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Abstract We analyze surface-volume reactions in the context of optical biosensors
with arrays of reacting zones. For arrays having zones with the same rate constants,
we consider a two-dimensional reacting zone boundary definition and quantify ligand
depletion with the effective Damköhler number. We use asymptotics to obtain ligand
depletion results for the one-dimensional case, and also compute results for the circular
reacting zone case. For arrays having zones with different rate constants, depletion
effects cannot be expressed as the product of time-dependent and space-dependent
terms, and we propose two effective rate constant equations for this case.

Keywords Surface reactions · Perturbation methods

List of Symbols

Variables and Parameters

A Area of reacting zone (17)
a Constant in Da bound
B̃(x̃, z̃, t̃) Bound ligand concentration, units N/L2

b Constant in Da bound

If the same letter appears with and without a tilde, the letter with a tilde has dimension and the letter
without a tilde is dimensionless. Units are listed in terms of length (L), mass (M), moles (N ), or time (T ).
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1784 M. E. Zumbrum, D. A. Edwards

C̃(x̃, ỹ, z̃, t̃) Ligand concentration, units N/L3 (1)
C̃u Uniform feed ligand concentration, units N/L3 (1)
c Constant in Da bound
D̃ Molecular diffusion coefficient, units L2/T
Da, i Da Damköhler number (7)
Dai Effective Damköhler number for i th reacting zone (18)
d Constant in Da bound
f1, f2 General functions in discussion of the boundedness of Dai (t)
g Constant in average ligand depletion
H̃ Height of biosensor channel, units L (1)
H Harmonic number
h Spatial function for ligand concentration (14)
h Constant in average ligand concentration
I (x, z) Indicator function for reacting zone (8)
i Row variable
j Column variable
K Scaled affinity constant (5)
k̃on, k̃off Interaction rate constants, units L3/N T and 1/T
L̃ Length of biosensor channel, units L
L̃ r Diameter of a circular reacting zone, units L (1)
m Parameter for reacting zone boundary definition
n Indexing variable
Pe Peclét number
R̃ Receptor concentration on reacting surface, units N/L2

Rr Reacting surface (5)
r Root function (21)
Re Reynolds number
S[·] Sensogram (17)
t̃ Reaction time scale, units T (1)
Ṽ Characteristic velocity, units L/T
W̃ Width of biosensor channel, units L
x(z; j) Boundary for reacting zone (21)
x̃, ỹ, z̃ Spatial variables, units L (1)
Γ Gamma function
η Boundary layer variable (2)
κon Ratio of association rate constant to the first reacting zone association

rate constant (28)
ν Convolution integral variable

Other Notation

0 as a subscript, used to indicate leading-order perturbation expansion
− as a subscript, used to indicate smaller quadratic root
− as a superscript, used to indicate the beginning of a reacting zone
+ as a subscript, used to indicate larger quadratic root
+ as a superscript, used to indicate the end of a reacting zone

123



Applications to Optical Biosensors 1785

1 Introduction

Optical biosensors use surface-volume reactions for the measurement of reaction rate
constants. Within a biosensor device, a reactant (the receptor) is immobilized on a
sensor chip in a region called a reacting zone, and a fluid containing another reactant
(the ligand) flows over the reacting zone. Early devices include a single-reacting zone,
and mathematical models for this case have been developed (Edwards 1999; Mason
et al. 1999; Zumbrum, submitted). Newer technology allows for an array of reacting
zones to be included in a single flow channel, allowing for the study of up to 400
reactions simultaneously; an example of this type of flow cell is the Biacore Flexchip
(Rich et al. 2008). We display a schematic representation of the Flexchip in Fig. 1. Note
that the reacting zones, which are spaced in a rectangular array, are typically circular;
our work here is more general, and includes circular zones as a special case. Arrays
of reacting zones also arise in biological applications such as multiple-coated pits on
cell membranes to which protein ligand binds (Bhattacharyya et al. 2010; Goldstein
et al. 1988) and multiple receptor sites on lipid rafts (Pommier et al. 2010).

For each individual reacting zone, biosensors produce a sensogram for the average
bound ligand concentration over a reacting zone using a method called surface plasmon
resonance (GE Healthcare 2007). Transport effects (most strongly, depletion) have
been shown to be important for surface-volume reactions with only a single reacting
zone (Edwards 1999; Mason et al. 1999; Zumbrum and Edwards, submitted). The
standard model includes a system of partial differential equations (PDE) for the ligand
concentration and bound ligand concentration. Due to the high flow rate in the device,
the problem may be reduced to a nonlinear ordinary integrodifferential equation for
the bound ligand concentration on the reacting surface.

In experimentally realizable regimes, the problem may be simplified further to a
simpler nonlinear ordinary differential equation (ODE) using perturbation methods
(Edwards 2001; Hansen et al. 2012). This differential equation, called an effective
rate constant (ERC) equation, models the average bound ligand concentration over a
reacting zone.

Transport effects are complicated further for receptors in several disconnected
regions. Motivated by simulations which show that the flow in the Flexchip is nearly

inlet

reacting
zones outletdirection

sealed
walls

Fig. 1 Three-dimensional schematic representation of the Flexchip. Note the reacting zones are typically
circles aligned in a rectangular array
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1786 M. E. Zumbrum, D. A. Edwards

Fig. 2 Cross-sectional schematic representation of an optical biosensor with three reacting zones

unidirectional (Zumbrum and Edwards, submitted), the Flexchip was first studied
using a one-dimensional model, as illustrated in Fig. 2. This is equivalent to consid-
ering rectangular zones in a rectangular array; both analytical (Edwards 2011) and
numerical (Hu et al. 2007) studies were conducted.

In contrast to those works, in this paper we investigate arrays of two-dimensional
reacting zones, as shown in Fig. 3. Our new model, derived in §2 and §3, is general
enough to contain both the experimentally realizable circular case and the previously
studied rectangular case. We may use similar techniques as in the one-dimensional
case, deriving a row-specific ERC equation to account for depletion effects.

Previous one-dimensional models (Edwards 2011; Zumbrum, submitted) consid-
ered only the case where the identical receptor is used in each zone. However, arrays of
reacting zones are especially useful for quickly analyzing multiple reactions involving
the same ligand and different receptors. Thus, in addition to extending the work in
Edwards (2011) to the two-dimensional case, we also propose two different ERC equa-
tions for arrays of reacting zones with different receptors and discuss the advantages
and disadvantages of each in §4.

2 Model Background

Biosensor experiments are run in two phases: the injection phase, in which a uniform
ligand concentration is fed into the flow channel, and the wash phase, in which no ligand
is fed into the channel. For the latter, ligand is only present due to bound receptors.
We focus on injection phase dynamics, but results for the wash phase may be obtained
similarly. Given the thinness of any three-dimensional reacting zone near the surface,
we may treat the reacting zone as a surface (Edwards 1999). Hence, the standard two-
compartment model for surface-volume reactions is a convection–diffusion PDE for
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Fig. 3 Circular reacting zones in rows i = 1, 2, 3 and columns j = 1, 2, 3

the ligand concentration C̃(x̃, ỹ, z̃, t̃) in the bulk flow coupled to kinetic evolution of
the bound ligand concentration B̃(x̃, z̃, t̃) at the reacting surface ỹ = 0.

We consider the convection–diffusion equation for ligand concentration, introduc-
ing the dimensionless variables

x = x̃

L̃ r
, y = ỹ

H̃
, z = z̃

L̃ r
, t̃ = 1

C̃uk̃on
t, and C̃(x̃, ỹ, z̃, t̃)= C̃u(1 − Ĉ(x, y, z, t)),

(1)

where L̃ r is the diameter of a circular reacting zone within the device, C̃u the uniform
feed concentration, and k̃on the association rate, assuming that receptors in each react-
ing zone bind at the same rate. We scale the ligand concentration so that Ĉ(x, y, z, t)
represents the dimensionless ligand depletion from the uniform ligand concentration.

2.1 Governing Equations

For biosensor devices, the channel height H̃ is much smaller than the device length
L̃ and width W̃ . With the Reynolds number Re � 1 for biosensor device parameters
displayed in Table 1, we obtain a parabolic velocity profile for steady unidirectional
Poiseuille flow between stationary plates with characteristic velocity Ṽ (Zumbrum,
submitted). Though the geometry is two-dimensional, it can be shown through con-
formal mapping arguments (Zumbrum and Edwards, submitted) that the flow is nearly
unidirectional in the region containing reacting zones. Moreover, since H̃ � W̃ , the
boundary layer along the sealed walls (see Fig. 1) is too thin to overlap the reacting
zones. Hence to leading order, velocity variations in z can be ignored.
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1788 M. E. Zumbrum, D. A. Edwards

Table 1 Obtained and calculated parameter values for optical biosensor experiments

Parameter Value Reference

C̃u (mol/cm3) 2.96 × 10−12 – 2 × 10−10 Rich et al. (2008)

D̃ (cm2/s) 6.94 × 10−6 Rich et al. (2008)

Da 1.11 × 10−6 – 5.76

H̃ (cm) 0.018 GE Healthcare (2006)

K 5 × 10−5 – 3.38 × 104

k̃off (1/s) 10−5 – 10−2 GE Healthcare (2006)

k̃on (cm3/mol s) 105 – 109 GE Healthcare (2006)

L̃ (cm) 2.7 Rich et al. (2008)

L̃r (cm) 1.50 × 10−2 – 3.50 × 10−2 GE Healthcare (2006)

Pe 4.94 × 102 – 1.73 × 104

R̃ (mol/cm2) 1.11 × 10−13 – 2.33 × 10−11 Rich et al. (2008)

Re ≤ 0.067

Ṽ (cm/s) 3.70 × 10−1 – 5.56

W̃ (cm) 1.5 Rich et al. (2008)

The large value of the Peclét number Pe = Ṽ H̃2/D̃ L̃ r in Table 1 indicates that
the concentration only in a thin “unstirred” layer near the reacting surface contributes
to the reaction. In this boundary layer, the velocity is linear, and the leading-order
convection–diffusion equation is given by

∂2Ĉ

∂η2 = η
∂Ĉ

∂x
, (2)

where the choice of scaling y = Pe−1/3η removes the coefficient on the right-hand side
of (2). Note also that due to the small aspect ratio H̃/W̃ , diffusion in the z-direction
may be neglected. Therefore, each streamline may be considered separately, causing
z to appear only as a parameter. (2) must be solved subject to the boundary condition
for no depletion at the inlet

Ĉ(0, η, t; z) = 0 (3)

and the far-field condition for no depletion as η → ∞

Ĉ(x,∞, t; z) = 0. (4)

The rate of change of bound ligand depends simply on binding and unbinding of
ligand and receptors, given by the dimensionless kinetics equation
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∂ B

∂t
= (1 − B)[1 − Ĉ(x, 0, t; z)] − K B, (x, z) ∈ Rr, (5)

where Rr denotes the reacting surface. (Note that since B is defined only on this
reacting surface, we suppress its arguments here and in similar equations below.) Here
we have scaled B̃ by the uniform receptor concentration R̃, and K = k̃off/C̃uk̃on is a
scaled affinity constant. For no initial bound receptors, we have the initial condition

B(x, 0; z) = 0. (6)

With no vertical convection within the channel, ligand and receptors interact due
to diffusion. Therefore, diffusive flux into the surface must equal the rate of change
of bound ligand concentration given by

∂Ĉ

∂η
(x, 0, t; z) = −Da

∂ B

∂t
I, (7)

where the indicator function I is defined by

I (x, z) =
{

1, (x, z) ∈ Rr

0, (x, z) �∈ Rr,
(8)

since we have flux only over a reacting zone. In (7), we include the Damköhler number

Da = konPe1/3

DPe2/3 = k̃on R̃

(
H̃ L̃ r

D̃2Ṽ

)1/3

,

which is the ratio of the rate of reaction to the rate of diffusion. Da measures the
significance of transport effects; hence experimentalists want to drive Da as small as
possible to isolate the pure reaction kinetics (Edwards 2001). Motivated by the bulk
of the range in Table 1, we focus on the reaction-limited problem where Da � 1.

Considering the leading-order Eqs. (2)–(4), (7) with Da = 0, there is no leading-
order ligand depletion. To obtain the leading-order bound state, we use the perturbation
expansion

B(x, t; z) = B0(x, t; z) + O(Da) (9)

in (5) with the initial condition (6) to obtain the spatially uniform solution

B0(t) = 1 − e−(1+K )t

1 + K
, (10)

corresponding to the well-mixed, spatially independent case.
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1790 M. E. Zumbrum, D. A. Edwards

Motivated by the form of (7), we let Ĉ = DaC in (2)–(4), (7) to obtain the following
system:

∂2C

∂η2 = η
∂C

∂x
, (11)

C(0, η, t; z) = 0,

C(x,∞, t; z) = 0,

∂C

∂η
(x, 0, t; z) = −∂ B

∂t
I. (12)

Note that with Da small, this substitution implies that the amount of ligand used
in reactions is small enough to be neglected at leading order. We use the Laplace
transform to solve (11) with the inlet concentration condition and boundary layer
matching condition, and obtain the O(Da) ligand depletion

C(x, 0, t; z) = 1

31/3Γ (2/3)

x∫
0

∂ B

∂t
(ν; z)I (ν, z)(x − ν)−2/3 dν. (13)

For the i th reacting zone with upstream and downstream boundaries x−
i (z) and

x+
i (z), respectively, we include z dependence due to the two-dimensional reacting zone

but suppress explicit dependence below. For x in the i th reacting zone, we integrate
over reacting zones in a particular column and write the i integrals over individual
zones separately. Using (9) and the fact that B0 is spatially uniform, we see that to
leading order we may factor the bound state derivative out of the integral to obtain

C(x, 0, t; z) = dB0

dt
h(x; z) + O(Da), (14)

where

h(x; z) = 32/3

Γ (2/3)

(
i−1∑
n=1

hn,i (x; z) + hi,i (x; z)

)
, (15)

for hn,i (x; z) = (x−x−
n )1/3−(x−x+

n )1/3 and hi,i (x; z) = (x−x−
i )1/3. We define hn,i

for the ligand depletion over a streamline for an upstream reacting zone, which does not
change as x changes within the i th reacting zone; we define hi,i separately to account
for changing x which corresponds to different points along the streamline in the i th
reacting zone. For the first row i = 1 of reacting zones, h(x; z) = 32/3h1,1/Γ (2/3).

2.2 Sensogram

With the inclusion of the bound state expansion (9) and the ligand depletion expression
(14), Eq. (5) is
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∂ B

∂t
= 1 − (1 + K )B − Da(1 − B0)

dB0

dt
h(x; z) + O(Da2). (16)

Optical biosensors produce output for the average bound ligand concentration over
a reacting zone, and we average the bound ligand concentration B for an individual
reacting zone to obtain a time-dependent sensogram. Since each row has a distinct
average ligand depletion and sensogram, we use the notation Si [B] to represent the
sensogram for a reacting zone Ri in the i th row so that

Si [B] = 1

A

∫∫
Ri

B dA. (17)

We average (16) to obtain

dSi [B]
dt

= 1 − (1 + K )Si [B] − DaSi [h](1 − Si [B0])dSi [B0]
dt

+ O(Da2),

where the average of the product h B0(dB0/dt) is the product of the averages since B0
is spatially uniform. We use manipulations similar to those in Zumbrum (submitted)
with an O(Da2) error to relate the sensogram of the leading-order bound state and its
derivative to the sensogram, and obtain the effective rate constant (ERC) equation

dSi [B]
dt

= (1 − (1 + K )Si [B]) (1 − Dai (1 − Si [B])) + O(Da2) (18)

with initial condition Si [B](0) = 0. The effective Damköhler number Dai = DaSi [h]
incorporates both zone placement and geometry for ligand depletion. It can be shown
that Si [h] > Si−1[h], so Dai increases as one moves downstream: Dai > Dai−1.

Using the initial condition, we have from (18) that to leading order,

dSi [B]
dt

(0) = 1 − Dai ;

hence to maintain a nonnegative bound ligand concentration Si [B] we must have that
Dai < 1, or

Da < 1/Si [h]. (19)

Given the ordering of the Si , we see that (19) guarantees that Sn[B] > 0 for all n ≤ i .
Note that (19) results from the way we averaged (16), and not from the model itself.
However, recall that we are continually working in the limit that Da � 1; hence (19)
is really just a quantification on how small that is. There are other ways to average
(discussed further in §4.3), but these have drawbacks as well.

We solve (18) using partial fractions to obtain

Si [B] = 1 − e−(1+(1−Dai )K )t

1 + K + Dai
1−Dai

e−(1+(1−Dai )K )t
+ O(Da2). (20)
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decreasing Da

2 4 6 8 10
t

0.1

0.2

0.3

0.4

0.5

Fig. 4 Sensograms S1[B] for Da = 0.867, 0.86, 0.8, 0.7, 0.57 (decreasing thickness) and K = 1. We see
that a bound on the Damköhler number is necessary to produce a sensogram with the correct concavity

Note that the steady-state solution 1/(1+ K ) is stable, and while we make an O(Da2)

error using a perturbation expansion for the bound state in (20), we expect this error to
be small for Da � 1. We expect (20) to exhibit properties reflective of the actual kinet-
ics; namely that the bound ligand concentration increases until reaching equilibrium
and that the rate of change of bound ligand decreases as receptors bind, so that Si [B]
is increasing and dSi [B]/dt is decreasing. The former is guaranteed by (19); it can be
shown in a similar manner that requiring Da < (1 + K )/((2 + K )Si [h]) is sufficient
to obtain the correct downward concavity for the graph of the sensogram. This bound
is more restrictive than the bound from the first derivative, but not concerning for the
reaction-limited case under consideration.

As an example of the necessity of this bound, Fig. 4 contains sensograms for
various Damköhler numbers over a single unit rectangular zone. (For this zone type
S1[h] = 1.15209; details for this calculation will be discussed in §3.) For plotting
purposes, we may choose a value of K based on the feed concentration C̃u and take
K = 1 for simplicity, yielding the bound Da < 2/(3(1.15209)) = 0.579. We see that
the sensogram concavity is only correct for the appropriate Da.

3 Reacting Zone Geometry and the Effective Damköhler Number

While we have an explicit sensogram expression for individual reacting zones within
an array column, we now discuss the calculation and importance of the effective
Damköhler number Dai . Though we are particularly interested in the case of an array
of circular reacting zones in the Flexchip displayed in Fig. 3, we consider a more
general case. In particular, we define the boundary of the reacting zone in the i th row
and j th column generally as

(
x −

(
1

2
+ 2(i − 1)

))2m

+
(

z −
(

1

2
+ 2( j − 1)

))2m

=
(

1

2

)2m

, m = 1, 2, . . . .
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Hence, the case of circular reacting zones corresponds to m = 1 and the case of square
zones corresponds to m → ∞. Note that we define a column of reacting zones to be
parallel to the flow and a row of reacting zones to be normal to the flow. As a function
of z, the boundary of the reacting zone in the i th row and j th column is

x±
i (z; j) = 1

2
+ 2(i − 1) ± r(z; j), (21)

where

r(z; j) = 2m

√
1

22m
−

(
z −

(
1

2
+ 2( j − 1)

))2m

.

This zone boundary definition is especially useful for the case of circular reacting
zones and square reacting zones but could be redefined for more general reacting zone
geometries.

3.1 Expressions for the Effective Damköhler Number

With a definition for reacting zone boundaries, we compute the effective Damköhler
number for individual reacting zones for general m, obtaining separate expressions
for Da1 and Dai , i > 1.

3.1.1 Da1

For the first row of reacting zones corresponding to i = 1, we have

Da1 = DaS1[h] = Da

A

z+
j∫

z−
j

x+
1∫

x−
1

h1,1(x; z) dx dz.

Using the expressions for x−
1 and x+

1 , we obtain a result in terms of gamma functions

Da1 = Dah

A

2Γ (2/3m)Γ (1/2m)

7mΓ (7/6m)
.

Note that h = 35/3/4Γ (2/3) corresponds to S1[h] for a single unit square reacting
zone. For the reacting zone area A, we use a similar procedure to obtain

A =
z+

j∫
z−

j

x+
i∫

x−
i

dx dz = Γ (1/2m)Γ (1/2m)

4mΓ (1/m)
, (22)
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1794 M. E. Zumbrum, D. A. Edwards

so that the effective Damköhler number for the first row of reacting zones as a function
of the reacting zone boundary parameter m is

Da1 = Dah
8Γ (1/m)Γ (2/3m)

7Γ (1/2m)Γ (7/6m)
. (23)

3.1.2 Dai , i > 1

In similar fashion, we compute the effective Damköhler number for downstream zones
beyond the first row. For a reacting zone in row i > 1, we have

Dai = DaSi [h] = Da

A

z+
j∫

z−
j

x+
i∫

x−
i

(
i−1∑
n=1

hn,i (x; z) + hi,i (x; z)

)
dx dz.

We cannot write a simple expression for Dai in terms of gamma functions as we did for
Da1, but by changing variables and simplifying the sums, we can write the effective
Damköhler number for downstream zones in the i th row as

Dai = Da1 + Dah

A

[
i−1∑
n=1

∫ 1

0

(
2n + 2m

√
1 − x2m

)4/3
dx −

i−1∑
n=1

2(2n)4/3

+
i−1∑
n=1

∫ 1

0

(
2n − 2m

√
1 − x2m

)4/3
dx

]
. (24)

The effective Damköhler number increases with i , which corresponds to additional
reacting zones in a column, leading to greater depletion accounted for in Dai . As a
consequence of increased depletion and Dai , dSi [B]/dt in (18) decreases, slowing the
rate of binding for the i th reacting zone.

3.1.3 Effective Damköhler Number Comparison

We calculate the ratio of Dai , i > 1, to Da1 to examine the change in the effective
Damköhler number as m increases and display the results in Fig. 5 for i = 2, 3, 4, 5.
As i increases for additional upstream zones, the ratio increases at a decreasing rate
due to additional ligand depletion accounting for a smaller fraction of total ligand
depletion. For fixed i , the ratio quickly asymptotes to the value of the ratio as m → ∞
due to the reacting zone boundary definition, which suggests asymptotic expansions
of the effective Damköhler number for large m may be reasonable for m ≥ 1.

This behavior for fixed i and varying m occurs due to the shape of the reacting zone.
To illustrate this point, we simplify our discussion to a circular reacting zone (m = 1)
and a square reacting zone (m → ∞), displayed in Fig. 6. Depletion occurs along
horizontal streamlines from the left boundary to the right boundary of each zone, and
streamlines are longer in the square zone than the circular zone. Hence, reactions that
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increasing i

1 2 3 4 5 6 7 8
m

1.2

1.4

1.6

1.8

Fig. 5 Ratio of Dai to Da1 for i = 2, 3, 4, 5. Note that zones further down the channel have a larger
effective Damköhler number, corresponding to increased depletion

occur in the shaded regions for only the square zone exacerbate the depletion effect.
For any two reacting zones corresponding to different m values, a similar argument
holds so that depletion is greater for the zone corresponding to the larger m value.

This shape effect is more pronounced for small m, since the reacting zone boundary
changes most significantly for small m. This is evident in the derivative of the ratio,
which increases with i due to the cumulative depletion effect for multiple reacting
zones in a row. An increased m yields additional depletion not only for the zone of
interest but also for all upstream zones, so the ratio changes quickly for small m as
i increases. As m increases through moderate values, the shape of the reacting zone
quickly resembles the square zone; hence, additional ligand depletion from this shape
effect is minimal for moderate values of m.

3.2 Square Reacting Zones

To verify our results, we may take the limit as m → ∞ (square zones) and show that
the resulting leading-order expressions match results from the one-dimensional model
by Edwards (2011).

3.2.1 Da1

To examine the behavior of Da1 as m → ∞, we use the Laurent expansion for the
gamma function so that

Da1 = Dah

(
1 − π2

72m2

)
+ O

(
1

m3

)
, (25)

which is valid for m > 1. For large m, Da1 approaches Dah for a single zone as we
expect. Figure 7 contains a plot of the ratio of the asymptotic value of Da1 in (25) to the
exact value of Da1 in (23) for m ≥ 1. We see that the difference between the asymptotic
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flow direction

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

z

Fig. 6 Representation of a circular and square reacting zone with non-overlapping regions shaded

1 2 3 4 5 6 7 8
m

0.92

0.94

0.96

0.98

1.00

Fig. 7 Ratio of the asymptotic value of Da1 to the exact value of Da1 for various m

and exact value is less than 9% regardless of the Damköhler number and parameter
m; since this difference is minimal and biosensor results contain experimental noise,
this asymptotic expression could serve as a reasonable approximation for any reacting
zone geometry with m ≥ 1.

3.2.2 Dai , i > 1

Computing the effective Damköhler number for additional rows, we consider the first
term in (24) to show behavior for large m. Using the Maclaurin series for the radical
function and integrating term-by-term, we obtain
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1∫
0

(
2n + 2m

√
1 − x2m

)4/3
dx = (2n + 1)4/3 − 2(2n + 1)1/3

3m
H1/2m + O

(
1

m3

)
,

where H1/2m is the harmonic number of argument 1/2m. Similarly for the third term
in (24), we have

1∫
0

(
2n − 2m

√
1 − x2m

)4/3
dx = (2n − 1)4/3 + 2(2n − 1)1/3

3m
H1/2m + O

(
1

m3

)
.

Using these expressions and simplifying the telescoping coefficients for the sum over
k, we obtain the asymptotic expression

Dai ∼ Da1 + Dah

A

[
i−1∑
n=1

(
(2n + 1)4/3 − 2(2n)4/3 + (2n − 1)4/3

)

+ 2
(
1 − (2i − 1)1/3

)
3m

H1/2m

]
.

In Fig. 8, we display the ratio of the asymptotic value of Dai to the exact value of Dai

and observe that the difference is minimal for reacting zones in rows i = 2, 3, 4, 5;
for a reacting zone with m ≥ 1 in the 20th row, this difference is less than 8%.

For large m, we neglect the O(1/m2) correction for Dai and use that Da1 is asymp-
totic to Dah/A = Dah for square reacting zones with A = 1 to obtain the effective
Damköher number given by

Dai = Da1

[
1 +

i−1∑
n=1

(
(2n − 1)4/3 − 2(2n)4/3 + (2n + 1)4/3

)]

= Da1

[
(2i − 1)4/3 + 2

2i−2∑
n=1

(−1)n−1n4/3

]
,

which is the result for the one-dimensional case given by Edwards (2011) in Eq.
(3.16a). To provide a sense of effective Damköhler number values, Table 2 displays
Dai for the first five rows of square reacting zones with Da = 0.1. The effective
Damköhler number increases with i as additional upstream zones deplete ligand, but
this is not concerning since the constant Dai is included in the argument of exponen-
tially decaying terms in the sensogram (20).

3.2.3 Sensograms

Using the result for Dai in the limit as m → ∞ and K = 1, we plot the leading-
order bound state and sensogram S5[B] for reacting zones in row i = 5 from (20) in
the inset of Fig. 9. We observe the O(Da) effect included in the sensogram and note
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increasing i
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Fig. 8 Ratio of the asymptotic value of Dai to the exact value of Dai for various m, i = 2, 3, 4, 5

Table 2 Effective Damköhler number for the first five rows of square reacting zones with Da = 0.1

i 1 2 3 4 5

Dai 0.115209 0.148281 0.168721 0.184269 0.197089

increasing i

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t
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0.3

0.4
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Fig. 9 For Da = 0.1 and K = 1, difference B0 −Si [B] for i = 1, 2, 3, 4, 5 for square reacting zones. Inset:
Leading-order bound state (thick line) and sensogram (20) for i = 5 (thin line). Note that as i increases,
binding slows, reflecting increased depletion further down the channel

that as the effective Damköhler number increases with additional ligand depletion,
the sensogram derivative in Eq. (18) decreases. Therefore, the reaction slows and the
bound state decreases.

To examine how the sensogram Si [B] changes as i increases with additional
upstream zones, we consider the difference B0 − Si [B] between the leading-order
bound state and sensogram in Fig. 9. For additional upstream zones, this difference
increases due to additional ligand depletion, but at a decreasing rate since the additional
depletion is a smaller fraction of total depletion for additional rows. This behavior is
due to the corresponding behavior of the effective Damköhler number for increased i .
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Table 3 Effective Damköhler number for the first five rows of circular reacting zones with Da = 0.1

i 1 2 3 4 5

Dai 0.108428 0.136355 0.153685 0.166875 0.177754

3.3 Circular Reacting Zones

Rectangular reacting zones are convenient to analyze mathematically, as the governing
equations simplify to a one-dimensional model. However, in this manuscript we wish
to consider the more experimentally relevant case of circular zones, as seen in such
devices as the Flexchip and dotLab. To understand the effect of circular reacting zones,
we consider the case of m = 1 in the definition of the reacting zone boundaries. To
generate sensograms for circular reacting zones, we include this zone geometry in the
effective Damköhler number. While the asymptotic expressions derived in the limit
of large m were reasonable for m ≥ 1, we compute the effective Damköhler numbers
for the specific case m = 1.

3.3.1 Da1

From (23), the effective Damköhler number for circular reacting zones in the first
row i = 1 is Da1 = 32/3Da/

√
πΓ (13/6). Here the reacting zone area in (22) A =

Γ (1/2)Γ (1/2)/4Γ (1) of course reduces to A = π/4.

3.3.2 Dai , i > 1

From (24), we numerically compute the effective Damköhler number for circular
reacting zones in row i > 1. Table 3 displays effective Damköhler numbers for the
first five rows of circular reacting zones with Da = 0.1, and we see a decrease in the
effective Damköhler number from Table 2 for the corresponding square zones due to
less ligand depletion as previously discussed.

3.3.3 Sensograms and Comparison with Sensograms for Square Reacting Zones

Plotting the sensogram (20) for circular reacting zones, we see similar behavior to
square zones. Figure 10 displays the leading-order bound state and sensogram S5[B]
in the inset, and the difference between the leading-order bound state and sensogram
for the first five rows of reacting zones.

Comparing the sensograms Si [B] for circular and square reacting zones, we see
that the difference Si [B]m=1 − Si [B]m→∞ in Fig. 11 is nonnegative for all reacting
zones, which can be directly attributed to the effective Damköhler number and reacting
zone geometry. Circular zones have less ligand depletion, smaller effective Damköhler
numbers, and consequently larger bound states than square zones. Note though that this
difference is extremely small compared to the corresponding sensogram and difference
from the leading-order bound state.
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increasing i
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Fig. 10 For Da = 0.1 and K = 1, difference B0 − Si [B] for i = 1, 2, 3, 4, 5 for circular reacting zones.
Inset: Leading-order bound state (thick line) and sensogram (20) for i = 5 (thin line). Again as i increases,
binding slows, reflecting increased depletion further down the channel
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Fig. 11 Sensogram difference Si [B]m=1 − Si [B]m→∞ corresponding to circular and square reacting
zones for i = 1, 2, 3, 4, 5. The difference is positive due to additional depletion along streamlines over
square zones compared to circular zones (as discussed in §3.1.3) and is increased with i as this additional
depletion effect accumulates

3.4 Calculation of Rate Constants

In the previous section, we produced sensograms for circular reacting zones within an
array column, highlighting the effect that row placement has on sensogram behavior
due to ligand depletion. However, experimentalists are most interested in obtaining rate
constants from sensogram data. To examine rate constant estimates and row placement
effects, we include rate constants in the sensogram (20) using the dimensional time
scale t̃ and the definition for K to obtain the dimensional expression

Si [B](t̃) = C̃uk̃on(1 − e−(C̃u k̃on+(1−Dai )k̃off)t̃ )

C̃uk̃on + k̃off + C̃uk̃on
Dai

1−Dai
e−(C̃u k̃on+(1−Dai )k̃off)t̃

. (26)
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Table 4 Estimated rate constants for reacting zones in rows 1, 2, 3, 4, 5, and 20 using the naïve one-row
approach; the exact value is 10 in each case. Due to depletion of the ligand, using the naïve one-row approach
significantly understates the rate constants in downstream zones

i 1 2 3 4 5 20

k̃on (106 cm3/mol s) 9.99788 9.75023 9.59607 9.47846 9.38128 8.61153

k̃off (10−5 s−1) 9.99757 9.74042 9.57998 9.45738 9.35594 8.54739

We consider circular reacting zones with Da = 0.1 and K = 1 and assume values for
the uniform feed concentration C̃u = 10−11 mol/cm3 and rate constants

k̃on = 107 cm3/mol s and k̃off = 10−4 s−1, (27)

maintaining consistency with the choice of K = 1. With these parameter values,
we calculate the sensograms Si [B](t̃) from (26) for rows i = 1, 2, . . . , 20 with t̃ ∈
[0, 35000] seconds and sample at integer times to obtain simulated sensogram data
for twenty rows of reacting zones in the Flexchip. Note that the sensograms Si [B](t̃)
for i = 1, 2, . . . , 5 correspond to those used to produce Fig. 10 on the reaction time
scale t ∈ [0, 3.5].

To determine how ignoring row placement distorts the measurement of rate con-
stants, we fit (26) with i = 1 to the simulated sensogram data from row i using the
least-squares fitting command FindFit in Mathematica. In other words, we naïvely
use the one-row model on each row, thereby neglecting the additional depletion for
downstream rows. We compute the estimated rate constants displayed in Table 4,
noting that the relative error for row 1 is less than 0.03%, which is due only to the
parameter estimation.

For rows i > 1, the simulated data includes depletion effects along the channel
from upstream zones, so we expect to obtain estimates for the rate constants that
are smaller than those in (27). In Table 4, we include the estimated rate constants for
zones in rows i = 2, 3, 4, 5, and 20. We see that these values decrease with additional
upstream zones, as expected due to our naïve model choice. In fact, the relative error for
the 20th row is 15%, showing the importance of utilizing the multiple-row approach.
Since O(Da) transport effects are included in both the simulated data and the model
to which the data is fitted, errors in the estimated rate constants in Table 4 are due only
to depletion effects along the channel from upstream zones.

4 Array of Reacting Zones with Different Rate Constants

An advantage that the Flexchip offers is that an array of reacting zones allows for the
testing of up to 400 different receptors in a single experiment (Rich et al. 2008). Each
reacting zone contains a different receptor; hence in this situation, the rate constants in
each zone will be different. Our model can handle this case easily. Still working in the
case of unidirectional flow, we consider each column of reacting zones independently
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and treat z as a parameter. Therefore, the following work can be applied to any column
of reacting zones.

4.1 Governing Equations

In this case, we must account for not only reacting zone geometry and row posi-
tion within an array, but also differing rate constants k̃oni , k̃offi for ligand-receptor
interactions in the i th reacting zone. We use the dimensionless association rate
koni = C̃uk̃oni L̃ r/Ṽ in the Damköhler number i Da for the i th reacting zone, with
the leading subscript used to avoid confusion with the effective Damköhler number
notation.

Equation (2) and conditions (3) and (4) for ligand depletion are the same, but since
the reaction rate constants are different for each reacting zone, we have the following
zone-specific dimensionless kinetics equation analogous to (5) for the i th reacting
zone:

∂ Bi

∂t
= κoni

[
(1 − Bi )(1 − Ĉ) − Ki Bi

]
, x ∈ [

x−
i (z), x+

i (z)
]
, (28)

where κoni = k̃oni /k̃on1 and Ki = k̃offi /C̃uk̃oni . By definition, κon1 = 1. We also have
the dimensionless flux equation for the i th reacting zone

∂Ĉ

∂η
(x, 0, t; z) = −1Da

∂ Bi

∂t
, (29)

analogous to (7).
Again, there is no leading-order ligand depletion, and with the perturbation expan-

sion Bi (x, t; z) = Bi,0(x, t; z) + O(1Da2), we obtain the leading-order bound state

Bi,0(t) = 1

1 + Ki

[
1 − e−κoni (1+Ki )t

]
. (30)

Note that the steady-state solution for the leading-order bound state 1/(1 + Ki ) is not
necessarily the same for different reacting zones.

In an analogous manner to that used in §2.1, we use the form of (29) to motivate
the substitution Ĉ = 1DaC . We use the same variable C as before to represent the
depletion scaled by transport effects. The resulting expression for C for unidirectional
flow

C(x, 0, t; z) =

⎧⎪⎪⎨
⎪⎪⎩

32/3

Γ (2/3)

dB1,0

dt
h1,1, x ∈ [x−

1 , x+
1 ]

32/3

Γ (2/3)

(
i−1∑
n=1

dBn,0
dt hn,i + dBi,0

dt
hi,i

)
, x ∈ [x−

i , x+
i ], i > 1,

is similar to (14) with the exception that bound-state derivatives are zone-dependent
and cannot be factored from the sum. Using the notation g = 32/3/AΓ (2/3) and
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S[ · ] without subscript since bound states are row-dependent, we obtain the averaged
expression

S[C](t) =

⎧⎪⎪⎨
⎪⎪⎩

g
dS[B1,0]

dt
S[h1,1], x ∈ [x−

1 , x+
1 ]

g

(
i−1∑
n=1

dS[Bn,0]
dt S[hn,i ] + dS[Bi,0]

dt
S[hi,i ]

)
, x ∈ [x−

i , x+
i ], i > 1,

(31)

which we use in the averaged kinetics equation

dS[Bi ]
dt

= κoni [1 − (1 + Ki )S[Bi ]] − κoni (1 − S[Bi ])1DaS[C](t) + O(1Da2).

(32)

4.2 ERC Equation Analogous to (18)

In the term 1DaS[C](t), the bound-state derivative is zone-dependent, cannot be fac-
tored from the sum, and includes explicit time dependence so that (32) is not separable.
To obtain an ODE of similar form as that for arrays of reacting zones with the same
receptors, we isolate the upstream ligand depletion terms to obtain the ERC equation

d S[Bi ]
dt

= κoni [1 − (1 + Ki ) S[Bi ]]
[
1 − κoni 1DagS[hi,i ](1 − S[Bi ])

]

−κoni 1Dag(1 − S[Bi ])
i−1∑
n=1

κonn e−κonn (1+Ki )t S[hn,i ] + O(1Da2).

(33)

We see that the term on the second line of (33) incorporates the upstream depletion,
which slows the reaction, remains bounded, and approaches zero as t → ∞. In the
case of only one reacting zone, this term is not included and (33) simplifies to the ERC
equation in Zumbrum (submitted).

As in the previous case, we must bound the Damköhler number to maintain the
correct physical properties for a sensogram, namely that it remains nonnegative and
concave down. For the sensogram to be nonnegative, dS[Bi ]/dt must be positive when
S[Bi ] = 0; for the sensogram to be concave down, d2S[Bi ]/dt2 must be negative when
t = 0. These requirements yield the respective bounds

1Da <
1

b
. (34)

and

1Da2 − a + bc + d

bd
1Da + c

bd
> 0,
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for

a = κoni g
i−1∑
n=1

κ2
onn

(1 + Kn)S[hn,i ], b = g
i∑

n=1

κonn S[hn,i ], c = κ2
oni

(1 + Ki ),

d = κ2
oni

g

(
κoni (1 + Ki )S[hi,i ] +

i∑
n=1

κonn S[hn,i ]
)

.

With roots 1Da± =
(

a + bc + d ± √
(a + bc + d)2 − 4bcd

)
/2bd, the product

(1Da − 1Da+)(1Da − 1Da−) is positive when 1Da > 1Da+ or 1Da < 1Da−. It
can be shown that the former bound allows nonphysical negative bound states and the
latter is more restrictive than (34); hence, we require that

1Da < 1Da− = a + bc + d

2bd

[
1 −

√
1 − 4bcd

(a + bc + d)2

]
.

For large κoni , 1Da− is asymptotic to κ−1
oni

. Since association rates for different react-
ing zones can differ by several orders of magnitude, the Da range for which (33) is
applicable may be severely limited; hence experimentalists that wish to use this model
would be forced to design analyses within this limited Da range. If instead the reacting
zones have association rates that are closer in order of magnitude, the Da bound would
be much less restrictive and would not require experimentalists to drive Da down as
dramatically to use this model.

As an aside, we note that the manipulations that led to (33) all implicitly assumed
that the rate constants are different in each zone. Hence (33) does not straightforwardly
reduce to (18) in the case where all the reacting zones do have the same rate constants.
However, since this case corresponds to zones with the same receptor, experimentalists
would know a priori that this is the case. With regards to experimental design, if
multiple reacting zones of the same receptor are to be studied, it is preferable to place
the reacting zones with this receptor in the same column so that we may use (20) to
model sensograms.

4.3 ERC Equation with Time-Dependent Effective Damköhler Number

We may also produce an ERC equation (similar to Edwards (2011)) with a time-
dependent effective Damköhler number by scaling each term in the ligand depletion
expression with respect to the leading-order bound state for the i th reacting zone. To
do this, we factor dS[Bi,0]/dt from each term of the summation in (31) and leave the
corresponding exponential term from this factoring in the summand to obtain

i−1∑
n=1

dS[Bn,0]
dt

S[hn,i ] = 1

κoni

dS[Bi,0]
dt

i−1∑
n=1

eκoni (1+Ki )t dS[Bn,0]
dt

S[hn,i ].
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We can write the averaged ligand depletion as

1DaS[C](t) = 1

κoni

dS[Bi,0]
dt

Dai (t), (35)

where

Dai (t) = 1Dag
i∑

n=1

κonn eκoni (1+Ki )t−κonn (1+Kn)t S[hn,i ]

and the constant i th summand is included since for n = i

eκoni (1+Ki )t−κonn (1+Kn)t = 1. (36)

Using (35) and the fact that S[Bi ] = S[Bi,0]+O(1Da) and dS[Bi ]/dt = dS[Bi,0]/dt+
O(1Da) in (32), we obtain

dS[Bi ]
dt

= κoni [1 − (1 + Ki )S[Bi ]] − (1 − S[Bi ])dS[Bi ]
dt

Dai (t) + O(1Da2),

with the sensogram computed numerically from

dS[Bi ]
dt

= κoni [1 − (1 + Ki )S[Bi ]]
1 + Dai (t)(1 − S[Bi ]) + O(1Da2). (37)

The time-dependent effective Damköhler number Dai (t) accounts for upstream zone
position and geometry, as well as different rate constants. Working row by row, Dai (t)
is a known function, depending only on the leading-order bound state of the preceding
i − 1 reacting zones.

In the case of only one reacting zone, Dai (t) = DaS[h], and (37) simplifies to
(3.14) in Edwards (2011). In the case where the rate constants are the same for all
reacting zones in a column, (36) holds for all n so that Dai (t) simplifies to Dai for
multiple zones with the same rate constants. With regards to experimental design, if
multiple reacting zones of the same receptor are to be studied, it is preferable to place
reacting zones with this receptor in the same column so that we may use results in §3.

Unfortunately, (37) also has a limitation with regards to its application. Physically,
1DaS[C](t) in (35) must be bounded between 0 and 1. Writing this term as the product
of dS[Bi,0]/dt and Dai (t), we recognize that dS[Bi,0]/dt is bounded and tends to 0
as t → ∞, but Dai (t) may be unbounded as t → ∞ without certain conditions on
the rate constants for reacting zones in different rows. Note that this is different from
the case for an array of reacting zones with the same receptor where Dai → ∞ for
increasing i . For that case, Dai is constant in time for a specific zone and increases
only as we move between zones.
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To guarantee the boundedness of Dai (t), each exponential term must be bounded
with

κoni (1 + Ki ) ≤ κonn (1 + Kn) for all n < i. (38)

In terms of the rate constants, we must order the reacting zones with C̃uk̃oni + k̃offi ≤
C̃uk̃onn + k̃offn for n < i . C̃uk̃oni and k̃offi may assume values on the ranges O(10−7)

– O(10−1) and O(10−5) – O(10−2) respectively, meaning these terms may be the
same order, as when we use K = 1 and K1 = 1 for plotting, or one term may
dominate if it is much larger than the other. For example, if C̃uk̃oni � k̃offi , reacting
zones must be ordered by decreasing association rate to have Dai (t) bounded. For
the experimental setup of a column that satisfies this requirement, the zone closest to
the inlet must contain the receptor with the largest association rate. Any additional
zone placed downstream must have a smaller association rate than all preceding zones
in the column. Ordering reacting zones within a column in this manner is difficult
experimentally since the rate constants are the values to be found, and even with some
a priori information about the rate constants, it would be challenging to satisfy this
requirement.

The boundedness of Dai (t) is important for using (37) to compute sensograms; if
we do not satisfy (38) yet scale the ligand depletion with respect to the derivative of the
bound state for the i th zone in (35), an unbounded term results in the denominator of
(37). This term drives the derivative dS[Bi ]/dt to zero, resulting in an underestimate
of the sensogram steady-state solution. In this case dS[B]/dt = f1(S[B], t) f2(S[B])
with f1(·, t) → 0 as t → ∞; hence the steady state is not necessarily given by
f2 (S[B]) = 0.

For a simple two-zone example, consider circular reacting zones and a reacting
zone in the second row with κon2 = 50 and K2 = 1/50, where the use of (37) is
not appropriate since κon2(1 + K2) = 51 > 2 = κon1(1 + K1). In Fig. 12, we
display the leading-order bound state of the second reacting zone from (30) and the

0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.4

0.6

0.8

1.0

Fig. 12 For 1Da = 0.1, K1 = 1, κon2 = 50 and K2 = 1/50, leading-order bound state for the second
reacting zone from (30) (thick line) and sensogram from (37) for i = 2 (thin line). This example illustrates
that if the bound in (38) is not satisfied, the model (37) does not produce the expected steady state
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sensogram S[B2] from (37). The underestimation of the bound state occurs whenever
the boundedness condition for Dai (t) is not met, and we choose κon2 = 50 for Fig. 12
to make this effect pronounced.

5 Conclusions

In order to accurately estimate rate constants from optical biosensors, one needs a
reliable mathematical model for the underlying sensogram data. Most current analyti-
cal models of the Biacore have treated the device as one-dimensional (Edwards 1999,
2001, 2011; Hansen et al. 2012; Mason et al. 1999; Zumbrum, submitted). In the case
of the Flexchip, a two-dimensional approach is required if one considers the true case
of circular reacting zones.

A full system would include two coupled PDEs for the ligand and bound-state
concentrations. However, by exploiting the high aspect ratios and large Péclet num-
bers associated with the device, we may reduce our system to the integrodifferential
equation that results when one substitutes (13) into (5). Hence the transverse variable
z appears only as a parameter. Moreover, by considering the experimentally desirable
case where Da � 1, we may simplify the model further to obtain an ERC equation
in each zone. The ERC equation includes the effective Damköhler number to account
for ligand depletion due to zone geometry and placement within a column of reacting
zones. We also derived bounds on Da to ensure that the system of the ERC equation
remains physical. These bounds are consistent with the examined regime Da � 1.

In the case of multiple reacting zones with the same receptor, we calculated both
the effective Damköhler number in each zone, as well as the error made in estimating
the rate constants using a naïve one-zone model. This error can be quite substantial as
the row number increases.

Our model is general enough to handle a wide range of shapes for the reacting zones;
the previously examined case of rectangular zones (Edwards 2011) corresponds to the
case where m → ∞, while the experimental case of circular zones corresponds to
m = 1. We examined the asymptotic behavior of our expressions as m → ∞, and
found them to match the results from rectangular zones in the literature. Our work
on circular reacting zones indicates that sensograms for m = 1 exhibit a minimal
decrease in depletion effects compared with square reacting zone sensograms due to
decreased ligand depletion.

One advantage of the Flexchip is the ability to run many interactions with dif-
ferent receptors simultaneously. Thus we extend our analysis to an array of react-
ing zones having different rate constants. Different rate constants yield zone-specific
leading-order bound states, complicating the calculation of ligand depletion with time-
dependent terms. We propose two methods for handling this time-dependent ligand
depletion. In the first, the ERC equation is derived in the same way as in the same-
receptor case, yielding additional bounds on Da so that the solution remains physical.
In the second, we use a different averaging technique, which yields time-dependent
Dai . In order to guarantee realistic results in this formulation, there are bounds on the
rate constants in each column.
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Unlike previous ERC equations, these must be solved numerically to produce sen-
sograms. However, the simple nature of the ERC makes it easy to be implemented in
software. With increased biosensor use, we attempt to elucidate the effect of arrays of
reacting zones and suggest preferred experimental setups. With this a priori informa-
tion for preferred array layouts and parameter regimes, biosensor users may produce
and interpret better results for interaction analyses.
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