 1, (5.2a)

Φ(X) =
1

2
+ As sinX

√
2

λ
+ Ac cosX

√
2

λ
. (5.2b)

But the solutions to the above equation oscillate, which cannot satisfy the matching

condition

Φ(X = −∞) = φm(x = x−
r ) =

1

2
.

Hence, we must conclude that there is no O(1) region (xl, xr) where the unstable solution

φm = 1/2 holds. Therefore xl = xr, and we must insert an interior layer to smooth the

jump in φ between 0 and 1. As we did in Section 4 with ξ, we denote the common limit

of xl and xr by xb.

We begin by finding the outer solution for c. As W → ∞, the length scales separate.

Hence φ totally drops out of the system on the x-scale. Instead, we have two solutions cl
and cr which hold on two sides of some value x = xb, determined by the lever rule (4.7).

As noted above, both c and dc/dx will be continuous at x = xb. Therefore, using (4.2a)

and (4.3a), we obtain

cl(x) = c− +
h2(c+ − c−)

h2 + h1
exp(h1(x− xb)), (5.3a)

cr(x) = c+ − h1(c+ − c−)

h2 + h1
exp(−h2(x− xb)). (5.3b)

We compare our analytic solutions with numerical simulations of the system. (See the

Appendix for a discussion of the algorithm.) We use the parameters in (3.16) and (3.17),

along with

L = 10, λ = 1, (5.4a)

W = 100. (5.4b)

Moreover, for convenience we choose the value of c̄ in the lever rule (4.7) to force xb = 0.

The results are shown in Figure 5. Note the excellent agreement between the asymptotic

and numerical results.

We now consider the solution in the boundary layer. For the reasons discussed in

Section 3, we expect that Φ(X) will have compact support. Since the X problem is

invariant under translation, we expect that Φ(X) will vary only in (−Xb, Xb), where Xb is

as yet undetermined. In particular, we have that the analogues to (4.8a) and (4.9) hold:

dΦ

dX
(−Xb) = 0, (5.5a)

Φ(−Xb) = 1, Φ(Xb) = 0. (5.5b)

where we have used the fact that the equations in (4.8) are redundant.

Equation (5.2a) holds no matter the value of xr, so (5.2b) still holds. Given that Φ is

continuous at X = ±Xb, equations (5.5) provide the boundary conditions on Φ needed to
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Figure 5. Plot of c [as given by (5.3)] versus x for the parameters in (3.16), (3.17), and (5.4).

Note the smooth variation about xb = 0. The transition region is indicated by the high density of

simulation data points.

find the constants A. The solution is given by

Φ(X) =
1

2

[
1 − (−1)n sin

(
X

√
2

λ

)]
, |X| < Xb = π(n+ 1/2)

√
λ

2
, n � 0, (5.6)

where Xb is chosen to satisfy (5.5a). Hence, Xb plays the role of an eigenvalue in this

problem.

From (5.6), we have an infinite number of solutions, two of which are shown in Figure 6.

To select the physically appropriate one, we return to the free-energy formulation. The

only portion of the free energy that depends on Φ is in the boundary layer:

FΦ[Φ] =

∫ Xb

−Xb

F

(
Φ,

dΦ

dX

)
dX

W 1/2
, (5.7a)

where, to leading order in W , we have

F

(
Φ,

dΦ

dX

)
∼ W

[
Φ(1 − Φ) +

λ

2

(
dΦ

dX

)2
]
. (5.7b)

Note that, these are exactly the terms that produced the operator in (5.2a).

Combining (5.6) and (5.7) and using our expression for Xb, we obtain

FΦ[Φ] ∼ W 1/2π(n+ 1/2)

2

√
λ

2
. (5.8)
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X

Φ

Figure 6. Graph of Φ(X) versus X. Solid curve: physical solution given by (5.9). Dotted curve:

higher harmonic given by (5.6) with n = 1, which has unphysical oscillation.

Hence the minimising case has n = 0, and our final answer is

Xb =
π

2

√
λ

2
, (5.9a)

Φ(X) =
1

2

(
1 − sinX

√
2

λ

)
, |X| < π

2

√
λ

2
. (5.9b)

Figure 7 compares our analytical and numerical results. Note the excellent agreement.

As discussed above, in this asymptotic limit there is a separation of length scales

associated with the transition regions for c and φ. In particular, c changes on the length

scale associated with x, while φ changes on the much shorter length scale associated with

X. This sort of scale separation has rarely, if ever, been seen in true experimental systems.

Hence, while the limit that W → ∞ simplifies the problem mathematically, in real physical

systems W will remain O(1).

6 Asymptotics: large free-energy concavity

Another asymptotic case of interest is when hα → ∞. This corresponds to one component

whose free energy surface has high curvature, so it takes a lot of energy to displace c

from c∗
α.

6.1 Large h2

In the limit that h2 → ∞, the solution process in the exclusion zone is the same. Hence cl
is still given by (4.2a), while cr is given by (4.3a) in the limit of large h2:
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Figure 7. Plot of φ [as given by (5.9b)] versus x for the parameters in (3.16), (3.17), and (5.4). Note

the sharp interface in φ in the transition region (indicated by the high density of simulation data

points).

cr(x) = c+ = c∗
2, x > xr, (6.1)

as one could expect physically from the high-curvature argument. In the transition region,

(3.11) becomes

φmG
′
1(cm) + (1 − φm)h2

2(cm − c∗
2) − d2cm

dx2
= μ, (6.2)

where we have used (3.8b). The leading order of this equation for large h2 is

cm(x) = c∗
2, (6.3)

and continuity of composition gives us

cl(x) = c− + (c∗
2 − c−) exp(h1(x− xl)). (6.4)

Moreover, substituting (6.1) into (4.7), we have the new lever rule

c−(ξb + 1) + c∗
2(1 − ξb)

2
= c̄. (6.5)

We cannot satisfy continuity of dc/dx at x = xl, since the derivative of cm is zero, which

cannot match to the derivative of the exponential cl. Therefore, a corner layer is needed

near x = xl, reflecting the fact that as x → xl, the (1 − φm) term in (6.2) becomes small

enough to balance the h2
2 term, allowing cm to move away from c∗

2.

Before inserting the corner layer, we examine the behaviour of φm. Substituting (6.3)

into (3.12), we obtain the following, to leading order:

λ
d2φm

dx2
+ 2Wφm = W + G1(c

∗
2) − 1, (6.6a)
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where we have used (3.8b). Solving (6.6a), we have

φm(x) =
1 + A2

2
+ As sin x

√
2W

λ
+ Ac cos x

√
2W

λ
, A2 =

G1(c
∗
2) − 1

W
, (6.6b)

analogous to (5.2b).

In order to strengthen the analogy with the work in the previous section, we define the

following quantities:

x̄ =
xl + xr

2
, Δx =

xr − xl

2
, xm = x− x̄. (6.7)

Then our solution may be written as

φm(xm) =
1 + A2

2
+ As sin xm

√
2W

λ
+ Ac cos xm

√
2W

λ
. (6.8)

Since the interval is now −Δx � xm � Δx, we may solve as in Section 4 with X replaced

by xm and Xb replaced by Δx. Thus, we have

φm =
1

2

(
1 − sin xm

√
2W/λ

sin Δx
√

2W/λ

)
+
A2

2

(
1 − cos xm

√
2W/λ

cos Δx
√

2W/λ

)
, |xm| < Δx, (6.9)

which satisfies (4.9).

In Section 4, the forcing constant was 1/2, the mean of the matching values for φ,

and hence we were able to satisfy both derivative conditions simultaneously. Here, we

can satisfy only one of the conditions. Since we already expect a corner layer in c about

x = xl, we choose to satisfy the condition at x = xr (xm = Δx) instead, yielding

dφm

dxm
(Δx) = −1

2

√
2W

λ
cot

(
Δx

√
2W

λ

)
+
A2

2

√
2W

λ
tan

(
Δx

√
2W

λ

)
= 0,

cot2

(
Δx

√
2W

λ

)
= A2. (6.10)

Therefore, in order to satisfy the condition at xm = Δx, we must have that A2 � 0.

These computations are enough to determine our solutions except for a small corner

layer near x = xl, i.e., enough to determine the solution on a macroscopic scale. For

mathematical completeness, we write down the equations in the corner layer. We let

X = hA2 (x− xl), φm(xm) = 1 + h−A
2 Φ(X), cm(xm) = c∗

2 + h−A
2 C(X), (6.11)

where A is a constant that has to be chosen the same in each expression in order to make

the derivatives match.

Substituting (6.11) into (3.11), we have that A = 2/3 and the leading order is given by

ΦC +
d2C

dX2
= 0. (6.12)
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Substituting (6.11) with A = 2/3 into (3.12), we obtain, to leading order,

C2

2
+ λ

d2Φ

dX2
= 0. (6.13)

Equations (6.12) and (6.13) form a nonlinear system which can be solved numerically for

the solutions in the boundary layer. From (6.13), we note that Φ should approach zero

smoothly in this layer. Hence, Φ does not have compact support in X and the domain

for X is fully infinite.

The boundary conditions for this system arise from matching to the outer solution, so

we have

dΦ

dX
(−∞) = 0,

dC

dX
(−∞) =

dcl
dx

(x−
l ) = h1(c

∗
2 − c−),

dC

dX
(∞) =

dcm
dxm

(−Δx+) = 0,
dΦ

dX
(∞) =

dφm

dxm
(−Δx+) = −

√
2WA2

λ
,

where we have used (6.9) and (6.10).

6.2 Large h1

For numerical computations, it is better to examine the case of h1 → ∞, as described in

the Appendix. This case is largely similar to the case where h2 → ∞; we summarise the

differences below.

Here, it is the left state which is trapped near c∗
1, so we have

cl(x) = c− = c∗
1, x < xl; cm(x) = c∗

1, (6.14a)

analogous to (6.1) and (6.3). Continuity then yields

cr(x) = c+ − (c+ − c∗
1) exp(−h2(x− xr)), (6.14b)

analogous to (6.4). Moreover, substituting (6.14a) into (4.7), we have the new lever rule

c∗
1(ξl + 1) + c+(1 − ξl)

2
= c̄. (6.15)

A graph of our solutions is shown in Figure 8. We use the parameters in (3.16a) and

(5.4a); however, we replace the parameters in (3.16b) and (5.4b) with

h1 = 63, W = 1 =⇒ c− = 0.501, c+ = 0.787, (6.16a)

A1 = 4.125, Δx = 0.324. (6.16b)

We have taken W = O(1) in accordance with our discussion at the end of Section 5.

As expected, the outer solution matches the computed solution for most of the regime,

but a corner layer is needed to smooth the derivative. In that region, the change in

c = O(h
2/3
1 ) ≈ 6.3 × 10−2, which is roughly the size of the deviation shown in the graph.
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Figure 8. Plot of c [as given by (6.14a)] versus x for the parameters in (3.16a), (5.4a), and (6.16).

Note the kink in the graph at x = xr. The transition region is indicated by the high density of

simulation data points.

In the transition region, the analogue to (6.6a) is

λ
d2φm

dx2
+ 2Wφm = W − G2(c

∗
1).

In this case, it is convenient to change the sign of the A parameter, so we write the

solution as

φm(xm) =
1

2

(
1 − sin xm

√
2W/λ

sin Δx
√

2W/λ

)
− A1

2

(
1 − cos xm

√
2W/λ

cos Δx
√

2W/λ

)
, |xm| < Δx, (6.17a)

A1 =
G2(c

∗
1)

W
, (6.17b)

analogous to (6.9). A graph of our solutions is shown in Figure 9. Note that, here we

have a much closer agreement between the analytical and numerical solutions.

The corner layer is now about x = xr, and Δx is given by (6.10) with A2 replaced by

A1; moreover, the appropriate scalings are

X = h
2/3
1 (x− xr), φm(xm) = h

−2/3
1 Φ(X), cm(xm) = c∗

1 − h
−2/3
1 C(X), (6.18)

which yield (6.12) and (6.13). Thus, the underlying structure of the corner layer remains

the same, whether the layer is on the left or the right. It is just the scalings and the sign of

the dependent variables that change. The same is true of the boundary conditions, which
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Figure 9. Plot of φ [as given by (6.17)] versus x for the parameters in (3.16a), (5.4a), and (6.16a).

The transition region is indicated by the high density of simulation data points.

remain of the same form, but with slightly different constants to reflect the new case:

dΦ

dX
(∞) = 0,

dC

dX
(∞) = −dcr

dx
(x+

r ) = h2(c+ − c∗
1),

dC

dX
(−∞) = − dcm

dxm
(Δx−) = 0,

dΦ

dX
(−∞) = −dφm

dxm
(Δx−) =

√
2WA1

λ
.

Figures 8 and 9 illustrate that in this regime, we find the physically observed case where

both the composition and phase vary on the same length scale. Moreover, the free energy

of a material can be measured independently and hence is not a characteristic of this

model; therefore it is quite possible to find materials exhibiting this behaviour.

7 Conclusions

Oxide ceramics have become widely used in many industries in recent years. Hence, it is

important for scientists and engineers to have good models for their internal microstruc-

ture. Such insights will lead to better designed and more efficient filters, heat shields, and

other devices.

In this work, we extended a phase-field model of Wheeler et al. [10, 11] in two ways.

First, we extended the domain to a fully infinite one for algebraic convenience. Second,

we introduced an obstacle (infinite barrier) potential in the portion of the energy potential

associated with the phase. This type of potential forces the bulk phase distribution to

remain pinned at the desired values 0 and 1, even under the imposition of a separate

external field. Once the model is postulated, the mathematical problem reduces to a

minimisation problem over all possible states.

The introduction of such a potential introduces several mathematical complications.

Because of the lack of differentiability of the potential, the solutions for the phase
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composition have compact support. This introduces two exclusion zones where the phase

composition is fixed at its bulk value, but the concentrations are not. In those regions,

the concentration decays exponentially from the value at the exclusion zone interface to

its far-field value. The placement of the exclusion zone interfaces is largely determined by

the lever rule (4.7).

The mathematical system to be solved in the transition region between the two ex-

clusion zones is quite complicated, and in the general case must be tackled numerically.

Fortunately, in several experimentally useful cases, asymptotics can provide analytical

expressions for key variables of interest.

The first case we considered was that of large W , which corresponds to a high internal

maximum in the phase portion of the potential. The equation for the phase Φ becomes

an eigenvalue problem in the transition zone; only the first eigenfunction is physically

allowable due to energy minimisation considerations. In this case, the composition varies

on an O(1) length scale, but the transition zone for the phase Φ becomes infinitesimal

[width O(W−1/2)]. This separation of scales is not typically seen in experiments; so this

mathematical simplification is unphysical. Hence when fitting experimental data, we would

expect that W = O(1).

The second case we considered was that of large curvature in one of the bulk free

energy densities, corresponding to the case where it takes a lot of energy to displace

the concentration from its local minimum. In that case, the transition region for both

quantities is the same, as typically seen in experiments. However, there are discontinuities

in the derivatives of both the concentration and the phase distribution at one transition

interface. These discontinuities force the introduction of a corner layer [width O(h
−2/3
α )],

where a system of two coupled nonlinear second-order ODEs must be solved.

Our work on the internal microstructure of the transition regions supplements the

traditional work on the bulk phases. As such, it should be useful to scientists and

engineers when working to optimise the design of oxide ceramics.
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Nomenclature

Units are listed in terms of mass (M), moles (N), length (L), and time (T ). If a symbol

appears both with and without tildes, the symbol with tildes has units, while the one

without is dimensionless. Equation numbers where a variable is first defined are listed, if

appropriate.

A: arbitrary constant, variously defined.

C(X): corner-layer concentration variable (6.11).

c(x̃): composition fraction at position x̃ (2.1).

F̃[�c,�φ]: free energy, units ML2/T 2 (2.8).

F̃: free energy density, units ML/T 2 (2.11b).

f̃(�c,�φ): bulk free energy density, units ML/T 2 (2.5).
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G̃[c, φ]: function to be minimised including constraint, units ML/T 2.

G̃α(�c): “bulk” free energy density of phase α, units ML/T 2 (3.1).

H: conserved constant (2.16).

h̃: constant in definition of free energy density, units ML/T 2 (3.3).

i: integer used to index composition (2.1).

j: integer used to index composition (2.6).

L̃: dummy length used to normalise domain, units L (2.11a).

M: number of phases (2.3).

N: number of compositions (2.1).

Ũ(�φ): phase potential, units ML/T 2 (3.2).

Ṽ : arbitrary volume, units L3 (2.8).

W̃ : constant characterising the potential, units ML/T 2 (3.4).

X: boundary-layer variable, variously defined (5.1).

x̃: position in oxide ceramic units L (2.1).

x̃: distance along ceramic, units L (2.11a).

y: scaled variable used in numerical simulation (A 1).

z: dependent variable used in numerical simulation (A 2).

α: integer used to index composition (2.3).

β: integer used to index composition (2.7).

ΔG̃: difference between energy minima of phases (3.7).

Δx: half-width of transition region in case of large hα (6.7).

δx: width of transition region (4.6).

κ̃: gradient energy coefficient associated with the compositions,

units ML3/T 2 (2.6).

λ̃: gradient energy coefficient associated with the phases, units ML3/T 2 (2.7).

μ̃: Lagrange multiplier, units ML/T 2.

ξ: scaling factor for subdomains (4.5).

Φ(X): phase fraction in the boundary layer (5.1).

φ(x̃): phase fraction at position x̃ (2.3).

ψ: test function for variational problem.

Other notation

b: as a subscript, used to indicate the shared boundary of the exclusion zones (4.7).

c: as a subscript on A, used to indicate the coefficient of a cosine function (5.2b).

l: as a subscript, used to indicate the left exclusion zone (4.1).

m: as a subscript, used to indicate the solution in the transition region (4.4).

r: as a subscript, used to indicate the right exclusion zone (4.1).

s: as a subscript on A, used to indicate the coefficient of a sine function (5.2b).

ε: as a subscript on U, used to indicate smoothed potentials (3.5).

Φ: as a subscript on F, used to indicate that portion of the free energy that

depends on Φ (5.7a).

−: as a subscript, used to indicate a value as x → −∞ (2.10).
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+: as a subscript, used to indicate a value as x → ∞ (2.10).

∗: as a superscript, used to indicate a minimum in the bulk free energy density (3.3).

¯: used to indicate a spatial average (2.12).
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Appendix A Numerical solutions

In the transition zone, we solve the problem numerically to compare with our asymptotic

solutions. As indicated in Section 4, the width δx of the transition zone is unknown and

plays the role of an eigenvalue. By introducing the variable

y =
x− xl

δx
, (A 1)

the transition zone becomes the fixed interval 0 � y � 1 and δx appears as an unknown

coefficient in the problem. We use the Matlab bvp5c function, which works only on a

first-order system. Therefore, by defining a vector z as follows:

z =

(
cm,

dcm
dy

, φm,
dφm

dy

)
, (A 2)
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our system (3.11) and (3.12) becomes the following:

dz1
dy

= z2, (A 3a)

dz2
dy

= −(δx)2
[
μ− z3h

2
1(z1 − c∗

1) − (1 − z3)h
2
2(z1 − c∗

2)
]
, (A 3b)

dz3
dy

= z4, (A 3c)

dz4
dy

=
(δx)2

λ

{
h2

1(z1 − c∗
1)

2

2
−

[
1 +

h2
2(z1 − c∗

2)
2

2

]
+W (1 − 2z3)

}
, (A 3d )

subject to the boundary conditions

z3(0) − 1 = 0, z4(0) = 0, z3(1) = 0, (A 4)

which come from (4.8a) and (4.9), and the additional conditions

h1[z1(0) − c−] − z2(0)

δx
= 0, (A 5a)

h2[z1(1) − c+] +
z2(1)

δx
= 0, (A 5b)

which come from matching the transition-region solution to (4.2a) and (4.3a).

bvp5c requires an initial guess for our parameters and functions. For φm, we use (5.9b),

while for cm, we use a tanh function to connect the solutions in the exclusion zones

smoothly:

cm(y) =
c+ + c−

2
+
c+ − c−

2
tanh(y − 1/2). (A 6)

Lastly, we assume that δx = 2. The procedure iterates until convergence, which is quite

quick in the large-W case. In the case of large h2, the procedure fails to converge for h2

larger than about 20. The case of large h1 is more stable (perhaps due to the vagaries

of how the algorithm refines its internal mesh), though h1 = 63 is the maximum integral

value that converged.


