
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM REVIEW c© 2013 Society for Industrial and Applied Mathematics
Vol. 55, No. 4, pp. 764–787

An Application of Matrix
Theory to the Evolution of
Coupled Modes∗

David A. Edwards†

Joseph D. Fehribach‡

Richard O. Moore§

Colin J. McKinstrie¶

Abstract. In order to overcome loss in optical fibers, experimentalists are interested in employing
parametric amplifiers using four-wave mixing. Upon linearizing the nonlinear Schrödinger
equation typically used as a model for such amplifiers, a system of ODEs results for the
complex amplitude. The solution can also be expressed as the product of transfer matrices
and the initial condition and its conjugate. Physical insight about the fiber-optic system
can be gained by examining the theoretical properties of the matrices in the mathematical
system. This module, suitable for inclusion in an advanced undergraduate or graduate lin-
ear algebra course, explores these properties and should provide a good physical motivation
for the theoretical explorations in such a course.
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1. Introductions.

1.1. To the Instructor. Most textbooks on “linear algebra with applications”
confine their discussion of applications to computational examples. Hence when teach-
ing a course in linear algebra, it is often difficult to find applications of the theoretical
aspects of the course. During the 27th Annual Workshop on Mathematical Problems
in Industry (MPI) [33] held at the New Jersey Institute of Technology, the coauthors
studied a problem related to photon generation in optical fibers. The resulting math-
ematical problem led to a careful theoretical study of certain matrices modeling the
physical system. The work was then abridged to form this module; it discusses theoret-
ical properties of matrices, addressing the specific issues arising in photon generation.

This module is designed to be used by students who are familiar with material up
to and including the matrix exponential, as well as the properties of symmetric matri-
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Fig. 1.1 Different types of FWM. Long arrows denote strong pump waves (p and q), and short
arrows denote weak signal and idler waves (s and i). Downward arrows denote modes
that lose photons, whereas upward arrows denote modes that gain photons. The directions
of the arrows are reversible. Left: Modulational instability (degenerate FWM), in which a
single pump field (p) transfers photons to signal (s) and idler (i) sidebands. Center: Phase
conjugation, in which a phase-conjugated copy of the signal is transferred to the idler at a
similar frequency. Right: Frequency conversion, in which a copy of the signal is transferred
to the idler at a different frequency.

ces. The module covers such advanced topics as complex, Hermitian, and symplectic
matrices, as well as the singular value decomposition (SVD). All of these concepts
arose directly out of questions posed in the workshop. Necessary properties are either
explained or referenced within.

1.2. To the Student. The two most celebrated developments leading to today’s
high-speed optical communication networks are the invention of the laser in 1960 [37]
and the subsequent decade of development of extremely transparent fused silica for
use in optical fiber [38]. Although optical fibers transmit light efficiently, their re-
sponse to the incident electric fields is nonlinear, meaning that copropagating light
waves are affected by each other’s presence. This effect is sometimes called the optical
Kerr nonlinearity [1, section 1.3], [3, section 4.1]. With careful engineering of the
optical fiber and related equipment, this nonlinearity can counterbalance chromatic
dispersion, the phenomenon whereby waves with different wavelengths (colors) travel
with different speeds. Hence the optical fiber system can exhibit robust pulses that
are ideal carriers of digital information. The nonlinear optical susceptibility (material
response) of fiber also provides a means to transfer energy between different frequen-
cies of light, a mechanism that can be exploited for signal amplification at high powers
or for quantum information experiments at extremely low powers.

Transmitting these fields over long distances necessarily involves loss of signal
strength due to absorption and scattering of light by the fiber; hence amplification is
necessary. Most currently available amplifiers are phase-insensitive, so they produce
signal gain that is independent of the phase of the complex-valued signal. However,
phase-sensitive amplifiers are desirable due to their noise reduction and other proper-
ties [13], [17], [19], [35], [44]. One novel amplification device uses parametric devices
based on four-wave mixing (FWM) [10], [28], [41]. Such devices can phase-conjugate,
regenerate, and sample optical signals in classical communication systems [29] (see
Figure 1.1). They can also generate photon pairs for quantum information (commu-
nication and computation) experiments [8]. As shown in Figure 1.2, these devices can
also convert the frequency of the optical signals using the mechanism on the right of
Figure 1.1 [29].
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•

Fig. 1.2 Experiment illustrating modulation instability [36], [43]. In this experiment, the pump
wavelength was varied by only a few nm (relative to the zero-dispersion wavelength of the
fiber) between the first and last pictures. Because of the dispersion properties of the fiber,
the wavelengths at which the signal and idler radiation were generated varied by hundreds
of nm, thus changing the color of the emitted light.

Light-wave propagation in a fiber is governed by the nonlinear Schrödinger equa-
tion (NLSE) [11], [12], a partial differential equation (PDE) that describes how the
complex vector-valued temporal envelope of an electric field evolves as it travels along
an optical fiber. The NLSE is suitable for describing pulsed light with time durations
down to several picoseconds, as well as continuous-wave (cw) light with a complex
amplitude that is nearly constant in time. Many applications, from amplification
in optical communications networks to photon generation in quantum experiments,
involve one or more large-amplitude pump fields interacting with one or more small-
amplitude signal fields. This scale disparity allows the PDE to be linearized about the
equilibrium solution for a pump field with constant power, reducing the complexity
of the mathematical equations to be solved. In this case, the cw fields have constant
wavelength and amplitudes that depend only on z, the distance along the fiber axis.

In particular, parametric interactions of weak sidebands driven by strong pumps
are governed by coupled-mode equations (CMEs) of the following form:

(1.1a)
dx

dz
= Ax+Bx̄,

where in uniform media the coupling coefficients that form the entries of A,B ∈ Cn×n

are constant [20], [30], [31], and x and x̄ are complex conjugate vectors. (A full list
of the variables used in this article is given in Table 1.1.)

Recall that a complex scalar x ∈ C can be written x = Re{x} + i Im{x} with
real part Re{x}, imaginary part Im{x}, modulus |x| = ((Re{x})2 + (Im{x})2)1/2,
phase (argument) arg x = arctan(Im{x}/Re{x}), and complex conjugate x̄ = Re{x}−
i Im{x}, where i =

√−1. The entries of the amplitude vector x ∈ Cn could be the
amplitudes of distinct monochromatic sidebands (continuous waves) or different fre-
quency components of multichromatic sidebands (pulses), with one or two polarization
components [1], [14], [22], [23], [26], [27], [41].
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Table 1.1 Nomenclature. The equation number where a particular quantity first appears or is de-
fined is listed, if appropriate.

Notation Description Equation

a amplitude vector in two-mode case (6.1)

A skew-Hermitian matrix in x system (1.1a)

B symmetric matrix in x system (1.1a)

C arbitrary matrix, variously defined

d discriminant

H Hermitian matrix (7.2)

i indexing variable, variously defined

i as a subscript on a, used to indicate idler (6.1)

J Hermitian block of L (2.3)

j indexing variable, variously defined

K symmetric block of L (2.3)

L matrix in y system (2.5b)

M(z) transfer matrix in x system (1.1b)

N(z) transfer matrix in x system (1.1b)

n dimension of original system

P matrix in two-mode case (7.1)

p coupling coefficient in two-mode case (7.6)

Q orthogonal matrix

R symplectic matrix (3.1)

S matrix of eigenvectors of L (2.8)

s as a subscript on a, used to indicate signal (6.1)

T as a superscript, used to indicate transpose (2.1)

U(z) unitary matrix

u column of U (4.4b)

V (z) unitary matrix in SVD (4.3)

v column of V (4.4b)

w arbitrary vector, variously defined

x n-dimensional vector of mode amplitudes (1.1a)

y 2n-dimensional vector composed of x and x̄ (2.5a)

z eigenvector, variously defined

z distance (1.1a)

α arbitrary constant, variously defined

β arbitrary constant, variously defined

δ self-coupling constant in two-mode case (6.1)

Λ diagonal matrix of eigenvalues of L (2.8)

λ eigenvalue, variously defined

μ eigenvalue of T

Σ(z) diagonal positive semidefinite matrix in SVD (4.3)

σ diagonal entry of Σ (4.4a)

Ω matrix used in definition of symplecticity (3.1)

∗ as a superscript, used to indicate conjugate transpose (2.1)

¯ as a superscript, used to indicate conjugate (1.1a)

As (1.1a) is a linear equation, it may be formally solved to yield input-output
relations (IORs, also called Bogolyubov transformations [2]) of the form

(1.1b) x(z) = M(z)x(0) +N(z)x̄(0),

where M,N ∈ Cn×n are transfer (Green) matrices found by solving the CMEs. If one
can construct M(z) and N(z), then the problem is solved for all z, since the vectors
x(0) and x̄(0) are known.
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For simple one- and two-mode interactions, it is easy to solve the CMEs and
interpret the IORs. However, in some systems several modes interact simultaneously
[30], or several two-mode interactions occur sequentially [32]. For such systems, the
CMEs and IORs are more complicated. Hence two sets of questions arise that we
shall address:

1. When can we solve the CMEs (1.1a) explicitly? What types of solutions are
most desirable physically, and how can we achieve them?

2. As will be shown in the next section, the solution of the CMEs will be ex-
pressed in different terms than in the IORs. Under what general conditions
can we relate these two expressions for the solution?

Answering these questions leads us to study the properties of the transfer matrices
and other matrices defined below.

This module explores the relationship between the linear approximate form of the
CMEs and the corresponding IORs. The spectral decomposition of the linear operator
in the CMEs provides the solution in terms of the eigenvalues and eigenvectors of the
underlying matrix; the form of those eigenvalues will provide insight into the physical
structure. We will then relate the spectral decomposition of the CMEs to the SVD of
the IORs, which decomposes the (z-dependent) matrices M and N into their singular
values.

Section 2 explores the constraints on the coefficient matrices in (1.1a) which arise
from linearizing the full nonlinear system. This exploration leads to the definition
of several new matrices which are frequently discussed in the fiber-optics literature.
Specifically, the matrices A and B are recast in terms of the Hermitian matrix J
and the complex-symmetric matrix K, which are then used to define the matrices L,
M , and N (the transfer matrices M and N were mentioned above). Again, all these
definitions follow the traditions of fiber-optics research.

Section 3 then discusses perhaps the most important issue connecting the linear
algebra under discussion with the overarching physics: the eigenvalues of the matrix
L. Signal amplification requires that the system with constant pump and zero signal
be unstable, and the stability of the system is determined by these eigenvalues. In
particular, the eigenvalues of L occur in quartets, and the physical implications of
this result for wave propagation are noted. Sections 4 and 5 then discuss the two
decompositions of interest here: the spectral (or eigenvalue) decomposition and the
singular value (or Schmidt) decomposition. Section 4 reviews the basic mathemat-
ical results for each decomposition; section 5 explores the relationship between the
spectral (eigen)values and the singular values for a given matrix. This relationship
is important because researchers discussing photon generation generally focus on the
SVD since matrices arising in their work are not necessarily diagonalizable. However,
the spectral decomposition is often easier to obtain and to relate to the physical prob-
lem. Unfortunately, however, the relationship between the spectral values and the
singular values is quite limited.

In sections 6 and 7, the discussion returns more directly to fiber optics, in particu-
lar the implications of the results for the eigenvalues of L on isotropic and nonisotropic
wave propagation through the optical fiber.

2. Coupled-Mode Equations. The laws of quantummechanics impose constraints
on the coefficient matrices in (1.1a), namely, that [24]

A = −A∗, B = BT .(2.1)

Here A∗ is the conjugate transpose of A, defined as A∗ = ĀT [16, section 6.4]. Also
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note that B is a symmetric matrix. (Customarily the word “symmetric” is used only
for real matrices. Here we expand the usage to complex matrices.)

One way to solve the problem is to note that the complex conjugate of (1.1a) is
given by

dx̄

dz
= Āx̄+ B̄x.(2.2)

Combining (1.1a) and (2.2), we have

d

dz

(
x

x̄

)
=

(
Ax+Bx̄

Āx̄+ B̄x

)
=

(
A B
B̄ Ā

)(
x

x̄

)
.

In order to make more direct comparisons with the literature for the fiber-optic
system under consideration, we let

A = iJ, J = J∗; B = iK, K = KT ,(2.3)

where we have used (2.1). Any matrix such as J that is equal to its own conjugate
transpose is called a Hermitian matrix [16, section 6.4]. Hermitian matrices are the
complex generalizations of real symmetric matrices. This is because, for complex
matrices, the conjugate transpose has similar properties to real symmetric matrices
with respect to the spectral theorem and its use in proofs.

Equation (2.3) allows us to rewrite our system as

d

dz

(
x

x̄

)
=

(
iJ iK

−iK̄ −iJ̄

)(
x

x̄

)
,

dy

dz
= iLy,(2.4)

y =

(
x

x̄

)
,(2.5a)

L =

(
J K

−K̄ −J̄

)
.(2.5b)

Note that we have expanded our system from n-dimensional to 2n-dimensional. There-
fore, we seem to have introduced some additional degrees of freedom into the problem,
but in fact the initial condition

y(0) =

(
x(0)

x̄(0)

)
(2.6)

takes care of that. Requiring that the last n elements of y(0) be the complex con-
jugates of the first n elements of y(0) provides the n additional conditions we need
to close our 2n-dimensional system. (A more detailed proof is left to the reader; see
Exercise 2.2.)

As long as L is independent of z, the solution of (2.4) subject to (2.6) can be
formally expressed as

(2.7) y(z) = eizLy(0).

If L is diagonalizable, then the spectral decomposition of eizL is given by

(2.8) eizL = SeizΛS−1,
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where S is a matrix of eigenvectors of L and Λ is the diagonal matrix of corresponding
eigenvalues. Note that in addition to representing the forward evolution operator
for y, the matrix exponential can also be expressed via the Maclaurin series of the
exponential function. In this way, one sees immediately that if Λ is a diagonal matrix
with

Λ =

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · Λn,

⎞
⎟⎟⎟⎠ ,

then eizΛ is also diagonal with

eizΛ =

⎛
⎜⎜⎜⎝

eiλ1z 0 · · · 0
0 eiλ2z · · · 0
...

...
. . .

...
0 0 · · · eiλnz

⎞
⎟⎟⎟⎠ .

Therefore, facts about the eigenvalues of L will tell us about the stability of the
system. In particular, let λ = α+ βi in (2.7). Then

(2.9) eiλz = e(−β+αi)z.

Hence if one of the eigenvalues λ (say, λ1) is real (β = 0), then the component of the
solution in the z1-direction will simply oscillate with respect to z:

(2.10) y(z) = c1e
iα1zz1 + · · · .

In general, it follows from (2.9) that the component will either grow or decay
depending on the sign of β. In particular, if β < 0, the system generically admits a
solution that exponentially grows in z. This instability in the amplitude is what char-
acterizes signal amplification, which is one of the desirable experimental properties we
are seeking. Moreover, if α = 0, then the growth occurs without oscillation—another
desirable property. Therefore, a key area to address is as follows.

Question 1. When does the matrix L have eigenvalues with negative imaginary
part? When does it have a purely imaginary eigenvalue with negative imaginary part?

Note that as the waves propagate down the optical fiber, we allow z to become
arbitrarily large. Hence it may seem strange that exponential growth in z is allowed.
For short distances, the pump waves provide enough energy to the signal and idler
(sideband) waves to allow them to grow exponentially. For longer distances (and
hence larger amplitudes), this process reverses and the sideband waves lose energy
back to the pumps [5], [25].

This behavior can be seen mathematically by noting that the CMEs (1.1a) are
simply the small-amplitude linearization of a more complicated system of the form

(2.11)
dx

dz
= Ax+Bx̄−O(|x|2x).

Note that when x gets large in (2.11), the nonlinear term (which represents the loss
of energy back to the pumps) becomes significant and can balance the linear terms,
thereby arresting the exponential growth (see Figure 2.1). Physical examples of the
case n = 1 are discussed in [24].
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Fig. 2.1 Real part of the solution of x′ = (2+ 20i)x− |x|2x vs. z. Note the amplitude at first grows
(due to the coefficient 2), then asymptotes to a fixed value due to the nonlinear terms.

Though the spectral form of the solution as expressed in (2.7) is easily analyz-
able, recall that there is already another form of the solution given by the IORs (1.1b).
Hence key insight into the problem can be obtained by relating the two representa-
tions. Therefore, another key question we will address is as follows.

Question 2. How are the matrices in the spectral representation (2.8) related to
the transfer matrices in the IORs (1.1b)? How are the eigenvalues of L related to the
singular values (defined below) of L?

We can partially answer Question 2 by combining (1.1b) and its complex conju-
gate. Rewriting in terms of x, we obtain

(
x(z)

x̄(z)

)
=

(
M(z) N(z)
N̄(z) M̄(z)

)(
x(0)

x̄(0)

)
,

eizL =

(
M(z) N(z)
N̄(z) M̄(z)

)
.(2.12)

Noting that the matrix in (2.12) is always invertible with ei(−z)L = (eizL)−1, we have

(
M(z) N(z)
N̄(z) M̄(z)

)(
M(−z) N(−z)
N̄(−z) M̄(−z)

)
=

(
I O
O I

)
,(2.13)

which gives us relations between M and N of positive and negative argument. (I is
the n× n identity matrix.) Moreover, from the laws of quantum mechanics we have
that [7], [24]

MM∗ −NN∗ = I,(2.14a)

MNT −NMT = O.(2.14b)
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Equations (2.14) are true whether or not L depends on z. However, for our special
case where L is independent of z, (2.13) and (2.14) yield the relation in the following
lemma.

Lemma 2.1. Let L be independent of z in (2.4). Then

(2.15) M(−z) = M∗(z), N̄(−z) = −N∗(z) =⇒ N(−z) = −NT (z).

Proof. Exercise 2.3.
Hence the spectral representation provides key restrictions on the forms of the

transfer matrices. In particular, certain forms which violate (2.15) may be ruled out.
We conclude this section by examining another facet of Question 2. We specialize

to the case where B equals the zero matrix O (the n× n matrix whose elements are
all zero). In this case, (1.1a) reduces to a standard system of ODEs, N = O, and
from (1.1) we have that M = ezA. Moreover, from (2.14) we have that MM∗ = I.
Such a matrix is called unitary, which is the generalization of an orthogonal matrix
to the complex case. The fact that M is unitary may also be shown by using the
interpretation of M as a matrix exponential (see Exercise 2.4).

Since M is a unitary matrix, all its eigenvalues have modulus 1 (that is, they lie
on the unit circle in the complex plane). Moreover, the columns of M are orthogonal
[16, section 6.4].

Exercise 2.1. Show that the trace of L is 0. (Hint: What property must the
diagonal entries of a Hermitian matrix have?)

Exercise 2.2. Show that with L as defined in (2.5b), the solution of (2.4) will
always be of the form (2.5a) as long as the initial condition is of the form (2.6).

Exercise 2.3. Prove Lemma 2.1. First use (2.12) to show that either M or N
must be invertible, then use this fact to show that assuming the lemma not to be true
leads to a contradiction.

Exercise 2.4. In the case that B = O, we know that M = ezA from our previous
remarks. Use (2.1) to show that M is unitary in this case.

3. Eigenvalues of L. In this section we derive the following result, which provides
some insight into the answer to Question 1.

Theorem 3.1. The eigenvalues of L come in (perhaps degenerate) quartets:
{λ,−λ̄, λ̄,−λ}.

Theorem 3.1 then guarantees that if L has a complex eigenvalue, then it must
have one with negative imaginary part. As discussed above, this corresponds to the
case where the pump waves provide energy to the sideband waves in such a way as
to force purely exponential growth, guaranteeing signal amplification. The case of a
real eigenvalue produces degeneracy (since λ = λ̄, the set is just two real eigenvalues),
as does a purely imaginary eigenvalue (since λ = −λ̄, the set is just two imaginary
eigenvalues).

We present two proofs of Theorem 3.1. Each proof utilizes different techniques
and illustrates various aspects of the problem.

3.1. Proof by Symplectic Structure. In this section we prove Theorem 3.1 using
only theoretical properties of L and eizL. First, we deduce that eizL is symplectic. A
matrix R ∈ C2n×2n is called symplectic if [21]

RΩRT = Ω, Ω =

(
O I
−I O

)
, I ∈ Cn×n.(3.1)

Symplectic transformations arise naturally in both classical [9, section 9.3] and quan-
tum [18] mechanics.
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Lemma 3.2. eizL is symplectic.
Proof. Exercise 3.2.
Corollary 3.2.1. If λ is an eigenvalue for L, so is −λ.
Proof. Let R be a symplectic matrix, and let μ be an eigenvalue of RT (and hence

R) corresponding to z. Then

Ωz = RΩRTz = μR(Ωz).

Hence μ−1 is an eigenvalue of R. In our case,

R = eizL,

so μ = eiλz for some eigenvalue λ of L. Hence μ−1 = ei(−λ)z and corresponds to a
second eigenvalue −λ of L.

The second part of the proof comes from properties of the determinant of a
partitioned matrix. Let

C =

(
C11 C12

C21 C22

)
.

Then the determinant remains the same if the sign of either the diagonal or off-
diagonal blocks are changed.

Lemma 3.3. detC = detC′ = det(−C′), where

C ′ =
(

I O
O −I

)(
C11 C12

C21 C22

)(
I O
O −I

)
=

(
C11 −C12

−C21 C22

)
.

Proof. Exercise 3.3.
Corollary 3.3.1. If λ is an eigenvalue for L, so is λ̄.
Proof. We wish to consider the following two matrices:

Lλ =

(
J − λI K
−K̄ −J̄ − λI

)
, L′

λ =

(
J − λI −K

K̄ −J̄ − λI

)
.

By Lemma 3.3, detLλ = detL′
λ. Therefore, if λ is an eigenvalue for L (and hence

detLλ = 0), then detL′
λ = 0, so λ is an eigenvalue for

(
J −K
K̄ −J̄

)
=

(
J −KT

K∗ −J̄

)
= L∗.

However, the eigenvalues of L∗ are the complex conjugates of the eigenvalues of λ, so
we have λ = λ̄.

3.2. Proof by Eigenvector Construction. In the previous section we proved
Theorem 3.1 using theoretical properties of matrices. However, from the engineer-
ing perspective it would be useful to have some knowledge of the eigenvectors of L,
since they characterize the modes that will experience signal amplification. Therefore,
in this section we provide a more constructive proof using facts about the eigenvectors
of L. We begin with the following lemma.

Lemma 3.4. Let

(3.2) Lz = λz, z =

(
ya

yb

)
.
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Then

Lz1 = −λ̄z1, z1 =

(
ȳb

ȳa

)
,(3.3a)

L∗
(

ya

−yb

)
= λ

(
ya

−yb

)
.(3.3b)

Proof. We note from the hypothesis that

(3.4) L

(
ya

yb

)
= λ

(
ya

yb

)
=⇒ Jya +Kyb = λya,

−K̄ya − J̄yb = λyb.

To establish (3.3b), we note that

L∗
(

ya

−yb

)
=

(
J∗ −KT

K∗ −JT

)(
ya

−yb

)
=

(
Jya +Kyb

K̄ya + J̄yb

)
=

(
λya

λ(−yb)

)
= λ

(
ya

−yb

)
,

where we have used (2.3) and (3.4). The proof of (3.3a) is left as Exercise 3.4 for the
reader.

Note that the lemma says nothing about how to determine ya and yb. However,
if we did obtain them, the lemma indicates how the resulting eigenvector is related to
other eigenvectors for L and L∗.

Proof of Theorem 3.1. The first two elements of the quartet follow directly from
Lemma 3.4. Moreover, we know that if λ is an eigenvalue for L∗, then λ̄ is an
eigenvalue for L. The last member of the quartet results from applying the first part
of Lemma 3.4 to λ̄.

As discussed above, growth occurs without oscillation if L has a purely imaginary
eigenvalue. This causes purely exponential growth, which represents the strongest
possible transfer of energy from the pump field to the sidebands for eigenvalues with
fixed modulus |λ|. This physically desirable case is related to the degenerate case of
Theorem 3.1, as discussed in section 3.1. The following two corollaries of Theorem 3.1
provide examples of occasions where degeneracies occur.

Corollary 3.1.1. If n is odd, there exist at least two purely real or two purely
imaginary eigenvalues in ± pairs.

Proof. Exercise 3.5.
Corollary 3.1.2. Let ya = αȳb, where α is a complex constant with |α| = 1.

Then L has an imaginary eigenvalue.
Proof. In this case, (3.2) and (3.3a) are equivalent (see Exercise 3.6). Hence

λ = −λ̄ and λ is imaginary.
Note that when we substitute our quartet elements into the spectral decomposi-

tion, we obtain

ei(−λ̄)z = e(iλ) = (eiλz).

Hence the two eigenvalues related directly through Lemma 3.4 correspond to complex
conjugate pairs, as one would expect if L were real. However, conjugate pairs do not
generally occur for arbitrary complex matrices; hence L is of special character.

Exercise 3.1. Verify that the result of Theorem 3.1 is consistent with Exer-
cise 2.1.

Exercise 3.2. Prove Lemma 3.2 by direct substitution using (2.12) and (2.14).
Exercise 3.3. Prove Lemma 3.3.
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Exercise 3.4. Prove the validity of (3.3a).
Exercise 3.5. Prove Corollary 3.1.1.
Exercise 3.6. Show that under the assumptions in Corollary 3.1.2, z and z1 as

defined in Lemma 3.4 are proportional to one another.

4. Decompositions. In order to better address Question 2 (which is done more
fully in section 5), in this section we examine each of the two types of decompositions
in detail.

4.1. The Spectral Decomposition. Recall that, in general, writing C = SΛS−1

has an attractive physical interpretation when computing the matrix-vector product
Cx = SΛS−1x. In particular, S−1x transforms the vector x to the eigenvector basis.
In our case, the eigenvectors consist of modes of the solution in that the action of
C, given by ΛS−1x, consists of dilations and phase rotations along the eigenvectors.
The dilation factors (given by the eigenvalues) illustrate how effectively the energy
is transmitted from the pump field to the sidebands. Finally, the product ΛS−1x
is multiplied by S to transform it back into the original (physical) basis. For more
details, see [15, section 5.4].

It is well known that a real symmetric matrix C has a complete set of orthogonal
eigenvectors, and hence by the spectral decomposition theorem it can be orthogonally
diagonalized [39, section 5.3]:

C = CT =⇒ C = QΛQT , QQT = I.

This is a very convenient property to have, because the orthogonality of the eigen-
vectors simplifies various calculations (in our case, related to the strength of various
modes of the signal).

The complex analogue of this is a matrix which is unitarily diagonalizable, i.e.,
its matrix of eigenvectors forms a unitary matrix:

C = UΛU∗, UU∗ = I.

The most general class of unitarily diagonalizable matrices is that of the normal
matrices, which are defined as those which commute with their complex conjugate
transpose:

(4.1) C∗C = CC∗.

Note that Hermitian matrices are automatically normal (see Exercise 4.1).
Since it is desirable for the matrix L under analysis to be unitarily diagonalizable,

we derive the conditions under which this is true, using the matrices A and B from
(1.1a).

Lemma 4.1. L is normal (and hence can be unitarily diagonalized) if and only if
AB is antisymmetric.

Proof. Using (2.3), we have that

BTAT = B(−A∗)T = −BĀ = −(iK)(iJ) = −KJ̄,
(4.2)

AB = (iJ)(iK) = −JK.

If AB is antisymmetric, then KJ̄ = −JK. The rest of the proof is left as Exer-
cise 4.2.

Clearly the requirement in Lemma 4.1 is very restrictive, and hence in general L
is not normal. Even in that case, L may still be diagonalizable, but not by a unitary
matrix.
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4.2. The Singular Value Decomposition. Since the diagonalizability of L can-
not be guaranteed, physicists often like to work with the transfer matrices on the
right-hand side of (1.1b), expressing them in a singular value (or Schmidt) decompo-
sition, rather than the spectral decomposition. (Every matrix has an SVD.)

The SVD for a matrix M is given by

(4.3) M = UMΣMV ∗
M ,

where UM and VM are unitary matrices, and ΣM is a diagonal matrix. The diagonal
entries σj of ΣM (called the singular values of M) are the nonnegative square roots of
the eigenvalues of M∗M . One can show that M∗M has all nonnegative eigenvalues,
and as such it is an example of a positive semidefinite matrix [39, section 6.5].

The SVD has a similar interpretation to the spectral decomposition when comput-
ing the matrix-vector product Mx = UMΣMV ∗

Mx. In particular, V ∗
Mx transforms the

vector x to a basis where the multiplication by M simply consists of multiplication by
the singular values, which are never negative. Then the resulting product ΣMV ∗

Mx is
multiplied by UM to transform it into yet another basis. Hence the input and output
bases under an SVD are different, which is the additional mathematical complication
caused by relaxing the diagonalizability requirement. However, the change of basis
may have physical relevance in the optical context.

Though the SVD has many useful properties, only a few are relevant to the
discussion here (for more details, see [16, section 6.5] or [40]). In the SVD, the matrix
ΣM is unique because, by convention,

(4.4a) σ1 ≥ σ2 ≥ · · · .

Moreover, the columns of UM and VM are related as follows:

(4.4b) Avj = σjuj , A∗uj = σjvj .

Hence while the matrices UM and VM are not unique, they are severely restricted.
In particular, note that since UM and VM are unitary, each column must be a unit
vector, so if we wish to change one column uj to a new column u′

j , we must also
change vj according to the relation

(4.5) u′
j = eiαuj =⇒ v′

j = eiαvj ,

where α ∈ R.
The quantum mechanical relations (2.14) provide a simplifying relationship be-

tween the SVDs of M and N . First, we have that

(4.6) N = UMΣNV T
M .

Though the proof of this relationship is somewhat involved [4], [24], it can be shown
to be consistent by substitution (see Exercise 4.3).

Note that the spectral decomposition (2.8) has the convenient attribute that all
the z-dependence of the transfer matrix is confined to the diagonal matrix eizΛ. In
contrast, the SVDs in (4.3) and (4.6) generally have z-dependence in all three matrices
[24]. Hence the input and output bases will change with distance, reflecting the
changing properties of the optical fiber.
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We may also obtain a relationship between the singular values of M and N .
Lemma 4.2. Let M and N be transfer matrices with the SVDs given in (4.3) and

(4.6). Then

(4.7) Σ2
M − Σ2

N = I.

Proof. The result follows directly from substituting (4.3) and (4.6) into (2.14a):

(UMΣMV ∗
M )(UMΣMV ∗

M )∗ − (UMΣNV T
M )(UMΣNV T

M )∗ = I,

UMΣ2
MU∗

M − UMΣ2
NU∗

M = UMU∗
M ,

UM (Σ2
M − Σ2

N − I)U∗
M = O.

With this result, we can now begin to relate the two decompositions. In particular,
we may write the SVD of the full 2n-dimensional system (which generates the spectral
decomposition) in terms of the SVDs of the transfer matrices:

Theorem 4.3. eizL can be decomposed as eizL = UΣV ∗, where

U =
1√
2

(
UM UM

ŪM −ŪM

)
, V =

1√
2

(
VM VM

V̄M −V̄M

)
,(4.8a)

Σ =

(
ΣM +ΣN O

O ΣM − ΣN

)
.(4.8b)

Proof. Exercise 4.4.
As written, this decomposition is nearly an SVD. We may verify that U is unitary:

U∗U=
1

2

(
U∗
M −UT

M

U∗
M UT

M

)(
UM UM

−ŪM ŪM

)
=

1

2

(
I + (U∗

MUM ) I − (U∗
MUM )

I − (U∗
MUM ) I + (U∗

MUM )

)
=I,

where we have used the fact that UM and VM are unitary. (This explains the intro-
duction of the

√
2 terms in (4.8a).) A similar computation holds for V . From (4.7)

we note that Σ may also be written as

(4.9) Σ =

(
ΣM +ΣN O

O (ΣM +ΣN )−1

)
,

which reinforces the fact that all the diagonal entries in Σ are positive.
So why is this decomposition not an SVD? Under the formal definition of an SVD,

the singular values must be ordered as in (4.4a). As written in (4.9), the smallest entry
of Σ is σn+1 = σ−1

1 , since σ1 is the sum of the largest entries of ΣM and ΣN by (4.4a).
However, this ordering violates (4.4a). For our purposes, the ordering is unimportant,
so we may analyze this decomposition as if it were a true SVD. Moreover, it can be
shown (see Exercise 4.5) that the entries of Σ, U , and V may be permuted so that we
obtain an authentic SVD.

We conclude with a final result about the SVD that we shall use in later sections.
Lemma 4.4. K has an SVD of the form K = UKΣKUT

K , where UK is unitary.
Proof. From (4.4b) we have that

(4.10) Kvj = σjuj , K∗uj = σjvj ,

where uj and vj are the columns of UK and VK , the unitary matrices in the SVD of
K. Taking the complex conjugate of the last equation, we obtain

KT ūj = σ̄j v̄j ,

Kūj = σj v̄j ,(4.11)
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where we have used the facts that K is symmetric and σj is real. Therefore, by our
discussion after (4.4), we see that ūj = eiβvj . Then, making the substitution in (4.5),
we have

ū′
j = eiαūj = e−iαeiβvj =

ei(β−α)

eiα
v′
j .

Hence by choosing α = β/2, we have that ū′
j = v′

j . This makes (4.11) consistent

with the first equation in (4.10). Hence (now dropping the primes), VK = ŪK and
K = UKΣK(ŪK)∗ = UKΣKUT

K .
Since the SVD is not unique, the choice in Lemma 4.4 is only one of many pos-

sible, but it is the most convenient form for our work in section 6, where we will
answer Question 1 regarding the eigenvalues of the specific case of two-mode isotropic
propagation.

Exercise 4.1. Prove that Hermitian matrices are normal.
Exercise 4.2. Complete the proof of Lemma 4.1 by computing both sides of (4.1)

for L.
Exercise 4.3. Verify that (4.6) satisfies (2.14b). (Hint: Diagonal matrices

always commute.)
Exercise 4.4. Prove Theorem 4.3 by direct substitution.
Exercise 4.5. Denote the jth column of U (as defined in (4.8a)) by uj. Show

that if we define

U ′ = (u1,u2, . . . ,un,u2n,u2n−1, . . . ,un+1)

and permute Σ and V (as defined in (4.8a)) similarly, then

eizL = U ′Σ′(V ′)∗

is an SVD with proper ordering.

5. Relating the Decompositions. Now we turn our attention to answering Ques-
tion 2. Unfortunately, we must answer it mostly in the negative; that is, beyond The-
orem 4.3, explicit relationships occur in very limited special cases. There is, however,
one general relationship that does hold.

Proposition 5.1. Let C be a general diagonalizable matrix with SVD C = UΣV ∗

and spectral decomposition C = SΛS−1. Then

|detC| = |detΣ| = |detΛ|.
Proof. Exercise 5.1.
Recall that for our purposes, C = eizL, which is related to the transfer matrices

M and N through (2.12).
Beyond this general result, the key issue is symmetry: If C = C∗, then its eigen-

vectors are orthogonal, implying that S−1 = S∗. So in this case, S is unitary and
C = SΛS∗. However, the SVD and the spectral decomposition are not the same in
this case, as described in Proposition 5.2 below. Note that a skew-Hermitian ma-
trix C has C = −C∗ and is the complex generalization of an antisymmetric matrix.
Hence its eigenvalues are pure imaginary [16, section 6.4]. Recall that pure imaginary
eigenvalues correspond to exponential growth and maximal transfer of energy from
the pump field to the sidebands.

Proposition 5.2. If C is Hermitian or skew-Hermitian, then σj = |λj | for some
appropriate ordering of eigenvalues. If C is also positive semidefinite, then σj = λj .
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Proof. If C is Hermitian, the entries of Σ are the nonnegative square roots of
the eigenvalues of CC∗ = C2. So σ =

√
λC2 =

√
λ2
C = |λ|. If C is also positive

semidefinite, λ ≥ 0, so |λ| = λ. Similarly, if C is skew-Hermitian, then C∗C = −C2,
so σ =

√
λ−C2 =

√−λ2
C = |λ|.

But if C is not real symmetric or Hermitian, no general results beyond Proposi-
tion 5.1 seem possible. For instance, consider the case where

U1 =

(
0 1
1 0

)
, V1 =

(
1 0
0 −1

)
, Σ =

(
1 0
0 2

)
.

Then

C1 = U1ΣV
∗
1 =

(
0 −2
1 0

)
,

but also C1 = S1Λ1S
−1
1 , where

S1 =

( √
2i

√
2i

−1 1

)
, S−1

1 =
−i

2
√
2

(
1 −√

2i

1
√
2i

)
, Λ1 =

( −√
2i 0

0
√
2i

)
.

For this C1, the elements of Σ and Λ1 are unique (up to order), so clearly the elements
of these two matrices do not have the same modulus, are not all real, and seem related
only in that they have the same product (the same determinant).

In the above example, C was not symmetric. However, the same problem in
relating the eigenvalues and singular values occurs if C is complex and symmetric,
but not Hermitian (see Exercise 5.2).

Exercise 5.1. Prove Proposition 5.1.
Exercise 5.2. Construct a complex symmetric (but non-Hermitian) matrix C.

Compute its spectral and singular value decompositions, and show that the related
matrices do not share any particular characteristics those in Proposition 5.1.

6. Two-Mode Case, Isotropic Propagation. In order to answer Question 1 more
explicitly in the case of an actual experimental system, we specialize to the case of
two-mode interaction. This substantially simplifies the problem and allows explicit
computations.

First, we consider the case of linear, uncoupled wave propagation (e.g., two po-
larization components in a nonbirefringent fiber, or many frequency components in
a nondispersive fiber) [14], [23], [26], [27]. In that case, all the components of the
signal amplitude as and idler amplitude ai experience the same type of propagation.
Mathematically, this may be expressed as

(6.1)
d

dz

(
as
āi

)
= iL

(
as
āi

)
, L =

(
δI K
−K̄ −δI

)
.

Here the δI term models the isotropic propagation, and K models the interaction
among the pump field and the sidebands (as and ai). Note that (6.1) is in exactly
the same form as (2.4) and (2.5b) with J = δI, and so the results from the previous
sections hold.

In order to determine the strength of signal amplification in this system, we must
examine the eigenvalues. Recalling that A and B are the coefficient matrices from
the CMEs (1.1a), we begin by considering a much more general case.

Lemma 6.1. Let AB be symmetric, and let uK be a column of UK (the matrix
in the SVD of K). Then the following hold:
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1. uK is an eigenvector for J .
2. There exist constants β, λL such that

(6.2) L

(
βuK

ūK

)
= λL

(
βuK

ūK

)
.

Proof. First, define

(6.3) wK = JuK .

Recall from Lemma 4.4 thatKūK = σKuK . Using this fact, we compute the following
quantities:

(JK)ūK = J(σKuK) = σKJuK = σKwK ,

(KJ̄)ūK = K(J̄ūK) = Kw̄K .

By analogy with the proof of Lemma 4.1, these two quantities are equal if AB is
symmetric. Hence w̄K must be proportional to ūK , as long as all the singular values
are distinct. (The statement is also true for the indistinct case, but the proof is beyond
the scope of this article.) Defining the constant of proportionality as λ̄J , we have

w̄K = λ̄J ūK =⇒ JuK = λJuK ,

where we have used (6.3). Hence item 1 is proved. Performing the multiplication in
(6.2), we obtain

L

(
βuK

ūK

)
=

(
J K

−K̄ −J̄

)(
βuK

ūK

)
=

(
(βλJ + σK)uK

−βK̄uK − λJ ūK

)
,

but K̄uK = (KūK) = (σKuK) = σK ūK , since σK is real. Continuing to simplify, we
have

L

(
βuK

ūK

)
=

(
(λJ + σK/β)(βuK)
−(βσK + λJ )ūK

)
.(6.4)

Therefore, our theorem is true if and only if

λL = λJ +
σK

β
= −(βσK + λJ ),

σKβ2 + 2λJβ + σK = 0,

β =
−2λJ ±√

4λ2
J − 4σ2

K

2σK
=

−λJ ±√
λ2
J − σ2

K

σK
,(6.5a)

λL = ∓
√
λ2
J − σ2

K .(6.5b)

In this case, more general than (6.1), the eigenvalues of L will be either purely
real or purely imaginary. Equation (6.5b) exhibits a competition between the action
of J , represented by the eigenvalues λJ , and that of K, represented by its singular
values σK . Whereas the isotropic propagation induced by J encourages the signal
to rotate its polarization with no transfer of energy, the impact of the pump fields is
contained in K. If sufficiently strong (σK > λJ), this influence forces the eigenvalues
onto the imaginary axis, implying instability and therefore signal growth.
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Remarks.
1. Note that in contrast to Lemma 4.1, which is true if AB is antisymmetric,

Lemma 6.1 is true if AB is symmetric.
2. Recall that UK is n× n. Hence the fact that there are two choices for β and

λL for each of the n uK vectors produces a full set of 2n eigenvalues and
eigenvectors for L.

3. Since UK is unitary, the vectors uK are orthogonal. Hence, denoting the ith
column of UK by uK,i, we have the following:

(
βiuK,i

ūK,i

)∗(
βjuK,j

ūK,j

)
= 0, i �= j.

Thus the eigenvector of L constructed from uK,i will be orthogonal to the
2(n − 1) eigenvectors of L constructed from uK,j . It will not be orthogonal
only to the second eigenvector of L constructed from the same uK . Hence
calculating the underlying modes is simpler, since the matrix is “nearly uni-
tary.”

Now we consider the specific system (6.1). First, we note from (6.2) that both
signal and idler have the same basis vectors u. We can calculate the eigenvalues
directly.

Corollary 6.1.1. The eigenvalues and eigenvectors of the system (6.1) are
given by (6.5) with

β =
−δ ±√

δ2 − σ2
K

σK
, λL = ∓

√
δ2 − σ2

K .

Proof. As discussed previously, AB being symmetric is equivalent to JK =
KJ̄ . With J = δI, this is clearly the case. The remainder of the proof is left as
Exercise 6.1.

The case where K is real is quite similar, with eigenvalues replacing singular
values.

Lemma 6.2. Let K be real in the definition of L in (2.5b), AB be symmetric,
and KzK = λKzK . Then the following hold.

1. Both λK and zK are real, and the eigenvectors are orthogonal.
2. There exist constants β, λL such that

(6.6) L

(
βzK
zK

)
= λL

(
βzK
zK

)
.

Proof. Since K is now real and symmetric, it has real eigenvalues and a full set
of real orthonormal eigenvectors, so item 1 is proved. Since K is real, we have from
the proof of Lemma 4.4 that JK = KJ . Hence they have the same eigenvectors [39,
p. 321, Ex. 44], so JzK = λJzK for λJ not necessarily equal to λK . The rest of the
proof is left as Exercise 6.2; the values in question are

β =
−λJ ±√

λ2
J − λ2

K

λK
, λL = ∓

√
λ2
J − λ2

K .

Corollary 6.2.1. If K is real, the eigenvalues and eigenvectors of the system
(6.1) are given by (6.6) with

β =
−δ ±√

δ2 − λ2
K

λK
, λL = ∓

√
δ2 − λ2

K .
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Proof. The result follows trivially from Lemma 6.2 and Corollary 6.1.1.
We use the same sort of technique to derive the factorization in (4.8) in a different

way.
Lemma 6.3. Let M and N be transfer matrices with MvM = σMuM for some

σM ≥ 0. (So σM is the singular value and uM and vM are columns of the matrices
UM , VM in (4.3).) Then

(6.7) eizL
(
vM

v̄M

)
= (σM + σN )

(
uM

ūM

)
, eizL

(
vM

−v̄M

)
= (σM − σN )

(
uM

−ūM

)
.

Proof. With the definition of N as in (4.6), we see that VN = V̄M . Hence (4.4b)
becomes

N v̄M = σNuM .

The remainder of the proof is left as Exercise 6.3.
With this result, we may derive the previous SVD for eizL.
Corollary 6.3.1.

eizL = UΣV ∗,

where the component matrices are defined in (4.8).
Proof. V is made up of 2n columns v, each of which must satisfy eizLv = σu

from (4.4b). But n of those columns are given by the first equality in (6.7), and the
remainder are given by the second equality. Hence

V ∝
(

VM VM

V̄M −V̄M

)
,

where the 2−1/2 factor in (4.8a) assures the proper normalization. Note that the
minus sign in front of the final entry assures that V is unitary. The corresponding U
is described by

U ∝
(

UM UM

ŪM −ŪM

)
,

where the normalization factors and negative sign play the same role. The corre-
sponding entries of Σ are σM + σN for the first N columns and σM − σN for the
second n columns. Once one recalls from (4.7) that σM − σN = (σM + σN )−1, the
result is proved.

Exercise 6.1. Complete the proof of Corollary 6.1.1.
Exercise 6.2. Complete the proof of Lemma 6.2.
Exercise 6.3. Complete the proof of Lemma 6.3 by performing the multiplica-

tions.
The next section considers a slightly different configuration, where the details of

the pump matrix K are made more explicit.

7. Two-Mode Case, Nonisotropic Propagation. We next consider one particu-
lar case of nonisotropic propagation, namely,

(7.1)
d

dz

(
as
āi

)
= i

(
δP K
−K̄ −δP

)(
as
āi

)
, P =

(
1 0
0 −1

)
,
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so L ∈ C4×4. Note that in this case, one of the two modes of both as and ai is coupled
directly to itself (p11 = 1), while the other is coupled negatively (p22 = −1). (This
type of coupling is representative of birefringence [14], [23], [26], [27].)

In this case we can establish conditions under which signal amplification occurs
by determining when the eigenvalues of L are either real or imaginary, again with an
eye to determining when the amplification from the pump waves is maximized. By
proving the following theorem about the eigenvectors, the desired result follows as a
corollary.

Theorem 7.1. Let L be defined as in (7.1). Then L2 has one eigenvector of the
form

(
z

e1

)
, z, e1 ∈ C2.

Proof.

L2 =

(
δP K
−K̄ −δP

)(
δP K
−K̄ −δP

)
=

(
δ2P 2 −KK̄ δ(PK −KP )
δ(PK̄ − K̄P ) δ2P 2 − K̄K

)
.

P 2 = I, so the lower-right entry is Hermitian. Hence we define

(7.2) H = δ2I − K̄K.

We also note that

PK −KP =

(
1 0
0 −1

)(
k11 k12
k12 k22

)
−
(

k11 k12
k12 k22

)(
1 0
0 −1

)

=

(
k11 k12
−k12 −k22

)
−
(

k11 −k12
k12 −k22

)
=

(
0 2k12

−2k12 0

)
,

HT = δ2I −KTK∗ = δ2I −KK̄,

PK̄ − K̄P = (P̄K −KP̄ ) = (PK −KP ) =

(
0 2k̄12

−2k̄12 0

)
,

so we rewrite L2 as

L2 =

⎛
⎜⎜⎝

HT 2δk12

(
0 1
−1 0

)

2δk̄12

(
0 1
−1 0

)
H

⎞
⎟⎟⎠ .

Without loss of generality, for algebraic simplicity we redefine our eigenvector zL2 for
L2 as

zL2 =

⎛
⎜⎜⎝

z1
z2

2δk̄12
0

⎞
⎟⎟⎠ .

We now compute each row of L2zL2 = λzL2 , starting with the third row,

2δk̄12z2 + 2δk̄12h11 = λ(2δk̄12),

z2 = λ− h11,(7.3a)
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which gives us z2 in terms of λ. Moving to the fourth row, we obtain

−2δk̄12z1 + 2δk̄12h21 = 0,

z1 = h21,(7.3b)

which gives us z1. Using our results from (7.3) in the first row, we have

h11z1 + h21z2 = λz1,

h11h21 + h21(λ− h11) = λh21,

as required. Using our results from (7.3) in the second row yields

h12z1 + h22z2 − 2δk12(2δk̄12) = λz2,

h12h21 + h22(λ− h11)− 4δ2|k12|2 = λ(λ− h11),(7.4)

which is a quadratic with at least one root λ, and generically has two roots.
It can be shown that Theorem 7.1 still holds true if one replaces e1 by e2 (see

Exercise 7.1). This is how the other two eigenvectors are obtained.
Now we have the foundation to prove the following result about the eigenvalues.
Corollary 7.1.1. Let L be defined as in (7.1). Then L has all real and imagi-

nary eigenvalues if and only if

(7.5) d ≡ (h11 − h22)
2 + 4|h12|2 − 16δ2|k12|2 ≥ 0.

Proof. If (7.5) is satisfied, then L2 has real eigenvalues (see Exercise 7.2). Since
λL2 = λ2

L, we have that at least one (but generally two) eigenvalues of L must be
either real or imaginary. But by the quartet structure, that forces all of them to be
either real or imaginary, since n = 2.

Note that the proof provides only a condition on L which will lead to either no
signal amplification (real eigenvalues) or pure signal amplification (imaginary eigen-
values). Further analysis of L2 is then needed to determine which case is exhibited.

We conclude by examining one final case of physical interest. In degenerate FWM,
a strong pump drives weak signal and idler sidebands (see the left-hand diagram in
Figure 1.1). In this case, the coupling term K modeling the interaction between pump
and sidebands is of the form [26]

K =

(
αp2x pxpy
pxpy αp2y

)
,(7.6)

where px and py are (possibly complex) coupling coefficients in the x- and y-directions
(orthogonal to propagation) and α is a real constant. In this case, we have

H =

(
δ2 − |px|2(α2|px|2 + |py|2) −αp̄xpy(|px|2 + |py|2)
−αpxp̄y(|px|2 + |py|2) δ2 − |py|2(|px|2 + α2|py|2)

)
,

(7.7)
d = α2(|px|2 + |py|2)2

[
α2(|px|2 − |py|2)2 + 4|px|2|py|2

]− 16δ2|px|2|py|2.
Note that the form of the matrix K as defined in (7.6) is not guaranteed to be

diagonalizable.
Proposition 7.2. Let K take the form indicated in (7.6). Then K is diagonal-

izable and nontrivial if and only if the complex pump amplitudes px and py satisfy

pxpy �= ±1

2
iα(p2x − p2y).
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Proof. Suppose that the condition is not satisfied. Then solving for the eigenvalue
gives

λ =
1

2
α(p2x + p2y),

yielding

K − λI =
1

2
α(p2x − p2y)

(
1 ±i
±i −1

)
.

This matrix has nondegenerate eigenvectors (1,±i)T unless α = 0 or px = ±py. Since
both of these cases imply the trivial matrix K = O, the condition is sufficient. The
proof in the other direction is left as Exercise 7.4.

Exercise 7.1. Show that Theorem 7.1 holds true if e1 is replaced by e2.
Exercise 7.2. Show that if (7.5) is satisfied, L2 has real eigenvalues.
Exercise 7.3. Verify the calculations in (7.7).
Exercise 7.4. Complete the proof of Proposition 7.2.

8. Conclusions. We have analyzed two complementary descriptions of linearly
coupled envelope equations representing optical fields interacting through the optical
Kerr nonlinearity present in optical fiber. The two descriptions are the differential
system (2.4) obtained by linearizing the coupled nonlinear Schrödinger equations for
resonantly interacting fields, referred to as the coupled-mode equations (CMEs), and
the algebraic system (1.1b) obtained by solving the differential system, referred to as
the input-output relations (IORs).

The CMEs are characterized by the matrix L in (2.5b). It was shown that the
desirable characteristic of signal amplification was related to whether L had eigen-
values with negative imaginary part. This formed one of the key questions of this
tutorial. L was shown to have a spectrum consisting of quartets {λ, λ̄,−λ,−λ̄} of
eigenvalues. This has the immediate consequence that an odd number of interacting
(complex) modes will exhibit at least two purely imaginary or purely real eigenvalues,
implying either a pure linear growth instability (desirable for signal amplification) or
pure oscillatory dynamics, respectively.

The IORs are characterized by the matrix eizL, which was shown to be symplec-
tic. This allowed the identification of a simple singular value decomposition for the
matrix and an alternative proof of the eigenvalue quartets. A second key goal was
to draw any relationships between the spectral decomposition and the singular value
decomposition for the system. We found only a few rudimentary results, but nothing
with wide application. In fact, we found several counterexamples that illustrated that
without key symmetry conditions, there are no simple relationships between them.

As a specific application of our results, we considered two particular two-mode
cases. In both cases, the signal and idler modes interact only because of the pump-
induced fiber nonlinearity. In the undepleted-pump approximation, this coupling is
linear in the signal and idler (sideband) amplitudes. In the isotropic (nonbirefringent)
case, the sideband polarization components have the same wavenumber, so the cou-
pling term is δI. In this case (and, more generally, whenever AB is symmetric), the
eigenvalues and eigenvectors of L can be constructed entirely from the singular vectors
of the symmetric submatrix K. The eigenvalues are either real or purely imaginary,
which again correspond to pure linear growth or oscillations.

In the nonisotropic (birefringent) case, the polarization components have different
wavenumbers. If one transforms out the average wavenumber, the differences that
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remain produce the δP term. In this case the eigenvalues can be shown to be real or
pure imaginary if a certain criterion involving the matrix entries is satisfied.

Although the discussion here has focused on the application of (1.1a) to modeling
parametric interactions in optical fiber, it is important to note that it arises in other
areas. For instance, it arises in other optical contexts such as amplification, signal
processing, and storage in engineered photonic structures. Outside the field of optics,
a phase-conjugated term can be found in nonlinear evolution equations for Faraday
oscillations in fluids [34] and for driven ferromagnets [6]. More broadly, nonnormal
and non-self-adjoint operators are of interest in a wide variety of applications [42].
In each of these cases, a detailed understanding of the spectral properties considered
here is critical to gaining physical insight into the problem.
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