M I C! Mathematics-in-Industry Case Studies Journal, Volume 6, pp. 22-47 (2014)

JOURNAL

Improving a Fuel Cell Assembly Process

Ibrahim Diakite * David A. Edwards Brooks Emerick ¥
Christopher Raymond § Matt Zumbrum ¥ Mark J. Panaggio I Angela L. Peace **

Abstract. When fuel cell modules are built from individual components,
the components must be assembled according to certain rules based on man-
ufacturing tolerances. As production increases, computer implementation of
selection algorithms is essential for the speedy, efficient use of the available
components. Several greedy algorithms are presented which quickly produce
an assembly schedule that maximizes the number of components used from a
particular inventory. These algorithms use both stepwise and one-stage ap-
proaches to the larger assembly, and some “look ahead” to the next stage in
order to further maximize the number of components used. Once these ap-
proaches yield results, a genetic algorithm can be used to further optimize the
production schedule. Results are presented for real-world data which compare

very favorably with procedures currently in practice.

Keywords. fuel cells, genetic algorithms, greedy algorithms, selection

algorithms, linear programming

1 Introduction

Fuel cells are a promising technology for environmentally friendly power generation, for (depending
on the feedstock) they emit little to no greenhouse gases as waste product. Solid oxide fuel cells
(SOFC) are popular in large-scale industrial applications. In a typical SOFC, hydrogen and air are
introduced on either side of a cell component (see Figure 1). If pure hydrogen gas is introduced,

the only waste product will be water, as shown in Figure 1. If the hydrogen gas is derived from a

*Department of Mathematics, University of Texas, Arlington, Arlington, TX 76019, ibrahim.diakite@Qmavs.uta.edu
tDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716 [corresponding author] ed-
wards@math.udel.edu
tDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716.emerick@math.udel.edu
$Department of Mathematical Sciences, University of Delaware, Newark, DE 19716.craymond@math.udel.edu
TDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716.zumbrum@math.udel.edu
IDepartment of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208.
markpanaggio2014@Qu.northwestern.edu
**School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287. an-

gela.peace@asu.edu

22

mailto:ibrahim.diakite@mavs.uta.edu
mailto:edwards@math.udel.edu
mailto:edwards@math.udel.edu
mailto:emerick@math.udel.edu
mailto:craymond@math.udel.edu
mailto:zumbrum@math.udel.edu
mailto:markpanaggio2014@u.northwestern.edu
mailto:angela.peace@asu.edu
mailto:angela.peace@asu.edu

Improving a Fuel Cell Assembly Process

Electric Current

=20

Fuelln e Y Airin
_|e
0
Ho <=
o- | |
Excess Unused
Fuel and H-0 Gases
Water 2 Out
<= :
/ A\
Anode | Cathode
Electrolyte

Figure 1: Diagram of single solid oxide fuel cell (SOFC). In
this schematic, pure hydrogen gas is used as the
feedstock.

larger hydrocarbon (such as natural gas), there will be some exhaust greenhouse gases produced,
but ideally at much lower rates than to generate the same amount of electricity via other means.

At the cathode, oxygen in the air combines with electrons to form oxygen ions, which diffuse
through the electrolyte. At the anode, these ions combine with hydrogen gas to form water. The
additional electrons released in this reaction cannot easily diffuse through the electrolyte; instead
they are diverted through a wire to produce electricity.

The output voltage of a single fuel cell is typically less than a volt; hence the cells must be
combined (usually in series) into stacks which then can provide the necessary voltage. Hence what
is typically called a “fuel cell” is really a module based on a series of repeating units (RU), as shown
in Figure 2. In particular, two cells are separated by an interconnect (IC), which has channels to
introduce feedstock and remove waste. (For more details on fuel cell technology, see [3] and [4].)

These components have physical properties which vary from unit to unit. Power modules
assembled from components with similar physical properties typically have superior performance
over those with a great variability. Therefore, it is critical to have a systematic approach for
sorting through the thousands of components and assembling those sets which will maximize device
performance.

Acceptable constraints on these variations are determined by manufacturers using computa-

tional modeling and experiments. In addition, a few components have properties which limit their

23

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

air hydrogen

RU
4>

+~
= c
) i =
< o =i
@] = Q
=1 N I o
s | & 5
o =

cell

Figure 2: Diagram of a repeating unit.

possible placement within a cell assembly.

Currently, these rules for assembling the basic components are implemented by hand by expe-
rienced personnel: given a list of components currently in stock, which includes information about
the characteristics of each, a production schedule (a plan for how to assemble the current stock of
components into power modules) is designed which attempts to maximize the use of the available
components. This strategy, which is adequate for small-scale fuel-cell assembly, becomes unwork-
able when dealing with an inventory of tens of thousands of components. Hence for assembly on a
large scale, an automated method for generating a production schedule is needed.

Manufacturers would like to maximize productivity and minimize the number of “delayed”
components (currently about 10-15% when the schedule is designed by hand), while maintaining the
performance and reliability of their final product. In this manuscript we use the term “delayed” to
refer to components that cannot immediately be assembled under the existing production schedule.
Thus these components must be held in inventory until new components arrive, slowing down
production and incurring associated costs.

The assembly process proceeds in stages: the basic components are assembled into stacks, the
stacks are assembled into columns, and finally the columns are assembled into boxes. At each
stage, manufacturers have a set of assembly rules for how the different units can be combined. In
principle, a discrete optimization problem could be posed to maximize the production of boxes

from a given stock of basic components, subject to all the rules in place at each assembly stage.

24

Improving a Fuel Cell Assembly Process

However, this problem is far too large to tackle directly by computer, even for current production
volumes.

Therefore, we focus on a simplified subproblem, that of assembling stacks into columns, subject
to a subset of the rules actually used in practice. If this simplified problem could be effectively (i.e.,
quickly and approximately, but to good accuracy) solved, then variations of the same idea can be
used for the other assembly levels. This simplified problem of generating columns from stacks can
in fact be posed as an integer programming (IP) problem; unfortunately, even this subproblem is
too large to attack directly.

In this manuscript we explore several possible approaches to the problem. Most use iterative
strategies to build columns. The strategies were tested on real data provided by the manufacturer.
All of these iterative approaches ran quickly and produced delay rates which were often competitive
with or superior to a benchmark of 15%. None of these heuristic strategies was clearly superior to
all others for all sets of inputs. However, they all run very quickly and scale reasonably well with
the number of stacks in the system. Hence in principle they could all be implemented, with the
best result chosen for any particular set of inputs. Similar strategies may be implemented for the
other assembly levels.

Section 2 of this manuscript discusses terminology and outlines the assembly rules used in
practice. Section 3 discusses some of the underlying ideas common to all the heuristic assembly
strategies that were implemented. In particular, we note that all of these heuristic strategies are
deterministic. Section 4 compares and contrasts the different deterministic strategies for combining
stacks to build columns. Sections 5 and 6 outline the results of those deterministic strategies.

Section 7 discusses the use of a genetic algorithm strategy to improve results.

2 Preliminaries

In order to simplify later presentation, we begin by presenting some definitions used to characterize
the fuel cell technology. The largest piece of equipment actually shipped is called a boz (see Figure
3). Each box contains ¢ columns where the power generation takes place (for a detailed list of all
variables, see the nomenclature section at the end of this manuscript). In current designs, ¢ = 8.
The columns themselves are assembled from s stacks. (With current technology, s, the column
height, is 8 or 10.) Each stack in the column is assigned a position number, with 1 being at the
bottom and s being at the top.

Each stack is made up of r repeating units (RUs), which are made up of an IC and a cell (see
Figure 2). (With current technology, r can range from 10-50.) Only the ICs are characterized in
ways that affect the assembly.

Each shipment of ICs is identified with a value of the parameter A, which is related to a key
characteristic of the IC. Different vendors ship ICs with different values of A, which can range

between 0.14 and 0.24. The value of A given by the vendor for any shipment is the median value

25

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

5=8
7
6
B)
4
= 3
5 Stack (made
N up of r RUs)
Box (made up Column (made
of ¢ columns) up of s stacks)

Figure 3: Schematic of assembly levels illustrating an eight-
stack column. This manuscript focuses on the as-

sembly of stacks into columns.

of all the ICs in that shipment. Thus it is impossible to know the value of A for any particular IC.
Depending on the value of A, the manufacturer can identify the shipment with a bin. Currently,

the bins are numbered from 0 to 9 using the following rule:
A€ (0.14 +0.01M,0.15 + 0.01M) = shipment in bin M. (1)

The goal of the project is to minimize the number of delayed stacks in the assembly process.
Here “delayed stacks” means those components (repeating units, stacks, or columns) that cannot
immediately be used in a box, but must wait until a future shipment arrives in order to be used.

The tens of thousands of ICs are assembled into thousands of stacks. When assembling a stack,
choosing ICs with similar values of A optimizes the flow through the fuel cell. Thus it is preferable
to use ICs from a single bin and a single vendor. Fortunately, in a typical month, tens of thousands
of ICs arrive to be assembled. Therefore it is quite easy to assemble the ICs into stacks. In
particular, the maximum number of delayed ICs is reached if exactly r — 1 ICs were left in each of
the 10 bins. But this corresponds to (at most) a few percent of the monthly volume. Hence, for
the purposes of this manuscript, we ignore stack assembly and treat the stack as the lowest-level
building block. We then focus on the assembly of stacks into columns.

Once a stack is assembled, it is assigned a value of A by taking the median value of A for its
component ICs. Then the stack is assigned a bin per (1). Note that if the stack is assembled from
ICs from a single bin per the goal, the bin for the stack would be the same as for each individual
IC.

Some additional properties are known for each stack:

1. In the vast majority of cases (95%—98%), the stack is within normal operating parameters.
However, there are stacks whose shape or electrical properties restrict its position placement

in the column.

26

Improving a Fuel Cell Assembly Process

Tj+1
B
it T;+Bji1 <q

Figure 4: Schematic of assembly rule #3, as shown in (2).
2. T is a positive number that characterizes certain physical properties of the top of the stack.

3. B is a positive number that characterizes certain physical properties of the bottom of the

stack.

Then the thousands of stacks are assembled into hundreds of columns according the the following

rules:

Assembly Rules.

1. If a stack’s shape property is anomalous, it must be placed in position s.

2. If a stack’s electrical properties are anomalous, it must be placed in a position less than or

equal to s/2.

3. Denote T} as the value of T" for the stack in position j, and similarly for B;. Then

Tj+Bj+1§q, j=1,2,...,5s—1, (2)

where ¢ is a tolerance value (see Figure 4). Initially ¢ is taken to be 400. Equation (2) ensures
that the fuel cell works properly when the stacks are joined.
4. Again motivated by flow considerations, the following bin requirements also hold:

(a) The ideal case is for all stacks in a column to be from the same bin; one would want

at least 50% of the columns to be of this type.

(b) Up to 40% of the columns can contain stacks from two bins, as long as the lower half

contains stacks from bin j, and the upper half contain stacks from bin j + 1.

(c) Similarly, up to 10% of the columns can contain stacks from three adjacent bins, as

long as the stacks are ordered in non-decreasing bin number.

As assembly proceeds, intermediate subunits will be produced which are not yet full columns.
We define the size of such a subunit to be the number of stacks it contains. Once a column is

constructed, it is given a bin value which is the sum of the bin values of each of its component

27

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

stacks. Finally, the hundreds of columns are assembled into dozens of boxes. We assume that the
column-selection process mimics the bin-selection process in rule #4.
In order to reduce the number of variables under consideration, we make two simplifications.

First, we say that

anomalous shape in stack k - T(k) =Q, Q >q. (3)

Note that we use the argument notation T'(k) to refer to properties of the kth stack in the initial
pool, while we use the subscript notation T} to refer to the stack in the jth position in a particular
column.

With the definition in (3), we see that (2) will never be satisfied for any stack with an anomalous
shape. Hence any stack with an anomalous shape will have to be placed at the top of a column,

and (3) makes rule #1 redundant. Similarly, if we define

anomalous electrical property in stack k = B(k) = Q, (4)

then (2) will never be satisfied for any stack with an anomalous electrical property. Therefore, stacks
with such properties will have to be placed at the bottom of a column. This is more restrictive
than rule #2, but given the small number of stacks with these properties, this additional restriction
should not appreciably affect the larger problem.

With several thousand stacks to consider at any one time, any exhaustive searches of possible
column configurations will be prohibitively expensive to compute (for further discussion, see 4.3).
Therefore, we largely focus on simple and fast algorithms that could yield nearly-optimal results.

There are many separate facets to consider:

1. The pool protocol, which determines the initial set of stacks to assemble.
2. The subunit size protocol, which dictates how one chooses the sizes of subunits to assemble.
3. The assembly protocol, which dictates how one chooses the next two subunits to assemble.

4. The scission protocol, which dictates whether assembled subunits are broken down into smaller

parts.

We will discuss these facets in detail in the following sections.

3 Pool and Subunit Size Protocols

3.1 Pool Protocols

There are several ways to choose the initial set of stacks to assemble. Assembly rule #4(a) motivates

the most obvious choice: use one of the pre-identified bins in (1) as the pool. Though one might

28

Improving a Fuel Cell Assembly Process

think that such a choice would be too restrictive, our results in the following sections will show
that one can obtain small percentages of delayed stacks in this case.

For comparison, we also will present results from a pool protocol motivated by assembly rule
#4(b). Perhaps surprisingly, the results are not particularly improved from the one-bin pool pro-
tocol, at least with the algorithms used.

There are many other more complicated ways to choose the initial pool; some of these are

discussed in 8.2.

3.2 Subunit Size Protocols

Once the assembly process begins, we need to decide what size subunits are available for assembly
at each step of the algorithm. We present results from two different approaches.

One-size protocol. In this approach, the assembly process is divided into phases. In each phase,
subunits of identical size are paired up, then removed from the pool for that phase. At the end of
each phase, any unused subunits are discarded and the remaining joined subunits used as the pool
for the next phase. Thus in the simplest case, the first phase makes pairs, the second quartets, and
the third octets, which are full columns if s = 8.

All-size protocol. In this approach, assembly takes place in one phase. Once two subunits are
combined, the resulting larger subunit remains in the pool to be joined again. Hence, at any point,
subunits of various sizes are available to be combined. The only time a subunit is removed from

the pool is when it forms a column.

4 Assembly Protocols

Both T" and B can vary from stack to stack. In particular, they can be modeled as independent

variables taken from a normal distribution as follows:

T ~ N(215,50), B~ N(180,70). (5)

A typical data set (including values of T', B, and the shape and electrical properties) is included
as an Excel file in the supporting documentation for this manuscript. The true data sets are
proprietary.

Given the variable distributions in (5), the default tolerance of ¢ = 400 in (2) is extremely
tight, and in the next section we will discuss the sensitivity of the number of delayed stacks to
adjustments in the tolerance q.

Given this tight tolerance, assembling stacks at random should lead to many delayed stacks.

Hence an optimal assembly protocol would greatly improve the assembly process.

29

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

old subunit b T(b")

length L(b™) B(b'1) \ T(b") new subunit b

old subunit ¢~ T(t™) / B(t7) ength L(b™) + L(t7)
length L(t™) B(t™) subunit ¢~ destroyed

Figure 5: Combining of two stacks using top method.

4.1 One-Step Algorithm

The first algorithm under consideration proceeds as follows. We assume that we are given N stacks
initially, and let S = {1,2,...,N}. For each k € S, define a triple {T'(k), B(k), L(k)}. Here L(k)
will denote the number of stacks in subunit k, and initially all the subunits are single stacks. We
describe two possible ways to do the assembly.

Top Step. Define the subunit index ¢~ as follows:

Tt™) = mgn T(k). (6)

Define Sp to be the set of all possible subunits that can bind with subunit ¢t~ and still satisfy the
tolerance:
Sp={keS:Bk)+Tt)<q k#t}.

It is most desirable for later stages to match subunits with large values of B to those with small
values of T'. Thus we define the subunit index b+ as follows:

B(b") = max B(k). (7)
(In other words, b™ has the largest value of B of any subunit which can be combined with ¢t~ and
still meet the tolerance.) Then join subunit b™ and ¢~ together (see Figure 5). Mathematically, we

remove ¢t~ from S and redefine the triplet corresponding to b+ as follows:
{T(0"),B(t™), L(t™) + L(b")}.

By using the largest possible values of B during assembly, the subunits that result have smaller
values of B, which increases their chances of being able to be assembled into even larger subunits in
the next stage. However, no explicit consideration is given to the T" and B values of the assembled
subunit. Hence we refer to these type of algorithms as one-step algorithms, since they optimize
values only within the step at hand.

Alternatively, we may use the Bottom Step method, which simply switches the roles of top

and bottom from the “top step” method listed above. In particular, we have

Bb) = mgnB(k), Sr={keS:Tk)+B(b)<q k#b"}, T{t")= r%a:mpr(k).

30

Improving a Fuel Cell Assembly Process

AT-q/ 2
Quadrant II: Quadrant I:
High T, High T, B
Low B
» B-q/2

Quadrant I1I: | Quadrant IV:
Low T, B Low T,

High B

Figure 6: Segmentation of S in two-step method.

In other words, one finds the subunit with the largest value of 1" that can be combined with b~
and still meet the tolerance.

These two methods actually provide four separate one-step assembly options. One can assemble
the subunits using only the top method, only the bottom method, or alternating the two, with either
the top or bottom method going first. Given the fast computation times involved, one may use all

four of these methods to find the solution that uses the most subunits.

4.2 Two-Step Algorithm

In contrast to the one-step algorithm described above, a two-step method explicitly attempts to
produce a set of subunits that can be optimally assembled at the next stage.

One such method replaces the definition of b in (7) with

T(b") = rg]ign T(k).
In other words, we look at all the subunits which can possibly be joined with ¢~. Since smaller
values of T' can bind with more subunits at the next step, we choose to assemble ¢t~ with that
subunit in Sp which will produce that minimal value of 7'

In another, the subunits are initially classified into quadrants by using (B(k) —¢/2,T(k) —q/2)
as Cartesian coordinates (see Figure 6). Subunits in Quadrant I have the largest values which
are hardest to fit, while those in Quadrant III have the smallest values which are easier to fit.
Quadrants II and IV contain subunits with one “good” and one “bad” measurement.

Let St be the set of all subunits in Quadrant I, etc. The algorithm proceeds as follows:

1. Compute the distance between all pairs of subunits in Quadrants I and III:

d(k1, ki) = /[T (k1) — T(km))2 + [B(k1) — B(km)]? Yki € St, ki € Sin

2. If binding between the two subunits corresponding to the largest value of d is allowed, then
join those two subunits and remove them from the pool for this phase (so this algorithm

works only with the one-size protocol).

31

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

3. Repeat step #2 for the next-largest value of d until all possible matchings have been made.

4. Repeat steps #1-#3 for Quadrants II and IV. Note that in this case it is most likely that
subunits in Quadrant IT will stack on top of subunits in Quadrant IV, which would produce

subunits for the next phase in Quadrant I.

5. Repeat steps #1-#3 with the unused subunits from the remaining pairs of quadrants in this
order: I-1V, I-II, II-III, ITI-TV.

Note that both the one- and two-step algorithms take a set of subunits and pair them up as
best as possible. If the resulting larger subunits do not produce columns, the algorithms must be

repeated again with the larger subunits as the base pool.

4.3 Integer Programming Formulation

The problem can also be expressed in the IP context; a detailed formulation is given in 9, the
Appendix. For our purposes, it is sufficient to summarize the main weaknesses of the approach.

In the simplest formulation of the IP method, the goal is to maximize the number of pairings.
The advantage of such a formulation is that it provides a method for searching the entire space of
possible solutions. However, this systematic approach has a high computational cost. An initial
pool of N subunits generates O(NN?) variables z;;, (corresponding to subunit i stacked under subunit
k) and O(N?) constraints to be satisfied (corresponding to whether such a stacking is allowable
under the assembly rules). Therefore, even with a single bin (N = O(10?)), the time needed just
to construct pairs can be substantial, especially in comparison with the other algorithms described
above.

In most cases, there were many possible configurations which had the same number of pairings.
Thus the additional computational time consumed by the IP method was not well spent, since the
heuristic algorithms could construct the same number of pairings much more quickly.

Moreover, the heuristic methods attempted to “look ahead” and produce subunits that could
be easily assembled at the next level. In contrast, by just maximizing the number of pairings, the
IP method could return a solution with pairings that would be largely unsuited to further assembly.
One could adjust the objective function for the IP method to try to replicate this “forward-looking”
behavior, but the computational cost deficiency would remain. Another way to circumvent this
problem would be to use the IP method to assemble a full column of s stacks at a time, instead
of just two. But then the resulting system has O(N®) constraints, which would quickly exceed the

available processing time.

5 Results without Scission

When s = 8, the one-size phased approach will find columns of the proper size without scission.

Hence before launching into a discussion of the scission method, we present results from codes

32

Improving a Fuel Cell Assembly Process

using this algorithm on the data set provided by the manufacturer. We begin by treating each bin
separately, considering it as the initial pool for a single run. (Bin 0 had a very small number of

stacks, and hence was excluded from our analysis).

Bin Description

Top step only worked best

All methods the same

Top step followed by bottom step worked worst

Bottom step only worked best

Top step only worked best

Top step followed by bottom step (or vice versa) worked best
Top step only worked best

Top step followed by bottom step or top step only worked best

© 00 N O Ot B W NN -

Top step only or bottom step only worked best.

Table 1: Comparison of one-step, one-size algorithms for
various bins, ¢ = 400. To compare performances,
we ran each algorithm on the sample data set pro-
vided by the manufacturer. This data set consisted
of stacks assigned to 9 different bins. For each bin,
the difference between the “best” and “worst” algo-

rithm was a single column.

The assembly protocol was the one-step algorithm outlined in 4.1 with a one-size protocol. Note
that this protocol has four permutations of the top and bottom steps. In order to compare their
efficacy, we ran each of the four permutations separately for each of the bins; the results are shown
in Table 1.

Each method obtained the maximum number of columns for at least one bin, though the number
of assembled columns from the different permutations was always within one of the maximum value.
Recall that each method selects the first subunit to assemble based upon the measurement (7" or
B) at one end, then selects the second subunit based upon the measurement at the other end.
Since the two variables are uncorrelated, which algorithm(s) work best for which bin is essentially
random.

Fortunately, since the algorithms run so quickly, it is easy to run all four permutations and
simply pick the best solution of the four. In Figure 7 we display the results of such a calculation.
We plot the percentage of delayed stacks as a function of the tolerance for each bin. Note that at
the default level of ¢ = 400, the number of delayed stacks varies widely by bin. For example, bins
7 and 9 have a 30% delay rate, while bin 5 has less than a 2% delay rate. (Several of the bins
had relatively few stacks in them; hence the percentage of delayed stacks is somewhat misleading.)
Note that except for bins 7 and 9, the algorithm beats the desired standard of 15% delayed stacks.

33

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

Delayed stacks vs. tolerance for various bins, 8-stack columns only

50
5 —6— Bin 1
45 —B8—Bin2
——Bin 3
40+ —*—Bin4
—+—Bin5
35- —A—Bin 6
4 —%—Bin7
8 305 —%—Bin 8
3 _ —%—Bin 9
0 25
X
3
% 20%
*
151
i
10+
5 & %)
\ \é}/ n N—é
0 . r T T X
390 395 400 405 410 415 420

tolerance

Figure 7: Delayed stacks as a function of tolerance for 8-
stack single-bin assembly, one-step algorithm, one-

size protocol.

In general, the delay rate decays as a function of increasing tolerance. With the tolerance
increased to 405, the algorithm beats the 15% standard for every bin. The default tolerance of
q = 400 was arrived at heuristically by the manufacturer given the distributions in (5). The results
in Fig. 7 (and similar subsequent results) show that increasing the tolerance by only a small amount
(just over 1%) can substantially reduce the number of delayed stacks. Thus it is worthwhile for
manufacturers to investigate how much the tolerance can be reduced without degrading device
performance.

In Figure 8 we present the results of the two-step algorithm described in 4.2 along with the
phased one-size approach. Note that in many cases the results compare favorably to the one-step
approach.

In all of the previous discussion, we have ignored the problem of forming columns into boxes.
Unless the number of columns produced is a multiple of ¢, there will be spare columns in inventory
until new shipments of ICs arrive. Therefore it is useful to expand the pool of stacks to include
adjacent bins, following the categories specified in assembly rule #4.

Therefore, as a next step we assemble additional 8-stack columns as follows:

1. Use the one-step algorithm with the one-size protocol to create 4-stack subunits. Do this

twice, with initial pools given by bins with adjacent numbers.

2. Combine all the 4-stack subunits from both bins into a single pool and assemble them into
8-stack columns following assembly rule #4(a), (b) (namely, that in a mixed-unit column,

the higher-value bin is placed on top).

34

% stacks delayed

% stacks delayed

Improving a Fuel Cell Assembly Process

Delayed stacks vs. tolerance for various bins, 8-stack columns only

—O—Bin 1
—&-Bin 2
——Bin 3
—*—Bin 4
——Bin5
——Bin 6
—~Bin7
—>—Bin 8
—*—Bin 9

45

L L il l§
890 395 400 405 410 415 420
tolerance

Figure 8: Delayed stacks as a function of tolerance for eight-
column stacks, two-step algorithm, one-size proto-

col, single bins used.

Delayed stacks vs. tolerance for various bin pairs, 4-stack matching

—O©—Bins 1 and 2
—8B—Bins2and 3
—<—Bins 3 and 4
—*¥—Bins 4 and 5
—+—Bins 5 and 6
—A—Bins 6 and 7
—<— Bins 7 and 8
—>—Bins 8 and 9

0 ! =2 £
390 395 400 405 410 415 420
tolerance

Figure 9: Delayed stacks as a function of tolerance for 4-
stack mized-bin assembly procedure, one-step algo-

rithm, one-size protocol.

35

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

The results are shown in Figure 9. Once again, the percentage of delayed stacks is small.
However, only occasionally did we get more than ¢ = 8 columns of mixed type, which would be the

goal in order to assemble more boxes.

6 Results with Scission

If s is not a power of two, the one-size assembly methods will not naturally build columns unless the
subunits are broken into different sizes. Similarly, in the all-size assembly methods, it is probable
that subunits with more than s stacks can be built. Hence it is necessary to derive scission protocols
that detail how to break apart assembled subunits.

Suppose that a superunit has been formed of length s+ s, where the “e” denotes “extra.” Each

protocol is defined by its treatment of the following two facets of the scission problem:

1. Size of subunits. We explored two possible options for placing s, extra stacks back into the

pool:

(a) The subunit of length se is retained as a single subunit. (Note that s < s, since

otherwise a full column would have been removed at an earlier step.)
(b) The subunit of length s, is broken down into s, separate stacks.
2. Scission location. One can remove the subunit from either the top or the bottom of the
superunit. There are several different ways to make the decision about which to choose:

(a) (Used with both options in #1.) The stacks are always removed from the top of the

superunit.

(b) (Used with both options in #1.) The stacks are always removed from the bottom of

the superunit.
(¢) (Used with #1(a).) When the subunit is removed as a single piece, it will have the
following end values:
{B1,Ts,} (if removed from bottom) or {Bsy1, Ts+s, } (if removed from top).
Remove that subunit which has the smallest end value, on the hypothesis that this will be
easiest to join together in a later step.

(d) (Used with #1(b).) When we wish to remove s, separate stacks, there is a candidate

stack for removal at the top and bottom of the superunit. For each, compute the following

o=\t i | ®

where B and o(B) are the mean and standard deviation of B, respectively, and similarly for

quantity:

T. Thus d as described here measures (in a normalized sense) how extreme the values of B;

36

Improving a Fuel Cell Assembly Process

and T} are compared to their distributions. For example, at the first step one would compute
dy (bottom) and ds4s, (top). Remove that stack which has the smaller value of dj, on the
hypothesis that this stack will be easier to join together in a later step (as its end values are

closer to the mean). Repeat this step for each of the s, stacks that must be removed.

We first present results obtained by using scission with the one-step algorithm when s is not a
power of two. In order to compute the case s = 10, the following approach was used. Though not

particularly elegant, it was easy to implement with the existing one-step code.

1. Use the normal one-step algorithm with one-size protocol to form columns of size 16. The
unused subunits from the final step will be eight-stack columns; these will be saved separately

as factories often produce both 8- and 10-stack columns.

2. Remove six stacks as a single subunit from one end of each of the 16-stack columns using

scission location algorithm 2(c). This will make columns of size 10.

3. Create a new pool with the six-stack subunits. Match these to form ten-stack columns, again

by trimming two stacks from the results using scission location algorithm 2(c).

The advantage of this approach is that one is always working with a population of similarly-
sized stacks, so the one-size protocol is applicable. However, there are two main drawbacks. By
constructing columns larger than needed, one reduces the number of subunits available for assembly.
Hence the number of additional combinations is small. Thus, on many trials the number of 10-stack
columns was only one or two more than the number of 16-stack columns.

Moreover, there is an inherent lower bound on the delayed stacks in this method. If the first
step of the method works at maximal efficiency, all the stacks would initially be put into 16-stack
columns. For every two 16-stack columns, a continued perfect matching would create three 10-stack
columns and two delayed stacks, for a lower bound of 1/16. The inferiority of the results is shown
in Figure 10.

When implementing the all-size protocol, scission is required. We compare the results of 28

possible assembly protocols, returning the results from the best. These protocols were:

e For assembly, use either the top step or bottom step exclusively. For scission, use all four
combinations of #1 and #2(a),(b), as well as the combination of #1(b) with #2(d). This
yields ten methods.

e For assembly, use one of the two combination methods (top-bottom or bottom-top). For
scission, use two location methods in order. #2(a) and #2(b) can be used repeatedly or
alternately, so that yields eight scission methods for each assembly method. A ninth scission
method is given by using #2(d) repeatedly with #1(b). Using these nine scission methods

with both assembly methods yields an additional eighteen combinations.

37

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

Delayed stacks vs. tolerance for various bins, 10- and 8-stack columns

10
—6—Bin 1
90 —8—Bin2
—&—Bin3
80 —%—Bin4
—+—Bin5

—A—Bin6

—v—Bin7
—>—Bin 8

% stacks delayed

0
390 395 400 405 410 415 420
tolerance

Figure 10: Delayed stacks as a function of tolerance for 16-
stack to 10-stack one-size algorithm, one-step al-

gorithm, one-size protocol.

8-Stack Column: Delayed Stacks vs. Tolerance

70 T T T T
—&— Bin 1
Y Bin 2
60 —*—Bin 3
—*—Bin4
—=—Bin5
50 —<%—Bin6 |]
Bin7
—4A— Bin 8
el .
% 40 —v—Bin9 |
°
©
(2]
X
8 30 A
[Z]
S
20 1
10 B
®> o
0 x——%
390 395 400 405 410 415 420

olerance

Figure 11: Delayed stacks as a function of tolerance for 8-

stack one-step algorithm, all-size protocol.

38

Improving a Fuel Cell Assembly Process

10-Stack Column: Delayed Stacks vs. Tolerance

80 : : ‘ ‘
—&—Bin 1
Bin 2
01 —%—Bin 3]
g —*— Bin 4
6ol — 85— Bin5 ||
—4—Bin6
Bin 7
50 —A—Bin8 ||
- .
] —v—Bin9
>
k)
S 40/ 1
2
§ 1
2] 4
230
207 g
e 2l S x
10 A i
0 ‘ ‘ ‘ T~ ‘
390 395 400 405 410 415 420

tolerance

Figure 12: Delayed stacks as a function of tolerance for 10-

stack one-step algorithm, all-size protocol.

Running a Matlab code with all 28 combinations for all the bins took about 45 seconds on
a standard laptop; the results for 8-stack columns are shown in Fig. 11. Note that the results
compare favorably with those presented in Figures 7 and 8 for the same 8-stack column assembly.
Moreover, this algorithm is flexible enough to handle columns with any value of s. Results
for s = 10 are shown in Figure 12. Note that the results are clearly superior to those shown in
Figure 10. The algorithm can also handle mixed-bin assemblies, but this is beyond the scope of

this manuscript.

7 Genetic Algorithm

Once several simulations of the assembly process are complete, one can use postprocessing measures
in order to improve the results further. In particular, we present results from a genetic algorithm.
We define an arrangement U to be the set of columns and unused subunits (across all bins) generated
by one of our previous algorithms. For the purposes of the genetic algorithm, the unused subunits
should all be in individual stacks.

Assume moreover that we are given a set of M different arrangements initially (this is called

the first generation). Note that, as currently implemented:

e the simplest one-size algorithm generates four different arrangements

e the implemented all-size algorithm generates 28 different arrangements

The algorithm proceeds as follows:

39

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

1. Compute P(Uj;), the percentage of stacks used in columns in arrangement U;, and then com-
pute a reproduction probability p, as follows:
P(U;
1 7
In other words, the probability that a particular arrangement will be retained for subsequent

generations is proportional to the percentage of stacks it assembles into columns.

2. Reproduction step. To compute the population for the next generation, select M arrange-
ments from the previous generation (with replacement), where the probability distribution is
given by p;. Thus it is likely that there will be multiple copies of certain arrangements, and

it is likely that those arrangements were most efficient.

3. Mutation step. With some probability p, (the mutation probability parameter), make a
small change in an existing arrangement by exchanging one stack from a column for an unused
stack that satisfies the constraints. In general, p, is kept small since useful information (i.e.,

efficient arrangements) may be lost in the mutation.

4. Additional assembly. Once the mutation step is complete, examine all the unused stacks

to see if they can be assembled into columns using whatever assembly algorithm is being used.

5. Crossover step. With some probability p. (the crossover probability parameter), choose
U, for the crossover step. The crossover step requires two arrangements, so if U; is chosen,
pick another arrangement from the remaining M — 1 with equal probability. Note that the
arrangement is the total set of assemblies for all bins. Hence each arrangement U; will have

sub-arrangements U; j corresponding to bin j.

Without loss of generality, assume that U; and Uy are chosen for the crossover step. We now
wish to construct new arrangements (U, Uy) for the next generation. To do so, we exchange
Uy ; with Uy ; (the crossover) with probability 1/2.

With the reshuffling of sub-arrangements, there is now a new pool of unused stacks from
which columns can be assembled. However, for assembly purposes the pool from the new ar-
rangements is distinct (and hence useful) ONLY in the case where columns can be assembled
from stacks from adjacent bins. If instead we require that each column must be made from
stacks from the same bin, this step simply achieves a reshuffie of the U; j, which would then

be fed into the reproduction and mutation steps.

In contrast to the mutation step, in the crossover step efficient sub-arrangements are retained,

though they may be exchanged between arrangements. Thus the range of useful p. is larger.
6. Now a new generation has been created, so repeat the process.

40

Improving a Fuel Cell Assembly Process

Delayed stacks vs. tolerance for various bins, 8-stack columns only
VAN

<

100

90

80

% stacks delayed

10 L L L L
390 395 400 405 410 415 420
tolerance

Figure 13: Delayed stacks as a function of tolerance for
eight-column stacks, random assembly, genetic al-
gorithm, ten generations. Here M = 30, p, =
0.01, and p. = 0.05.

The algorithm also has the capability to assemble boxes, though those results are not presented
here.

The results of the genetic algorithm are shown in Figure 13. It shows the delayed-stack percent-
age of the best solution after ten generations for M = 30. In this case, the initial 30 arrangements
were generated by a random assembly algorithm, so it is unlikely that near-optimal solutions ap-
peared in generation 0. Hence it is no surprise that the results in Figure 13 are worse than those
from previous sections.

Due to their nature, genetic algorithms are highly sensitive to the quality of the first generation,
unless one is willing to invest significant time to allow the mutations to produce better results.
Therefore, if the arrangements from the heuristic algorithms were used as the first generation for
the genetic algorithm, the results would be better than those in Figure 13.

The algorithm is also highly sensitive to the parameters used: M, p,, and p.. The success of the
algorithm depends on those parameters, and the best performance is problem-dependent. (More
details about genetic algorithms can be found in [2].) Hence some industrial experimentation would
be required to implement this efficiently for the fuel-cell assembly problem.

Nevertheless, the genetic algorithm has several advantages. Due to its randomness, it can
explore various areas of arrangement space that the greedy algorithms might miss. However, it still

has a probabilistic selection mechanism that focuses the search on regions containing arrangements

41

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

with few delayed components.

8 Conclusions and Further Research

8.1 Conclusions

Given the simplistic nature of the heuristic algorithms presented above, it is perhaps surprising
that they work so well. Most of the algorithms were greedy; that is, they built columns iteratively
by trying to make a locally optimal choice (chosen differently for the different strategies) at each
step. Despite their simplistic nature, all of the assembly methods usually came within a column or
two of one another and of the best solution, which has the most possible assembled columns.

We examined a one-size assembly protocol with both a one-step and two-step assembly algo-
rithm. The results were comparable, though the one-step algorithm is easier to implement. Though
the one-size assembly protocol is easy to both implement and understand, the all-size protocol usu-
ally worked better. This is understandable, as it has more flexibility in choosing subunits to
assemble as compared with the one-size methods, where subunits are either matched or discarded
in a series of iterative steps. The all-size protocol is also clearly superior when s is not a power of
2.

Given the time and computational constraints needed to ensure a timely scheduling of the

assembly process, an [P formulation was found to be undesirable for two reasons:

1. The number of computations needed depends strongly on the number of components, and

even more strongly on the number of subunits simultaneously assembled.

2. If one reduces the number of subunits simultaneously assembled to reduce computation time,
the feasible solution returned by the IP algorithm may be more difficult to assemble at the

next step than those produced by the greedy algorithms.

Once several simulations have been run, their results may be improved by using a genetic
algorithm. Using the results of a greedy algorithm as a starting point, the genetic algorithm can
randomly perform changes to see if a better arrangement can be found. Given that the results of
the greedy algorithm were commonly within just a few columns of optimality anyway, the genetic
algorithm should work well in determining whether additional columns can be formed.

Manufacturers also want to know how they might modify the assembly rules currently in use
to increase efficiency. Our results clearly show that by relaxing the tolerance ¢ given in (2) only

slightly, one is able to substantially reduce the number of delayed stacks.

8.2 Further Research

Though beyond the scope of this manuscript, for completeness we discuss other facets of the problem

which could be analyzed to yield additional assembly efficiencies. First, for quality-control purposes,

42

Improving a Fuel Cell Assembly Process

manufacturers attempt to avoid mixing components from different vendors. Implementing this rule
would seem to require a relatively straightforward modification of the greedy algorithms; effectively
the existing bins of components would be subdivided by vendor, which would actually decrease the
size of the optimization problem (although performance of the greedy algorithms generally seemed
to improve with larger data sets).

There are other ways to change the initial pool of subunits to assemble. One idea is to work
with ranges of the material parameter A, rather than the arbitrarily prescribed bins in (1). Though
bin limits are arbitrary, bin width is not, and hence bin width prescribes a natural tolerance on A.
Thus we could replace rule #4 with

mjax Aj — m]m A; <0.01 9)
for any column. (Note that the extrema are taken over positions.) The rule given by (9) is more
flexible than the bin-based rule, since it allows the consideration of ranges that span more than one
bin. Hence its results should be comparable to the same-bin rule, and better than the different-
bin rule, given the fact that the A value for any particular IC is unknown (only the median of a
shipment is known).

Suppose we want to select N stacks for our initial pool. The first question is the selection of
the number N itself. Suppose that we have M stacks that satisfy (9). We could select N = M
and use the entire pool. However, with a value of A given for each stack, we can choose different
ranges that do not correspond to the bins. Therefore, it may be better to start with a smaller
number, thinking that any unused stacks from the first iteration can be combined with stacks from
a neighboring range to form a new batch for column formation.

The smallest possible pool would be N = c¢s, which corresponds to a single box, after which we
could add additional stacks as needed if we were unable to assemble a full box. Alternatively, we
could take integer multiples of cs.

We may also consider the selection of the range itself. We could start with the range with the
largest M, thinking that any unused stacks could then be incorporated into a new range later on.
Or we could start with the range with the smallest M, thinking that this somehow would be rate
limiting. Or we could start with a range including one of the endpoints A = 0.15, A = 0.25, since
such extremal values of A fit in few ranges.

When assembling stacks using the single-step algorithm, there is no reason that the choice of
top-step, bottom-step, or sequenced method need be made a priori. In particular, at each iteration,
one could compare the values of d [as given by (8)] of the candidate stacks produced by the top
step and bottom step methods, and choose the method which produces the smaller value.

Once the assembly process is complete, we can try some postprocessing measures in order to
improve our results further. If we have not used the full pool of available stacks as our initial S,
we can augment S with additional stacks from the pool in order to continue the algorithm. If the

pool is exhausted, one can break any unused subunit with more than one stack into its component

43

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

stacks to see if these smaller stacks can be reassembled into columns.

The problem of assembling columns into boxes has a slightly different structure than the problem
of assembling stacks into columns. Stacks need to satisfy a tolerance condition with their nearest
neighbors; in contrast, all columns in a box should have an average bin value which is the same or
at least close in value. If the columns generated are ranked by average bin value, a constraint of
this nature would be easy to impose. The new wrinkle is that it might make sense to settle for a
smaller number of columns, if their bin values are such that more complete boxes can be assembled.
This will require an algorithm that looks ahead in some way when assembling boxes, in much the

same way that the two-step greedy algorithm looked ahead when assembling columns.

9 Appendix

Nomenclature

Variables and Parameters

The equation number where a symbol first appears is listed, if appropriate.
A: parameter related to IC (1).

B: parameter related to bottom of stack.

b: index related to B value (7).

¢: number of columns in a box.

d: distance metric, variously defined.

F: feasibility matrix for IP problem.

g: penalty function for IP problem (13).

1: integer used to index subunits.

j: integer used to index position (2).

k: integer used to index subunits (3).

L(k): length of subunit k.

[: integer used to index subunits.

M integer, variously defined.

N: normal distribution (5).

N: number of subunits in initial pool.

P(U): percentage of stacks used in columns in arrangement U.
p: probability of event in genetic algorithm.

@: dummy parameter value given to anomalous stacks (3).
q: tolerance for parameter sum (2).

r: number of repeating units in a stack.

S: set of subunits in greedy algorithm.

s: number of stacks in a column.

44

Improving a Fuel Cell Assembly Process

T: parameter related to top of stack.
t: index related to T value (6).
U: arrangement in the genetic algorithm.

o(-): standard deviation of - (8).
Other Notation

c: as a subscript on p, used to indicate the crossover step.

e: as a subscript on s, used to indicate extra stacks.

r: as a subscript on p, used to indicate the reproduction step.
w: as a subscript on p, used to indicate the mutation step.

@ used to indicate the mean (8).

—: as a superscript, used to indicate minimum (6).

+: as a superscript, used to indicate maximum (7).

*: as a superscript, used to indicate a crossover arrangement.

Integer Programming Formulation

To express our problem in the linear programming context, we consider a pool of N subunits.
Define the feasibility matriz F € RN*N as follows:

1 if i#k and T(i)+ B(k) < q
fik =
0 else

In other words, f;x = 1 if it is feasible for subunit ¢ to be stacked under subunit k. We track

whether that actually occurs through the variable x;:

1 if subunit 7 is stacked under subunit k
Lik =
0 else

Then the goal is to maximize the number of pairings
H=) iy (10)
ik
given the following constraints. First, binding can occur only if it is feasible, so
ik < fir for all i, k. (11)
Moreover, subunit ¢ can bind with at most one other element, so we have

> @i+ ag < 1 for all i. (12)
k

45

Ibrahim Diakite, David A. Edwards, Brooks Emerick, Christopher Raymond, Matt Zumbrum,
Mark J. Panaggio, Angela L. Peace

Here the first sum counts bindings where 7 is on the bottom, while the second sum counts bindings
where 7 is on the top. (For more details on such integer programming problems, see [1] and [5].)

Note that the number of constraints becomes large very quickly. Equation (11) provides N2
conditions, while (12) provides 2N conditions. This greatly increases computational time. For
instance, using the Matlab bintprog optimization function for a system with N = 167 stacks took
about 5 minutes on a standard laptop to return a set of pairs—the first step of the assembly. In
contrast, the 28 combinations outlined in (6) took just 45 seconds to return a set of columns.

When solving a linear programming problem, one starts from a feasible solution and works
around the edge of the simplex until an optimal solution is found. Hence permuting the data would
still lead to the same number of pairings, but the stacks used in the pairings would be different.
It can be shown with a small set of eight stacks (chosen with pathological B and T values) that
with the stacks ordered one way, a column of eight could be formed, while with the stacks ordered
another way, the best one could do was four pairs.

This sensitivity to the data reflects the fact that the function H to be optimized is simply the
number of pairings; it does not attempt to produce pairings which would be easy to assemble at

subsequent stages. In order to do so, one could introduce an objective function of the form

H=Y g(B,T:q)zu, (13)
ik
where g would penalize end values away from the mean, as in d; in (8). The choice of g is subtle.
It must penalize difficult-to-match pairs while ensuring that the maximum number of pairings is
still made. The design of such a function is beyond the scope of this manuscript.

In order to work around the issue of designing ¢, one could envision using this approach to join
more than two subunits together at once. For instance, suppose we wanted to set up the integer
programming system to assemble three subunits at once. Then we would define

1 if subunit ¢ is stacked under subunit £ under subunit [

Tikl =
0 else

and the goal would be to maximize

ik,

The binding constraint then becomes
Tikt < fik [for all 4, k, 1, (15)
since both merges have to be allowable. In addition, the single-binding rule becomes

Z ikl + Trit + xg; < 1 for all 4. (16)
kil

These rules provide O(N?3) constraints. In general, to combine an entire column at once would take
O(N?) constraints.

46

Improving a Fuel Cell Assembly Process
Acknowledgments

This work was supported in part by the National Science Foundation, grant DMS-1153940. The

authors thank the reviewer for providing useful insights that greatly improved the paper.

References

[1] J. Franklin, Methods of Mathematical Economics: Linear and Nonlinear Programming, Fized-

Point Theorems, Society for Industrial and Applied Mathematics, Philadelphia, 2002. 46

[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag,
New York, 1999. 41

[3] R. O’Hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, Wiley, Hoboken,
2006. 23

[4] C. S. Spiegel, Designing € Building Fuel Cells, McGraw Hill, New York, 2007. 23

[5] G. Strang, Linear Algebra and Its Applications, Harcourt Brace Jovanovich, New York, 1988.
46

47

http://epubs.siam.org/doi/book/10.1137/1.9780898719239
http://epubs.siam.org/doi/book/10.1137/1.9780898719239
http://www.springer.com/computer/ai/book/978-3-540-60676-5
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470258438.html
http://www.mhprofessional.com/product.php?isbn=0071489770
http://www.cengage.com/search/productOverview.do?N=16+4294922413+4294967225+4294952008&Ntk=P_EP

	Introduction
	Preliminaries
	Pool and Subunit Size Protocols
	Pool Protocols
	Subunit Size Protocols

	Assembly Protocols
	One-Step Algorithm
	Two-Step Algorithm
	Integer Programming Formulation

	Results without Scission
	Results with Scission
	Genetic Algorithm
	Conclusions and Further Research
	Conclusions
	Further Research

	Appendix

