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Abstract Optical biosensors are devices used to investigate surface-volume reaction
kinetics. Currentmathematicalmodels for reaction dynamics rely on the assumption of
unidirectional flow within these devices. However, new devices, such as the Flexchip,
include a geometry that introduces two-dimensional flow, complicating the depletion
of the volume reactant. To account for this, a previous mathematical model is extended
to include two-dimensional flow, and theSchwarz–Christoffelmapping is used to relate
the physical device geometry to that for a devicewith unidirectional flow.Mappings for
several Flexchip dimensions are considered, and the ligand depletion effect is investi-
gated for one of these mappings. Estimated rate constants are produced for simulated
data to quantify the inclusion of two-dimensional flow in the mathematical model.

Keywords Flexchip · Optical biosensors · Perturbation methods ·
Schwarz–Christoffel mapping · Surface-volume reactions

Mathematics Subject Classfication 35C20 · 92C45

1 Introduction

Optical biosensors are devices used tomeasure rate constants via surface-volume reac-
tions. In this type of reaction, one reactant (the ligand) is dissolved in afluidwhichflows
over a surface on which another reactant (the bound ligand or receptor) is confined
in a reacting zone. Biosensor devices measure and average the change in the bound
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ligand concentration for a reacting zone to obtain a quantity known as a sensogram
for the average bound ligand concentration (GE Healthcare 2007). From this output,
association and dissociation rate constants for a particular reaction can be calculated.

Due to the physical setup, reactants are not well mixed, making it important to
consider transport within the system. Upstream reactions deplete available ligand at
downstream receptors, slowing the reaction and decreasing the average bound ligand
concentration. Ignoring transport effects could lead to the underestimation of rate
constants for a particular interaction.

Mathematical models have been developed for surface-volume reactions to deter-
mine the effect of transport within this system. Edwards (1999) develops the standard
two-compartment model for the experimental injection phase, in which a uniform lig-
and concentration is used in the device.A systemof partial differential equations (PDE)
for the ligand concentration and bound ligand concentrations includes the dimension-
less Damköhler number to incorporate transport effects related to physical parameters.
For the reaction-limited problem, this system may be replaced with a simpler nonlin-
ear ordinary differential equation (ODE) using perturbation methods (Edwards 2001;
Mason et al. 1999). This differential equation, called an effective rate constant (ERC)
equation, models the average bound ligand concentration over a reacting zone.

A key modeling assumption which allows for analytical results is that flow within
biosensor devices is unidirectional (Edwards 2011). However, two-dimensional flow
occurs within some devices, such as the hexagonal Biacore Flexchip (Rich et al. 2008),
for which we display a schematic representation in Fig. 1. The Flexchip includes a
rectangular array of reacting zones over which the solution flows from the inlet on the
left to the outlet on the right.

To better quantify ligand depletion within this device, we extend previous one-
dimensional results for the Flexchip (Edwards 2011) to the case of two-dimensional
flow. Using conformal mapping techniques, we then examine how considering the
flow to be two-dimensional affects the ligand concentration in the Flexchip. Using the
Schwarz–Christoffel mapping, we map the infinite strip to a trapezoid representing
half of the Flexchip, exploiting the symmetry of the device, and extend results from the
one-dimensional case to the two-dimensional case. Upon deriving results for a general
trapezoid, we include examples for several mappings of possible Flexchip dimensions
and compare ligand depletion within the Flexchip for one of these examples. We take
this analysis a step further by simulating sensogram data using the two-dimensional
flow model and fitting the model for one-dimensional flow to this simulated data to
produce estimated rate constants. Comparing these estimated values with the actual
values used to produce the simulated data, we quantify the effect of ignoring two-
dimensional flow.

2 Model background

Generalizing the unidirectional flow model, we derive the velocity profile for two-
dimensional parallel flow between the channel floor and ceiling, and discuss the
injection phase model for the three-dimensional two-compartment model for ligand
and bound ligand concentrations. Using a boundary layer at the reacting surface and
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Fig. 1 Three-dimensional schematic representation of the Flexchip.Note that ỹ points down, so the reacting
zones are at ỹ = 0. Also note the choice of notation Z̃ to minimize confusion with the complex variable z
used in the conformal mapping procedure

a reaction time scale, we obtain the leading-order bound state and an expression for
the ligand concentration via perturbation methods.

2.1 Velocity profile

For biosensor devices, the height of the channel H̃ is much smaller than the length
L̃ and width W̃ (see Fig. 1). This aspect ratio is consistent with a Hele-Shaw flow. A
detailed analysis is performed in Edwards (2011); we summarize the results here for
our purposes.

If we let Ṽ be the characteristic velocity of the flow, then in the Flexchip, the
Reynolds number Re = ρ̃Ṽ H̃2/μ̃L̃ � 1. Here ρ̃ is the fluid density and μ̃ the
dynamic viscosity; details of parameter values can be found in Table 1.

We then introduce the following scalings:

xf = x̃

L̃
, yf = ỹ

H̃
, Zf = Z̃

L̃
, vx = ṽx

Ṽ
, vy = ṽy

Ṽ
, vZ = ṽZ

Ṽ
, and tf = Ṽ

L̃
t̃, (1)

where the subscript ‘f’ refers to ‘flow’. Note that variables with a tilde are dimen-
sional and variables without a tilde are dimensionless. Making these substitutions
into the Navier–Stokes equations, we find that to leading order in Re, the pressure is
independent of yf and vy = 0 so that the flow occurs only in the xf - and Zf -directions.

The velocity profile is given by

vx = yf(1 − yf)Fx (xf , Zf), vZ = yf(1 − yf)FZ (xf , Zf). (2)

Here Fx and FZ are related to the pressure gradient and satisfy the constraint
∂Fx/∂Zf = ∂FZ/∂xf . Formally, we also need to satisfy the no-slip condition at the
channel walls Zf = 0 and Zf = 1. However, Edwards (2011) considers a boundary
layer at the channel wall and shows that wall effects are minimal since the distance
from the channel wall to the reacting zones is large compared to the thickness of the
boundary layer; therefore, we neglect this additional complexity.
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Table 1 Obtained and calculated parameter values for an optical biosensor

Parameter Value References

C̃u (mol/cm3) 2.96 × 10−12 – 2 × 10−10 Rich et al. (2008)

Da 1.11 × 10−6 – 7.64

D̃ (cm2/s) 6.94 × 10−6 Rich et al. (2008)

H̃ (cm) 0.018 GE Healthcare (2006)

K 5 × 10−5 – 3.38 × 104

k̃off (1/s) 10−5 – 10−2 GE Healthcare (2006)

k̃on (cm3/mol s) 105 – 109 GE Healthcare (2006)

L̃ (cm) 2.7 Rich et al. (2008)

L̃r (cm) 1.5 × 10−2 – 3.5 × 10−2 GE Healthcare (2006)

Pe 4.94 × 102 – 1.73 × 104

R̃ (mol/cm2) 1.11 × 10−13 – 2.33 × 10−11 Rich et al. (2008)

Re ≤0.067

Ṽ (cm/s) 3.70 × 10−1 – 5.56

W̃ (cm) 1.5 Rich et al. (2008)

2.2 Injection phase model

Given the velocity profile from the previous section, we may now consider the evolu-
tion of the ligand concentration C̃ , which in dimensional variables follows the standard
convection-diffusion equation

∂C̃

∂ t̃
= ∇2C̃ − ṽ · ∇C̃ . (3)

Given the aspect ratios described in Sect. 2.1, we see that diffusion in the ỹ-direction
dominates. Moreover, by Eq. (2), we see that this term must balance with convection
in the x̃- and Z̃ -directions.

However, for biosensor experiments, the velocity within the device is large com-
pared to the diffusion constant so that the rate of convection to the rate of diffusion
given by the Peclét number Pe = Ṽ H̃2/D̃ L̃ r is large. Therefore, ligand molecules in
the bulk will flow out of the cell before they have time to diffuse to the reacting surface.
Hence we focus our attention on a thin boundary layer near the reacting surface ỹ = 0
by letting η = Pe1/3yf .

To simplify our analysis, we introduce the new scaled variables

C̃(x̃, ỹ, Z̃ , t̃) = C̃u(1 − C(x, y, Z , t)), x = x̃

L̃ r
, Z = Z̃

L̃ r
, t = 1

C̃uk̃on
t̃, (4)

where L̃ r is the length of a reacting zone, C̃u the uniform feed concentration, and k̃on
the association rate constant. When we derived the flow expression in the previous
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section, we used the variables xf and Zf , which were scaled by the dimensions of
the flow cell. Now that we are interested in the reaction kinetics, we introduce the
variables x and Z , which are scaled by the dimensions of the reacting zone. Note
also the scaling of the ligand concentration; we expect minimal change from the feed
concentration and scale C to represent the dimensionless ligand depletion from the
uniform feed concentration. Finally, we note that time has been scaled by the forward
reaction time scale.

Substituting Eq. (4) into Eq. (3), we obtain

∂2C

∂η2
= η

(
Fx

∂C

∂x
+ FZ

∂C

∂Z

)
, (5)

where we have used Eq. (2). This equation is analogous to equation (3.3) in the one-
dimensional system by Edwards (2011); the only change is the inclusion of both Fx
and FZ in Eq. (5). Note that in the two-dimensional system, η plays the role of a
parameter that can be factored from each term in the right-hand side of Eq. (5).

Note that t no longer appears in Eq. (5), because we have chosen to use the reaction
time scale, which in experiments is much longer than the diffusive time scale. Hence
the diffusive transport is in steady state, and the ligand concentration changes only
due to binding at the reacting surface.

We denote the dimensional bound state by B̃; then by introducing

B(x, Z , t) = B̃(x̃, Z̃ , t̃)

R̃
, (6)

where R̃ is the uniform receptor concentration, the governing reversible kinetics equa-
tion is given by

∂B

∂t
= (1 − B)(1 − C(x, 0, Z , t)) − K B. (7)

Here K = k̃off/C̃uk̃on is a scaled affinity constant, where k̃off is the dissociation rate
constant.

Equations (5) and (7) must then be solved subject to

C(0, η, Z , t) = 0, (8)
∂C

∂η
(x, 0, Z , t) = −Da

∂B

∂t
, Da = konR

D/(HPe−1/3)
, (9)

B(x, Z , 0) = 0, (10)

C(x,∞, Z , t) = 0. (11)

Summarizing, Eq. (8) is the ligand depletion from the uniform concentration C̃u at the
flow inlet, Eq. (9) the diffusive flux at the reacting surface creating bound receptors,
Eq. (10) the initial condition for bound receptors, and Eq. (11) the boundary layer
ligand concentration far-field condition matching the uniform ligand concentration in
the bulk. In Eq. (9), the Damköhler number Da is the ratio of the rate of reaction to
the rate of diffusion.
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We limit ourselves to the experimental regime Da � 1, corresponding to the
reaction-limited problem. With Da = 0 in Eqs. (5), (8), (9), and (11), we find that
C = 0, so there is no leading-order ligand depletion.With this result and a perturbation
expansion for the bound state

B(x, Z , t) = B0(x, Z , t) + O(Da), (12)

the leading-order bound state is

B0(t) = 1 − e−(1+K )t

1 + K
. (13)

Since the amount of ligand used in reactions is small enough to be neglected at leading
order, we scale the ligand depletion C by letting C = DaC1 in Eqs. (5), (8), (9), and
(11) to obtain the following system for ligand depletion:

∂2C1

∂η2
= η

(
Fx

∂C1

∂x
+ FZ

∂C1

∂Z

)
, (14)

C1(0, η, Z , t) = 0, (15)
∂C1

∂η
(x, 0, Z , t) = −∂B

∂t
, (16)

C1(x,∞, Z , t) = 0. (17)

To examine ligand depletion along streamlines for two-dimensional flow, we con-
vert to a coordinate system in terms of ξ and γ , where γ is constant along streamlines
and streamlines are trajectories of the velocity field

∂x

∂ξ
= Fx ,

∂Z

∂ξ
= FZ . (18)

Figure 2 shows a sample streamline with the (ξ, γ ) coordinate system in the x Z -plane.
This conversion is useful since the directional derivative

Fx
∂C1

∂x
+ FZ

∂C1

∂Z
= ∂C1

∂x

∂x

∂ξ
+ ∂C1

∂Z

∂Z

∂ξ

= ∂C1

∂ξ

is in the ξ -direction.
In the (ξ, η, γ ) coordinate system, Eqs. (14)–(17) simplify to

∂2C1

∂η2
= η

∂C1

∂ξ
, (19)

C1(0, η, γ, t) = 0, (20)
∂C1

∂η
(ξ, 0, γ, t) = −∂B

∂t
, (21)

C1(ξ,∞, γ, t) = 0, (22)
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Fig. 2 Representation of the (ξ, γ ) coordinate system along a sample streamline in the x Z -plane

which is exactly the system for unidirectional flowsinceflow in the (ξ, η, γ ) coordinate
system occurs in the ξ -direction. Using the Laplace transform in ξ , Eqs. (19) and (20)
become Airy’s equation for Ĉ1, the Laplace transform of C1. Solving this equation
subject to the transformed versions of Eqs. (21) and (22), we have

Ĉ1(s, η, t) = −d B̂

dt

Ai(s1/3η)

Ai′(0)s1/3
,

where B̂ is the Laplace transform of B and s the transformed variable.
We need only the value at η = 0; using the convolution theorem we have that the

O(Da) ligand depletion measured along streamlines is given by

C1(ξ, 0, t; γ ) = 1

31/3�(2/3)

∫ ξ

0

∂B

∂t
(ν, γ, t)(ξ − ν)−2/3 dν

= dB0

dt
h(ξ ; γ ) + O(Da), h(ξ ; γ ) = 32/3

�(2/3)
ξ1/3. (23)

With the perturbation expansion given in Eq. (12), the derivative of the spatially-
uniform leading-order bound state can be factored from the integral. While γ is not
included explicitly in this expression, it identifies the specific streamline for integra-
tion, affecting the ligand depletion quantity.

3 Schwarz–Christoffel mapping

The Schwarz–Christoffel (SC) mapping for the infinite strip to a polygon is

f (z) = A + S
∫ z n∏

k=1

(
sinh

π

2
(ζ − zk)

)αk−1
dζ,
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540 M. E. Zumbrum, D. A. Edwards

where A is the unknown location parameter, S the unknown scaling parameter, n
the number of vertices exclusive of the strip ends, zk the unknown prevertices, and
αkπ the interior angles at the mapped vertices in the polygon (Driscoll and Trefethen
2002). The mapping is similar to that for the half-plane to a polygon, except for the
sinh function which is necessary due to the additional upper boundary Im z = 1 for
the strip. The SC mapping from the half-plane to the polygon is defined so that the
derivative, the product of the functions (z− zk)αk−1, has piecewise constant argument
when mapping the real axis to the boundary of the polygon; the only jumps in the
argument occur at the prevertices zk . For the mapping of the strip to the polygon, the
derivative cannot include only the simple functions (z − zk)αk−1. For a real prevertex
and any z on the upper boundary of the strip, the argument of each of these functions
changes as z moves along the boundary; hence the product does not have piecewise
constant argument. Therefore, the sinh function is necessary for mapping the upper
boundary of the strip to a radial slit of constant argument, while still mapping the real
axis to itself.

3.1 General trapezoid mappings

Exploiting the symmetry of the device in the Z -direction, we map the infinite strip
to the lower half of the Flexchip hexagon and extend results to the upper half. For a
Flexchip of length L̃ and width W̃ , the trapezoid has length L̃ , width W̃/2, and acute
angle θπ , and we specify the following five mappings from the strip to the trapezoid,
represented in Fig. 3:

f (−z1) = − L̃

2
+ W̃

2
cot θπ, (dotted circle)

f (0) = 0, (empty circle)

f (z1) = L̃

2
− W̃

2
cot θπ, (filled circle)

f (−∞) = − L̃

2
+ W̃

2
i, f (∞) = L̃

2
+ W̃

2
i. (24)

In these mappings, we have also exploited the horizontal symmetry to write the
prevertices as ±z1 instead of unrelated prevertices z1, z2. Generally, the upper bound-
ary of the strip is mapped to the longer trapezoid base while the lower boundary of
the strip is mapped to the other three sides.

Since the acute angle in the trapezoid is θπ , the interior angle at themapped vertices
corresponding to the prevertices z = ±z1 is (1−θ)π so thatα = 1−θ . For themapping
of the origin, the interior angle is π so that α = 1; therefore, the exponent for the
corresponding term in the SC mapping is zero, and we omit this term. The mapping
from the strip to the trapezoid is

f (z) = A + S
∫ z(

sinh
π

2
(ζ + z1) sinh

π

2
(ζ − z1)

)(1−θ)−1
dζ. (25)
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Fig. 3 Representation of vertex mappings from the strip to the trapezoid. The same symbols are used for
vertex-prevertex pairs. Note that the upper corners of the trapezoid are mapped from the corresponding strip
ends

The lower bound of the integral is left unspecified, and we take this to be zero without
loss of generality. From the mapping of the origin, we have 0 = f (0) = A; therefore,
Eq. (25) is defined in terms of the unknowns S and z1. To obtain two equations in terms
of these parameters, we use the four remaining mappings. As a result of the horizontal
symmetry, we obtain one equation from the mapping of the prevertices f (±z1) and a
second equation from the mapping of the strip ends f (±∞).

From the mapping for f (z1), we have

L̃

2
− W̃

2
cot θπ = f (z1)

= S
∫ z1

0

(
sinh

π

2
(ζ + z1) sinh

π

2
(ζ − z1)

)−θ

dζ

= D
∫ z1

0

(
sinh

π

2
(ζ + z1) sinh

π

2
(z1 − ζ )

)−θ

dζ, (26)

where D = Se−iπθ is real since the left-hand side and the integral in the right-hand
side of Eq. (26) are real. Manipulation of the mapping for f (−z1) also yields this
equation.

From the mapping f (∞) at the strip end, we have

L̃

2
+ W̃

2
i = f (∞)

= S
∫ ∞

0

(
sinh

π

2
(ζ + z1) sinh

π

2
(ζ − z1)

)−θ

dζ

= S
∫ z1

0

(
sinh

π

2
(ζ + z1) sinh

π

2
(ζ − z1)

)−θ

dζ

+S
∫ ∞

z1

(
sinh

π

2
(ζ + z1) sinh

π

2
(ζ − z1)

)−θ

dζ.

Recognizing that the first integral is simply f (z1), wemake this substitution and obtain

W̃

2
cot θπ + W̃

2
i = Deiπθ

∫ ∞

z1

(
sinh

π

2
(ζ + z1) sinh

π

2
(ζ − z1)

)−θ

dζ.
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Using eiπθ = sin θπ(cot θπ + i), we have

W̃

2
= D sin θπ

∫ ∞

z1

(
sinh

π

2
(ζ + z1) sinh

π

2
(ζ − z1)

)−θ

dζ (27)

and obtain the same equation from the mapping f (−∞).
Solving for D in terms of z1 in Eq. (26), we have

D = L̃ − W̃ cot θπ

2
∫ z1

0

(
sinh

π

2
(ζ + z1) sinh

π

2
(z1 − ζ )

)−θ

dζ

; (28)

substituting Eq. (28) in Eq. (27), we obtain the equation

g

(
z1; θ,

L̃

W̃

)
=

(
L̃

W̃
− cot θπ

)
sin θπ

×

∫ ∞

z1

(
sinh

π

2
(ζ + z1) sinh

π

2
(ζ − z1)

)−θ

dζ

∫ z1

0

(
sinh

π

2
(ζ + z1) sinh

π

2
(z1 − ζ )

)−θ

dζ

− 1 = 0, (29)

where the value of the prevertex z1 depends on the aspect ratio L̃/W̃ and interior angle
θπ of the trapezoid. For simplicity, we use the method of bisections to calculate z1.
For the problems under consideration, this takes approximately 35 iterations and 3
seconds of CPU time to calculate z1 with an error tolerance of 10−10. With a value for
z1, we calculate D from Eq. (28).

3.2 Flexchip mapping examples

Unable to obtain exact dimensions of the actual Flexchip device, we include
several possible sets of dimensions and corresponding mappings. Information from
two sources is used to develop four possible sets of dimensions of the actual device.
In each case, we include the calculated parameters D and z1 in Table 2 at the end
of the section. We also include parameter values generated using the SC Toolbox for
MATLAB, a software package that allows users to easily produce conformal maps
from both bounded and unbounded domains, such as polygons, disks, and strips, to
polygons. Additional details can be found in Driscoll (2013).

In Rich et al. (2008), Figure 1A displays a picture of a Flexchip flow cell, and
we scale the measured dimensions using the labeled 1-cm square array to calculate
the physical dimensions. The calculated length L̃ and width W̃ are 2.7 and 1.5 cm
respectively, so that the area of the hexagon is 315mm2. Using the symmetry of the
device, we calculate the measure of the acute angle as 51◦. As this measure is θπ

radians, we have that θ = 0.28522. We display the corresponding streamline mapping
generated by the SCToolbox in Fig. 4. Note that the prevertices are shifted horizontally
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Table 2 Parameters D and z1 calculated from Eqs. (28) and (29) or obtained from SC Toolbox

Calculated SC Toolbox

D z1 D z1

Measured dimensions from Fig 1A in Rich et al. (2008)

Rawa 1.04209 0.808902 1.04209 0.808902

Scaled 0.938628 0.808902 0.938626 0.808903

Simulation parameters in Rich et al. (2008)

Raw 0.910743 0.755438 0.910743 0.755438

Scaled 0.994088 0.755438 0.994088 0.755436

a Used in Sect. 4

Fig. 4 Mapping of the Flexchip using measured dimensions in Rich et al. (2008)

from the values we obtain due to a different choice for the lower bound of themapping.
We produce anothermapping using the numerical simulation dimensions given inRich
et al. (2008). The length L̃ and width W̃ are 2 and 1.3 cm respectively, so that the area
of the hexagon is 214.5mm2. Using the symmetry of the device again, we calculate
the measure of the acute angle as 62◦, which corresponds to θ = 0.34277.

General Electric (GE) production specifications identify the Flexchip flow cell
volume and flow cell height as 46 and 180 μm respectively (GE Healthcare 2006),
so that the flow cell area is approximately 255mm2. To achieve the area specified by
GE, we scale the length and width to produce an additional mapping for each of the
previous cases.

For the measured data, we scale the dimensions by the square root of the ratio of
the GE-specified area to the calculated area to obtain L̃ ≈ 2.43 cm and W̃ ≈ 1.35 cm
for the corresponding θ . Similarly, we scale the simulation dimensions to obtain L̃ ≈
2.18 cm and W̃ ≈ 1.42 cm for the corresponding θ .

Note that D is simply the value from the raw dimensions scaled by the area ratio so
that the area is changed to match the GE specifications. The value for z1 is unaffected
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544 M. E. Zumbrum, D. A. Edwards

by the scaling since z1 depends only on the aspect ratio and the interior angle, and all
changes due to scaling are accounted forwith the parameter D. In both scaled cases, the
dimensions of the scaled trapezoids with area equal to the GE specifications are within
10% of the dimensions of the original trapezoids. For each mapping, flow over the
centered unit square where reacting zones are located is approximately unidirectional
(see Fig. 4 or the CDF simulation in Rich et al. (2008)), making the assumption of
unidirectional flow reasonable.

In the calculation of parameter values and analysis that follows,we use the trapezoid
dimensions obtained from the device pictured in Rich et al. (2008) and mapped in
Fig. 4, since the cited figure provides more detail and additional reliability than the
unreferenced dimensions used in the numerical simulation. We do not account for the
difference in the hexagon area for the measured dimensions and GE specifications
since there may be subtleties in the definition of flow cell volume of which we are not
aware.

4 Flexchip ligand concentration comparison

For a general conformal mapping f (z), if f ′(z0) 	= 0 for the point z0, the transforma-
tion not only rotates all line segments through z0 by the same angle but also stretches
all line segments through z0 by the factor | f ′(z0)| (Carrier et al. 2005). For ξ in the
trapezoid, we have dξ = | f ′(z)| dz for z in the strip so that ξ = ∫ | f ′(z)| dz. There-
fore, using the SC mapping and assuming the that the entire surface of the trapezoid
is a reacting zone, we can find ξ along streamlines in the trapezoid from streamlines
in the strip using

ξ =
∫ α

−∞
| f ′(x + βi)| dx, (30)

where f (α + βi) = w∗ is the terminal point of the contour in the trapezoid. In
Fig. 5, we display a sample streamline in the trapezoid with terminal point w∗ and the
corresponding streamline in the strip with constant β.

To quantify the maximum ligand depletion ratio between points mapped from a
constant α throughout a device, we compare the maximum and minimum values of
Eq. (30) for varying β by considering

Fig. 5 Representation of a streamline in the trapezoid with terminal point w∗ and the corresponding
streamline in the strip with constant β
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∂

∂β

∫ α

−∞
| f ′(x + βi)| dx . (31)

For simplicity, we neglect the cube root in Eq. (23) since extrema of Eq. (31) are also
extrema of Eq. (23).

We first obtain a simpler expression for f ′(x + βi) in Eq. (31) by writing the SC
mapping in terms of cosh functions, specifically

f (z) = 2θ S
∫ z

0
(cosh πζ − cosh π z1)

−θdζ.

Letting z = x + βi , we compute the derivative

f ′(x + βi) = 2θ S(cosh π(x + βi) − cosh π z1)
−θ

= 2θ S(cosh πx cosπβ − cosh π z1 + i sinh πx sin πβ)−θ .

Differentiating the modulus of this expression, we obtain the partial derivative of the
integrand of Eq. (31) with

∂

∂β
| f ′(x + βi)| = −(

(cosh πx cosπβ − cosh π z1)
2 + sinh2 πx sin2 πβ

)−θ/2−1

×2θ |S|θπ(cosh π z1 cosh πx − cosπβ) sin πβ. (32)

To determine the sign of the right-hand side of Eq. (32), we examine the sign of
individual terms of this expression. The cosh π z1 cosh πx − cosπβ and sin πβ terms
are nonnegative for 0 ≤ β ≤ 1. The fact that the cosh π z1 cosh πx − cosπβ term
is positive is subtle, but the smallest this term can be is zero, which only occurs if
β = 0, z1 = 0, and x = 0. However, z1 = 0 is not a physically relevant case since the
polygon produced in this case is a triangle, not a trapezoid. The (cosh πx cosπβ −
cosh π z1)2 + sinh2 πx sin2 πβ term is nonnegative and zero for two cases. The first
case occurs if x = 0 and cosπβ = cosh π z1, possible only if z1 = 0. The second
case occurs if β = 0 and cosh πx = cosh π z1 with x = ±z1; hence, the integrand
is not differentiable at the prevertices. Therefore, where it is defined, the right-hand
side of Eq. (32) is always negative, and depletion decreases as β increases. Therefore,
for points mapped from the same α, the ligand concentration is largest for β = 1 and
smallest at β = 0, corresponding to the center line and wall of the device respectively
as represented in Fig. 3. In Fig. 6, we display the graph of the right-hand side of
Eq. (32) for the trapezoid using measured data with various β. We see the behavior
of the derivative near the prevertices ±z1 = 0.808902 is exactly as we expect as β

decreases.
We find the dimensional ligand concentration using the O(Da) depletion from

the uniform feed concentration given in Eq. (23) and compute the maximum ligand
concentration ratio for varying β with a constant α, which is the ratio of the ligand
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546 M. E. Zumbrum, D. A. Edwards

Fig. 6 Derivative represented by the right-hand side of Eq. (32) for the measured trapezoid example with
β = 0.1, 0.2, 0.3, . . . , 0.7 (decreasing thickness)

concentration for β = 1 to the ligand concentration for β = 0:

r(t;α) = C̃u
(
1 − Da 32/3

�(2/3)
dB0
dt ξ

1/3
β=1

)
C̃u

(
1 − Da 32/3

�(2/3)
dB0
dt ξ

1/3
β=0

) . (33)

Because ξβ=0 > ξβ=1, r(t;α) is a decreasing function of t and is maximized for
t = 0 when dB0/dt = 1. Therefore, we have the bound for Eq. (33) in terms of the
parameter α

r(t;α) ≤ r(0;α) = 1 − Da 32/3
�(2/3) ξ

1/3
β=1

1 − Da 32/3
�(2/3) ξ

1/3
β=0

, (34)

where

ξ
1/3
β=1 = (

f (α + i) − f (−∞)
)1/3

and

ξ
1/3
β=0 =

⎧⎨
⎩

(eiθπ ( f (α) − f (−∞)))1/3, α ≤ −z1
(eiθπ ( f (−z1) − f (−∞)) + f (α) − f (−z1))1/3, −z1 ≤ α ≤ z1
(eiθπ ( f (−z1) − f (−∞)) + 2 f (z1) + e−iθπ ( f (α) − f (z1)))1/3, α ≥ z1

for a general angle θπ . Using the parameters calculated in Sect. 3.2 for the trapezoid
dimension measured from Figure 1A in Rich et al. (2008), we display the graph of the
right-hand side of Eq. (34) in Fig. 7 with Da = 0.1. The graph has quick changes in
the function values near the prevertices ±z1 = ±0.808902, which can be attributed to
the derivative including a factor of f ′(α). Since f ′(α) is undefined at the prevertices
±z1 for β = 0, the function values change quickly near these points. Physically,
these points correspond to turning the corner at the obtuse angle along the wall of the
trapezoid.

123



Conformal mapping in Optical Biosensor Applications 547

Fig. 7 r(0; α) (as given by the right-hand side of Eq. (34)) vs. α for Da = 0.1. Here r is the ratio of the
depleted ligand concentration at the exterior wall of the Flexchip to a unidirectional channel; r(0; α) is the
upper bound on r

We see that the ligand concentration disparity between points mapped from the
same α along the center line and the wall of the Flexchip is less than 3% for Da = 0.1.
Since we have maximized this ratio with respect to time, this disparity decreases as
an experiment proceeds. Since this ratio is directly related to the Damköhler number,
physical parameters resulting in a larger Damköhler number produce a larger con-
centration disparity in the device. In this calculation, we have not accounted for an
array of reacting zones, and the array configuration might further complicate ligand
depletion within a device.

5 Estimation of rate constants

Experimentalists often run a biological assay to obtain rate constants for a specific
interaction. To calculate these constants, a biosensor produces a sensogram, the spatial
average of the bound ligand concentration over a reacting zone as a function of time.
For a reacting zone R with area A, we define the sensogram

S[B](t) = 1

A

∫∫
R

B dA.

To obtain a sensogram expression, we average Eq. (7), and use the perturbation expan-
sion for the bound ligand concentration in Eq. (12) and theO(Da) ligand concentration
in Eq. (23); details can be found in (Zumbrum 2014).

We use the dimensional sensogram expression

S[B](t̃) = C̃uk̃on(1 − e−(C̃u k̃on+(1−DaS[h])k̃off )t̃ )
C̃uk̃on + k̃off + C̃uk̃on

DaS[h]
1−DaS[h]e−(C̃u k̃on+(1−DaS[h])k̃off )t̃

(35)

to include the rate constants k̃on and k̃off for association and dissociation respectively.
In Eq. (35), depletion effects are accounted for in the S[h] term. For two-dimensional
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Fig. 8 Representation of a unit square reacting zone in a channel with one-dimensional flow and in the
Flexchip with two-dimensional flow

flow, S[h] is the average of h(ξ ; γ ) from Eq. (23). Note that for a unit square reacting
zone centered in the Flexchip, we redefine

ξ =
∫ α

0
| f ′(x + βi)| dx + 0.5

from Eq. (30) so that along the centerline of the trapezoid, the reacting zone begins at
ξ = 0 and ends at ξ = 1. For one-dimensional flow over a unit square reacting zone,
S[h] = 1.15209 (Zumbrum 2014); for two-dimensional flow over the same reacting
zone centered in the Flexchip, S[h] = 1.17276 and the increase in this parameter
is due to increased ligand depletion for two-dimensional flow. Figure 8 displays a
schematic representation of one-dimensional and two-dimensional flow over a unit
square reacting zone. Using rate constants in the ranges

k̃on = 105 − 108 cm3/mol s and k̃off = 10−5 − 10−2 s−1 (36)

and assuming a uniform feed concentration C̃u = 10−11 mol/cm3, we calculate sen-
sograms S[B](t̃) from Eq. (35) with t̃ ∈ [0, 35000] seconds and sample at integer
times to obtain simulated sensogram data.

To determine how ignoring two-dimensional flow distorts the measurement of rate
constants, we fit Eq. (35) for one-dimensional flow to the simulated sensogram data
for two-dimensional flow using the least-squares fitting command FindFit in Math-
ematica. In other words, we naïvely assume one-dimensional flow over the react-
ing zone. Since the simulated data includes additional depletion effects due to two-
dimensional flow, we expect to obtain estimates for the rate constants that are smaller
than the exact values.

We consider various rate constant combinations for specific Damköhler numbers
and compute estimated rate constants for each, which are displayed in Table 3.
We increase Da with k̃on to keep all other parameters in Eq. (9) constant. We see that
the relative error for the estimated rate constants increases for larger association rates.
This can be attributed to the fact that depletion along streamlines in two-dimensional
flow increases for larger association rates and larger Damköhler numbers; neglecting
this additional depletion using the one-dimensional model makes this effect more
pronounced. However, the relative error for even the worst case is only 2%, and naïve
use of the one-dimensional model produces reasonable results. Note that the relative
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Table 3 Estimated rate constants for a reacting zone using the naïve one-dimensional model

k̃on (cm3/mol s) k̃off (s−1)

Exact Estimate Exact Estimate

Da = 10−4 106 9.99880 × 105 10−5 9.99409 × 10−6

Da = 10−3 107 9.99754 × 106 10−4 9.99724 × 10−5

Da = 10−2 108 9.97844 × 107 10−3 9.97829 × 10−4

Da = 10−1 109 9.80361 × 108 10−2 9.80347 × 10−3

Despite additional ligand depletion, the one-dimensional model produces estimates for the rate constants
with less than 2% error

error in the estimated rate constants is directly related to Da; if experimentalists can
decrease Da via other experimental parameters, such as using a higher flow velocity,
estimates with smaller error can be obtained.

These results consider a reacting zone centered in the Flexchip. If the reacting zone
were to be moved vertically off center, depletion over streamlines shorter than those
included in previous results (see streamlines near the lower wall in the left-hand side of
Fig. 4)would be included in the average depletion term; hence average depletionwould
decrease. If the reacting zone were to be moved horizontally off center, streamlines
longer than those included in the previous results (see streamlines above the angles in
the left-hand side of Fig. 4) would increase the average depletion term. In either case,
we expect these effects to be minimal due to the small change in depletion over the
streamlines.

6 Conclusion

Mathematicalmodels for surface-volume reactionswithin optical biosensors have long
utilized the assumption of unidirectional flow. This assumption is mathematically use-
ful but not physically representative of the dynamics within some optical biosensors;
therefore, we considered the physically-relevant case of two-dimensional flow.

Mapping the infinite strip to the physical domain using the Schwarz–Christoffel
mapping allowed for the extension of results from the unidirectional flow case to the
two-dimensional flow case for the Biacore Flexchip. We produced several mappings
for possible device dimensions and used one of these mappings to quantify depletion
throughout the device, assuming the entire device floor is a reacting surface.

To determine the effect of two-dimensional flow in the measurement of rate con-
stants, we fit the model for one-dimensional flow to simulated data produced from the
model for two-dimensional flow. For combinations of rate constants on varying orders
of magnitude, the relative error of the estimated rate constants was less than 2% in
each case, meaning that ignoring two-dimensional flow in the model still produced
reasonable results. These results should be helpful for experimentalists; the simpler
one-dimensional model can be used instead of the more complicated two-dimensional
model because the added complexity has a small effect.
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The Schwarz–Christoffel mapping discussed could be used with previous results
over arrays by Edwards (2011) to produce better models for average bound ligand
concentration over a reacting zone within a rectangular array, and it would be partic-
ularly interesting to further investigate non-rectangular array layouts to minimize or
simplify depletion effects.
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