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Abstract Intermediate-band solar cells using quantum dot arrays (QDAs) are theoretically predicted to signif-
icantly increase the efficiency with which solar energy can be harvested. In the limit of identical quantum dots,
the wavefunction for electrons in a QDA will be fully delocalized. Fully delocalized wavefunctions have been
theoretically shown to reduce thermal losses and consequently increase photovoltaic device efficiency. However,
even small nonuniformities can cause electrons to localize in a single quantum dot, negating any advantages from
delocalized states. In this work a modified Schrödinger equation is used to model a two-dot array with nonuniform
quantum dots and solved using perturbation methods. This result is extended to N -dot arrays, and several metrics
are constructed to characterize the degree of delocalization. Our results, which compare favorably with numerical
simulations, show explicitly how the amount of delocalization depends on key design parameters.

Keywords Photovoltaics · Quantum dot array · Schrödinger equation · Tunnelling ·
Wavefunction delocalization

1 Introduction

Intermediate-band solar cells (IBSCs) are theoretically predicted to improve the efficiency of photovoltaic devices
because they allow a wider portion of the solar spectrum to be harvested [1–3]. The leading material for fabricat-
ing intermediate bands is densely packed, vertically aligned arrays of self-assembled InAs quantum dots (QDs)
embedded in a GaAs host [4,5]. Present theoretical studies are based on the assumption that the quantum dot
arrays (QDAs) are fabricated from identical quantum dots, leading to the formation of delocalized wavefunctions
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192 D. A. Edwards et al.

through coherent tunneling between the individual quantum dots. These delocalized wavefunctions are believed to
suppress phonon-mediated relaxation (e.g., loss of energy to heat) and therefore enhance device performance [5–8].
In practice, however, QDs are never identical. Although the period of the array can be well controlled, realistic
arrays always have an inhomogeneous distribution of the potential energy levels in the QDs [9]. By analogy with
Anderson localization theory [10], the nonuniformity of energy levels causes the wavefunctions to localize, negating
any advantages derived from the delocalized wavefunctions.

In this work, we create a detailed model for a two-dot array bounded by both infinite- and finite-height potential
barriers. The standard Schrödinger equation is modified to take into account that the effective mass of the electron
is different in the dot and energy barrier [11]. The model includes several metrics that can be used to measure
the amount of delocalization present in an array. We solve the model analytically using perturbation methods in
the small parameter δ, which represents the inherent variability in the QD potential levels. We provide analytical
solutions to indicate how the amount of delocalization depends not only on δ, but also on the key parameter G, the
width of the barriers between QDs (which has an experimental lower bound due to strain concerns [9]).

Once we have established results for a two-dot array, we then postulate a simple relationship to extend these
results to arrays of general size. Our results compare favorably with the numerical simulations in [11]. The explicit
parameter dependence provided by the analytical solution can provide guidance to experimentalists about the sen-
sitivity of delocalization to various fabrication factors. Moreover, the analytical solution provides a means to avoid
computationally intensive numerical modeling of delocalization in developing new device designs.

2 Governing equations

The profile of the QDA is shown in Fig. 1. An InAs QD (shaded) is grown on GaAs (white). After growing to the
desired height, the dot is capped off with more GaAs before the next dot in the array is grown. Here z̃ is the direction
pointing toward the top of the solar cell (and hence the light). We consider a one-dimensional problem along the
z̃-axis, assuming that variations in the other directions are negligible. This is also justified by the fact that the gap
between dots is narrowest (and hence the potential for tunneling greatest) along the z̃-axis.

For simplicity, at first we consider a simple two-dot array, as shown in Fig. 2. Though shaded to match Fig. 1,
note that in Fig. 2, z̃ has been rotated and the origin has been shifted. The GaAs provides the internal barriers, while
the InAs QDs provide the potential wells. Due to the differing band structure of InAs and GaAs, the electron will
have a different effective mass m̃(z̃) in each region:

InAs quantum 
dot

GaAs 
substrate

Fig. 1 Fabrication of quantum dot array

InAs 
quantum 

dot

InAs 
quantum 

dot GaAs 
substrate

Fig. 2 Dimensional-variable description of potential in two-
dot array with infinite side walls. Note the placement of the
origin and that G̃ is the half-width of the step
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Wavefunction delocalization in quantum dot arrays 193

Table 1 Parameter values
from the literature

Parameter Value Reference

2G̃ (nm) 2–15 [18]
H̃ (meV) 850 [11]
mb (kg) 6.10 × 10−32 [11] (calculated)
mw (kg) 2 × 10−32 [11] (calculated)
W (nm) 6.5 [11]
ΔH̃ (meV) 56.5 [11], designated as σ0

m̃(z̃) =
{

mw G̃ < |z̃| < W + G̃,
mb |z̃| < G̃,

(2.1)

where the subscript “b” stands for “barrier” and the subscript “w” stands for “well.” The effective mass is less than
the true electron mass (Table 1). In particular, mw is only 2.2% of the true electron mass of 9.11 × 10−31 kg [12,
inside cover], while mb is only 6.7% of the actual mass.

Given that the mass is now a function of z̃, the appropriate one-dimensional Schrödinger equation is given by
[13]

− h̄2

2

d

dz̃

(
1

m̃(z̃)

du

dz̃

)
+ Ṽ (z̃)u(z̃) = Ẽu(z̃), (2.2)

where u is the wavefunction, Ẽ the energy level, and Ṽ (z̃) the potential.
Because delocalized states are formed by coherent tunneling, the formation of delocalized wavefunctions would

be much easier if the half-width G̃ were very small. Unfortunately, there is an experimental lower bound on G̃.
The InAs QDs assemble because InAs has a different lattice spacing than GaAs. Relatively thick GaAs layers or
strain-relief layers are required to avoid the accumulation of strain, which could lead to the formation of crystal
defects that degrade device performance [9]. These considerations are particularly acute when one considers that
the arrays must contain approximately 50 QDs to absorb enough photons [9].

QDAs are formed by the sequential deposition of QD layers. The QDs in each layer self-assemble to minimize
strain and surface energy related to the mismatch in lattice constants between the deposited InAs and the GaAs
surface on which the InAs is deposited. QDs in subsequent layers align because of strain propagation through the
GaAs barrier that separates each layer. The thickness 2G̃ of the barrier can be precisely controlled with existing
growth methods. Although there can be minor fluctuations in the height W of the QDs, the primary inhomogeneity
in QDAs arises from the random diffusion of InAs during the self-assembly process and the random degree of
alloying with the surrounding GaAs after the QD is capped. These effects lead to a fluctuation in the depth H of
the confining potential. Fluctuations in the confining potential, lateral size of the QDs, or the height W of the QDs,
result in fluctuations in the energy of discrete states confined within the QDs. The fluctuation in the depth of the
confining potential dominates, so we capture all of these fluctuations with the potential displacement variableΔH̃ ,
as shown in Fig. 2.

Because the energy levels can be measured experimentally, we take the measured energy levels of an ensemble
of real QDs and calculate the corresponding range of ΔH̃ required to create an ensemble of square wells having a
realistic distribution of energy levels. We can then model realistic arrays as a series of simple square wells of width
W with each dot having a different ΔH̃ .

For simplicity of description, in this section we take the external barriers to be infinite. Hence we may model the
potential as follows:

Ṽ (z̃) =

⎧⎪⎪⎨
⎪⎪⎩

0 −(W + G̃) < z̃ < −G̃,
H̃ |z̃| < G̃,
−ΔH̃ G̃ < z̃ < W + G̃,
∞ else,

(2.3)

as shown in Fig. 2.
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194 D. A. Edwards et al.

The piecewise nature of the potential and effective mass poses the question of what conditions to impose at the
interface. From a mathematical perspective, the wavefunction u should be continuous at any interface:

u(z̃−
i ) = u(z̃+

i ), (2.4a)

where z̃i is the position of any interface. To find the appropriate derivative condition, we integrate (2.2) across the
interface to obtain

1

m̃(z̃−
i )

du

dz
(z̃−

i ) = 1

m̃(z̃+
i )

du

dz
(z̃+

i ), (2.4b)

where we have used (2.4a). To understand the physical interpretation of these conditions, we rewrite (2.4) as

z̃−
i u(z̃−

i ) = z̃+
i u(z̃+

i ),
1

m̃(z̃−
i )

[
−i h̄

du

dz
(z̃−

i )

]
= 1

m̃(z̃+
i )

[
−i h̄

du

dz
(z̃+

i )

]
. (2.5)

The first condition states that the position operator is continuous across any interface. Keeping in mind that the
momentum operator is given by

− i h̄
d

dz
, (2.6)

we see that the second expression in (2.5) implies that the velocity operator is continuous across any interface. For
more details about these operators, see [14, §4.3], [15, Chap. 2], [16, §8.2].

We now introduce scalings to produce a simplified dimensionless problem. As the solution in the dots will be
trigonometric (to be shown below), the appropriate scaling for the length is one that puts a dot of width W on a
scaled length of width π :

zc = W

π
, z = z̃

zc
, G = G̃

zc
. (2.7)

For the energy scale, we use the lowest energy level for a single well of width W , as given by [15, eq. (2.13b)]:

Ec = h̄2π2

2mwW 2 , (2.8a)

which we will verify later. Hence we introduce the following scalings for the energy variables:

Ṽ = V Ec, Ẽ = E Ec, H̃ = H Ec, ΔH̃ = δEc. (2.8b)

Here δ, which will be small, models the relative size of the potential well variance as compared to the characteristic
one-well energy level. The limit δ = 0 corresponds to the case of perfectly uniform fabrication whose solution is
symmetric and, hence, fully delocalized.

Substituting (2.7) and (2.8) into (2.1)–(2.3), we have

d

dz

(
1

m(z)

du

dz

)
+ [E − V (z)]u = 0, (2.9)

V (z) =

⎧⎪⎪⎨
⎪⎪⎩

0 −(π + G) < z < −G,
H |z| < G,
−δ G < z < G + π,

∞ else,

(2.10a)

m(z) =
{

1 G < |z| < G + π,

M ≡ mb/mw |z| < G.
(2.10b)

The dimensionless version is illustrated in Fig. 3. As shown in Table 2, G and H are O(1),M > 1, and δ is small.
Hence we will use δ as the small parameter in the forthcoming perturbation analysis.
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Wavefunction delocalization in quantum dot arrays 195

Fig. 3 Dimensionless-
variable description of
double-well potential with
infinite side walls. Note the
placement of the origin and
that G is the half-width of
the step InAs 

quantum 
dot

InAs 
quantum 

dot GaAs 
substrate

Table 2 Calculated
parameter values

Parameter Value Note

Ec (meV) 405
G 4.83 × 10−1–3.62 Extreme values from Table 1
G 2.42 Corresponds to 10-nm-wide barrier
G 7.25 × 10−1 Corresponds to 3-nm-wide barrier
H 2.10
M 1.75
zc (nm) 2.07
δ 1.40 × 10−1

We now derive the boundary conditions on the problem. At the interface with the infinite-height external barriers,
we have

u(±(π + G)) = 0. (2.11)

The conditions at the other interfaces may be found by substituting our scalings into (2.4):

u(−G−) = u(−G+), u(G−) = u(G+), (2.12a)
du

dz
(−G+) = M

du

dz
(−G−), du

dz
(G−) = M

du

dz
(G+). (2.12b)

Equation (2.12b) indicates that at the dot/barrier interface, the derivative in the barrier must always be M times the
derivative in the dot.

To simplify the algebra, we exploit the piecewise nature of the problem and write

d2u

dz2 + B(z)u = 0, B(z) =

⎧⎪⎪⎨
⎪⎪⎩

E −(π + G) < z < −G,
−M(H − E) |z| < G,
E + δ G < z < G + π,

∞ else.

(2.13)

Solving (2.13) in the dots subject to (2.11), we obtain

ul = Sl sin λl (z + π + G) , λl = √
E, (2.14a)

ur = Sr sin λr (π + G − z) , λr = √
E + δ, (2.14b)

where the subscripts “l” and “r” stand for “left” and “right.” We have written ur in a slightly nonstandard form that
clarifies the near-symmetry of u under the transformation z �→ −z (which has exact symmetry when δ = 0).

We are most interested in the degree of localization of the wavefunction u to one dot or the other. This can be
characterized by the following ratio:

r =
∣∣∣∣ Sr

Sl

∣∣∣∣ . (2.15)

Delocalized states have r close to 1. In fact, since with δ = 0 the problem is totally symmetric, we expect that
r(δ = 0) = 1, as consistent with the preceding discussion.
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196 D. A. Edwards et al.

Satisfying the continuity of u at z = ±G as given by (2.12a), we have

ul = (−Sm + Cm) sin λl (z + π + G) sin λrπ,

um =
(

Sm
sinh αz

sinh αG
+ Cm

cosh αz

cosh αG

)
sin λlπ sin λrπ, α = √

M(H − E), (2.16)

ur = (Sm + Cm) sin λlπ sin λr(π + G − z).

Here the subscript “m” stands for “middle.” Given the values in Tables 1 and 2, we infer that H > E and hence α
is real.

Then enforcing (2.12b), we obtain

slSm − clCm = 0, sr Sm + crCm = 0, (2.17)

sl = Mλl cos λlπ + α coth αG sin λlπ, (2.18a)

cl = Mλl cos λlπ + α tanh αG sin λlπ. (2.18b)

Here sr and cr are of the same form as cl and sl, but with the subscript on all terms changed from “l” to “r.”
Equation (2.17) has a nontrivial solution if and only if slcr + srcl = 0, which yields the eigenvalue problem in its
full form:

αM(coth αG + tanh αG)(λr cos λrπ sin λlπ + λl cos λlπ sin λrπ)

+ 2M2λlλr cos λlπ cos λrπ + 2α2 sin λlπ sin λrπ = 0. (2.19)

If (2.19) has a nontrivial solution, then the two equations in (2.17) are redundant. Hence we may solve the first
equation for Sm in terms of Cm and use the result in (2.15) to obtain

r =
∣∣∣∣ (sl + cl) sin λlπ

(sl − cl) sin λrπ

∣∣∣∣ . (2.20)

3 Asymptotic limits

To better understand the localization of the wavefunction in the generic case, we first examine several asymptotic
limits.

3.1 Localized limits

Large H . In the limit H → ∞, α → ∞ while M remains finite. Thus the leading order of (2.19) is

2α2 sin λlπ sin λrπ = 0. (3.1)

Equation (3.1) has two classes of solutions. The first has sin λlπ = 0, which yields an infinite set of solutions
(namely, the positive integers). However, by (2.14a) we see that higher values of λl correspond to larger values
of E . These higher energy solutions correspond to excited states confined within individual QDs. Charges confined
in high-energy states rapidly relax to the lowest energy (ground) state, and it is the degree of delocalization of these
ground states that is relevant to QD-based photovoltaics.

Consequently, we take λl = 1. Then by (2.16) we have that um = ur = 0, so the wavefunction is localized in the
left dot, and hence r = 0. This value of λl corresponds to the theorized infinite-well value of E = 1, as expected
since the wavefunction is confined to one dot.

The other solution of (3.1) under consideration is λr = 1, in which case ul = um = 0, so the wavefunction is
localized in the right dot, and hence r = ∞. This case is shown in Fig. 4a. Physically, the large potential barrier
keeps the wavefunction confined to one dot.
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(a) (b)

Fig. 4 Schematic of wavefunction localized in right dot when a H → ∞ and b M → 0

Fig. 5 Schematic of wavefunction localized in right dot when
M → ∞

Fig. 6 Schematic of wavefunction delocalized when α → 0

Small M . In the limit M → 0, M vanishes faster than α, so the leading order of (2.19) is still given by (3.1).
Hence we once again have the wavefunction isolated in one dot or the other, as shown in Fig. 4b. Physically, when
the effective mass tends to zero in the barrier, the momentum operator must also tend to zero to keep the velocity
operator O(1) to match with the finite velocity operator in the dot. This forces um = 0 in the barrier, just as in the
infinite-potential case. Hence the wavefunction is again confined to one dot.

Large M . In the limit M → ∞,M diverges faster than α, so the leading order of (2.19) is

2M2λlλr cos λlπ cos λrπ = 0. (3.2)

One solution of (3.2) is given by λr = 1/2. Then from (2.16) we have that

dur

dz
(G) = −1

2
(Sm + Cm) sin λlπ cos

π

2
= 0, (3.3)

and hence the derivative of the wavefunction is zero at the interface (Fig. 5).
Next we examine the behavior in the barrier. When M → ∞, then α → ∞, and the leading order of (2.13) is

um = 0. Thus there must be a boundary layer near the interface (Fig. 5). In the boundary layer, dum/dz = O(M1/2),
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198 D. A. Edwards et al.

which can be seen from (2.13) or (2.16). Hence (2.12b) becomes

dur

dz
(G+) = O(M−1/2) → 0, (3.4)

consistent with (3.3). Could such a boundary layer exist near z = −G+? No, because it would force λl = 1/2,
which violates (2.14b) since δ �= 0. In particular, we see that with λl �= 1/2, sl = cl in the limit M → ∞ [from
(2.18)], which means that Sl = Cl [from (2.17)], and hence ul ≡ 0 [from (2.16)]. This is consistent with the fact
that with no boundary layer in the barrier, ul must satisfy the following conditions:

ul(−G−) = dul

dz
(−G−) = 0. (3.5)

Thus the wavefunction is localized in the right dot. If instead λl = 1/2, then the wavefunction is localized in the
left dot and the diagram is the mirror image of Fig. 5.

Physically, since the effective mass is large in the barrier, the velocity operator will vanish there. Since the effec-
tive mass is finite in the dot, the momentum operator (2.6) must vanish on the dot side of the interface to enforce
continuity of the velocity operator. Hence dum/dz must vanish there.

Note that the preceding three asymptotic limits all resulted in the wavefunction’s being localized to a single dot.
Now we consider two limits that result in the wavefunction’s being delocalized.

3.2 Delocalized limits

Small α. If H → E+, then α → 0 while M remains finite. Hence (2.13) becomes

d2um

dz2 = 0,

which causes the boundary conditions in (2.12b) to become

dul

dz
(−G−) = dur

dz
(G+).

Moreover, since the slope of um (and hence the momentum flux) is constant in the barrier, from a physical perspec-
tive for all practical purposes the barrier is not there. (This is consistent with our choice of limit H → E+, which
means that the barrier provides no resistance to the wavefunction.) Hence the wavefunction is delocalized (Fig. 6).

δ = 0. When δ = 0, the problem is symmetric by (2.13). Hence ul = ±ur. This limit does not affect um, so the
wavefunction will decay in the barrier as governed by the other parameters (Fig. 7).

4 General discussion of asymptotic analysis

To achieve wavefunction delocalization, experimentalists must keep r near 1 even in the case where δ �= 0. To see
why that is so difficult, note from (2.18) that

sl − cl = εl, εl = 2α sin λlπ

sinh 2αG
. (4.1)

Substituting (4.1) into (2.20), we obtain

r =
∣∣∣∣ (2cl + εl) sin λlπ

εl sin λrπ

∣∣∣∣ . (4.2)

But εl is extremely small for even moderate αG. Hence by (4.2) we have that r → ∞, which corresponds to a
highly localized wavefunction.
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Fig. 7 Schematic of symmetric wavefunction delocalized
when dots are symmetric

LHS of (2.19)

E

Fig. 8 Plot of left-hand side of (2.19) versus E using the
parameters in Table 2. Intersections with the horizontal axis
are allowable energy levels

To demonstrate this, we plot the left-hand side of (2.19) in Fig. 8 for the parameters in Table 2. Note that there
are two values of E bunched close together, as predicted physically for weakly coupled dots with a small potential
difference between them. In particular, the allowable energy levels are

E< = 4.21 × 10−1, E> = 5.53 × 10−1. (4.3)

For the lower value of E , we have εl = 1.44 × 10−4, which is small, as theorized. (The localization is similarly
strong for the higher energy value, as shown subsequently.)

For generic H and M , localization of the wavefunction occurs when εl = o(cl) [when by (4.2) r → ∞]. Unfor-
tunately, this case is the current experimental state of the art. If we substitute the parameters in Table 2 and the
lower value of the energy level in (4.3) into (2.18b), we have cl = 1.1290, which is much larger than the value of
εl given previously. Hence it is no surprise that when we substitute the values of cl and εl into (4.2), we obtain

r< = 1.97 × 104, (4.4a)

which corresponds to the wavefunction’s being localized in the right dot. Using the larger value of E leads to the
wavefunction’s being localized in the left dot because we have

r> = 7.42 × 10−5. (4.4b)

The preceding idea shows that if εl = O(cl), then we will have some level of delocalization. To track the tran-
sition between the delocalized case r = 1 and the localized case where r = 0 or r = ∞, we must consider this
intermediate case. As discussed previously, we choose δ as the perturbation parameter for our analysis. As can be
seen from (2.14b), in the limit δ → 0, λl → λr. Hence to leading order we drop subscripts if the variables have
them and use a subscript zero if they do not:

λ· = λ+ λ·,1δ + o(δ), α = α0 + α1δ + o(δ), (4.5)

where the dot refers to “l” or “r.” Note that, though there is an explicit δ-dependence in λr, λl also depends on δ
implicitly through E .

We must next relate εl to δ. The difference between sl and cl is largely dictated by the difference between coth αG
and tanh αG. But even for moderate αG we have

coth αG ∼ 1 + 2e−2αG, tanh αG ∼ 1 − 2e−2αG, (4.6a)

so we let

ε = 2e−2α0G . (4.6b)

Taking ε → 0 implies that G → ∞, yielding the limiting case of isolated wells from the standard theory. Then
we relate ε to δ by letting
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ε = ε0δ, ε0 = O(1). (4.7)

Using these definitions, we have the following expression for sl, to leading two orders:

sl = Mλ cos λπ+α0 sin λπ+δ {
M

[
λl,1 cos λπ − λλl,1π sin λπ

]+(α0ε0+α1) sin λπ+α0λl,1π cos λπ
}
. (4.8)

Since the case of interest has cl = O(εl), we must have that sl = O(ε) = O(δ). This forces the leading-order term
of (4.8) to be zero, giving a relationship between λ and α0:

λ cot λπ = −α0

M
. (4.9)

We also note from (2.16) that

α0 =
√

M(H − λ2). (4.10)

Hence upon substituting (4.10) into (4.9), we have a single equation that can be solved for E .

5 Next-order correction, infinite-height barriers

Since we have zeroed out the leading order of sl using (4.9), we obtain

sl = δ(al + α0ε0 sin λπ), (5.1a)

al = (α1 − Mλλl,1π) sin λπ + (M + α0π)λl,1 cos λπ. (5.1b)

Given the fact that sr is the same as sl with a change of subscript, we have

sr = δ(ar + α0ε0 sin λπ), (5.2)

where we have used the fact that the leading order of both s terms is the same, and we have defined ar similar to al.
Expanding the c terms in a similar matter, we have from (2.18) that the only difference is the change from coth

to tanh, which from (4.6) just means that −ε0 replaces ε0. Hence when (4.9) is satisfied, the leading order still
vanishes and we have

cl = δ(al − α0ε0 sin λπ), cr = δ(ar − α0ε0 sin λπ).

With these definitions, (2.20) becomes

r = |r∗|, r∗ = al

α0ε0 sin λπ
, (5.3)

where we have used the fact that to leading order, λl = λr. In the limit that ε0 → ∞ (δ = o(ε)), we get r = 1 con-
sistent with the δ = 0 case discussed in Sect. 3. If, instead, ε0 → 0 (ε = o(δ)), then r → ∞, and the wavefunction
is localized.

Now satisfying the determinant condition (2.19), we have

2alar − 2α2
0ε

2
0 sin2 λπ = 0

and hence
ar

al
r2∗ − 1 = 0. (5.4)

This expression depends on both λr,1 and λl,1, so we relate them by noting that

λr,1 = λl,1 + 1

2λ
. (5.5)

Substituting (5.5) into (5.1b) adapted for ar, we obtain the following relationship between ar and al:

ar = al

(
1 − b

r∗

)
, (5.6a)

b = 1

2ε0

(
M + α0π

Mλ2 + Mπ

α0

)
, (5.6b)
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where we have used (4.9). Substituting (5.6a) into (5.4) yields a simple quadratic equation for r∗:

r2∗ − br∗ − 1 = 0, (5.7a)

and hence

r∗ = b ± √
b2 + 4

2
. (5.7b)

Here there are two solutions, corresponding to the two different eigenvalues (energy levels) and wavefunction
delocalizations. Since we could easily switch the roles of the left and right dots, the two values of r should be
reciprocals of one another. This is confirmed by (5.7a), which indicates that the product of the two solutions for r∗
is −1.

Substituting the parameters in Table 2 into (4.9) yields

E = 5.53 × 10−1, (5.8)

which is simply E> from (4.3). This can be seen by noting that the second equations in (2.14) may be rewritten as

E> = λ2
l , E< = λ2

r − δ. (5.9)

Hence when δ = 0, the two energy levels converge on the higher level. The lower potential energy in the perturbed
well (modeled with δ > 0) then allows a lower energy level to be obtained. We may also calculate ε = 1.14×10−4,
which is small, consistent with the results in Sect. 4. Calculating the r values, we substitute the relevant parameters
into (5.7b) to obtain

r< = 1.30 × 104, r> = 7.5 × 10−5. (5.10)

These values (especially r<) are not as close to the values in (4.4) as one might expect. The discrepancy can be
explained by noting that our approximate theory uses the assumption that ε0 = O(1), while for the actual parameters
we have ε0 = 8.14 × 10−4.

6 Bounds in infinite-height case

Given that the current state of experiments leads to undesirably localized wavefunctions, we use the perturbation
theory to provide guidance as to how physical parameters can be changed to ensure delocalization. Therefore, we
write the parameters in the full problem in terms of r∗, the delocalization parameter. Solving (5.7a) for b, we have

b = r2∗ − 1

r∗
. (6.1)

We substitute this result into (5.6b) and solve for δ. Then we use (2.8b) to rewrite our expression in terms of the
true experimental tolerance ΔH̃ , yielding

ΔH̃ = 4Ece−2α0G
(

r2∗ − 1

r∗

) [
α0 Mλ2

π(α2
0 + λ2 M2)+ α0 M

]
, (6.2)

where we have used (4.6b) and (4.7).
We examine each factor in turn. By (2.8a) we have that Ec, the characteristic energy level, depends only on

the material properties of the dot. The parenthetical term depends only on the bound we set. The remaining terms
depend on the whole system through the eigenvalue λ. Obviously the most critical dependence is on the exponential
term, which is the only term that depends on G.

Figure 9 shows a graph of (6.2) using (5.8) and various values of G. [Recall that (5.8) is independent of G since
G is used only to determine the size of ε0.] The left endpoint corresponds to a peak in the second well equal to
60 % of that in the first. With a typical value of 10 nm for the barrier (middle line), ΔH̃ would have to be less than
0.01 meV to achieve this bound. With the thinnest barrier (3 nm) currently available, a tolerance of only around 10
to 20 meV is required. Hence, as discussed previously, the solution is highly sensitive to the value of G.
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Though we have derived a relationship for a two-dot system, realistic QDAs may have 50 dots or more. For
simplicity, we focus on the case where r < 1. In the two-dot system, the amplitude in one dot is roughly r times
the amplitude in the other. Now consider an N -dot array where ψ is at its maximum in dot j . (Figure 10 shows a
schematic where N = 5 and j = 3.) If we examine the dots in pairwise fashion, it is reasonable to assume that the
amplitude in one dot would be r times smaller than the amplitude in its nearest neighbor. Extending this result, we
have that
amplitude in dot j ± i

amplitude in dot j
= r i . (6.3)

We consider a wavefunction to be delocalized if it is “spread out” over several dots, which is equivalent to its
amplitude being “large enough” in those dots. Formally, we define the delocalization probability cutoff p such that
if the probability ratio in a certain dot exceeds p, we say that the wavefunction is delocalized to that dot. Hence the
wavefunction with a maximum at dot j is delocalized to dot j ± i if

r2i ≥ p, (6.4a)

where the 2 in the exponent comes from the fact that we are analyzing the probability amplitude, which is the square
of the wavefunction amplitude. Note from (5.7b) that if r < 1, then r∗ < 0, and hence the critical value of r∗ in
(6.4a) is

r∗ = −p1/2i . (6.4b)

Given a cutoff p, we then define the delocalization length n. Here n is defined as the number of dots over which
the wavefunction is delocalized. To calculate n, note that if the wavefunction’s maximum is far enough from the
boundaries, the amplitude decay is symmetric and n = 2i +1, where i is the largest integer satisfying (6.4a). Hence
we define

ro = −p1/(n−1) (6.5a)

as the value of r∗ needed to guarantee that at least one wavefunction has delocalization length n. Here the subscript
“o” stands for “one.”

Fig. 9 Plot of experimental tolerance (6.2) versus r = |r∗|.
In increasing order of thickness: minimum value of G from
Table 2, G corresponding to a 10-nm barrier, maximum value
of G from Table 2

Fig. 10 Schematic of five-dot system with peak in dot 3. The
ratio is squared since we are considering the probability ampli-
tude
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(a) (b)

Fig. 11 Schematics of five-dot system with peaks in dot 4 (a) and 1 (b). The ratio is squared since we are considering the probability
amplitude

Fig. 12 Plot of
one-wave-delocalized
bound (6.6a) (dashed lines)
and all-waves-delocalized
bound (6.6b) (solid lines)
versus p for n = 10. In
increasing order of
thickness: minimum value
of G from Table 2, G
corresponding to a 10-nm
barrier, maximum value of
G from Table 2

However, the wavefunction may also have its maximum near the boundary, as shown in Fig. 11. The worst-case
scenario is shown in Fig. 11b. When the peak adjoins a boundary, the entire delocalization must happen at one side,
so n = i + 1, where i is the largest integer satisfying (6.4a). Hence we define

ra = −p1/(2n−2) (6.5b)

as the value of r∗ needed to guarantee that all wavefunctions have delocalization length n. Here the subscript “a”
stands for “all.” Note that |ra| < |ro| because it is the bound for the more restrictive case.

Substituting (6.5) into (6.2) yields corresponding bounds on ΔH̃ :

ΔH̃o = 4Ece−2α0G

[
1 − p2/(n−1)

p1/(n−1)

] [
α0 Mλ2

π(α2
0 + λ2 M2)+ α0 M

]
, (6.6a)

ΔH̃a = ΔH̃o

[
p1/(2n−2)

1 + p1/(n−1)

]
. (6.6b)

As expected, ΔH̃a < ΔH̃o because it is the bound for the more restrictive case.
Figure 12 shows a graph of (6.6) using (5.8) and various values of G. Using ΔH̃o relaxes the bound by a factor

of approximately 2.5 relative toΔH̃a. The graph for each G is relatively flat since p values in this range correspond
to a much smaller range of r∗. In particular, the graph has

0.01 ≤ p ≤ 0.5 �⇒ −0.93 ≤ ro ≤ −0.60, −0.96 ≤ ra ≤ −0.77.
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With n = 10, the range of p in Fig. 12 corresponds exactly to the range in r in Fig. 9. The difference in concavity
between the two figures is due to the nonlinear scaling now used for the horizontal axis.

Figure 12 illustrates the limitations of current fabrication technology. The left endpoint corresponds to a 1%
probability that an electron wavefunction is delocalized over a 10-dot array. With a typical value of 10 nm for the
barrier (middle line),ΔH̃ would have to be less than 0.01 meV. (Contrast that with the current tolerance of 56.5 meV
stated in Table 1.) Fortunately, with the thinnest barrier (3 nm) currently available, a tolerance of only around 10 to
20 meV is required. Due to this high sensitivity to G, if barriers even slightly thinner than 3 nm can be constructed
while handling the concomitant strain issues, delocalization is possible with current experimental tolerances inΔH̃ .

We next compare our analytical results with numerical simulations. In [11], a series of N dots was constructed
with potentials normally distributed with mean zero and standard deviationΔH̃ as given in Table 1. Then the first N
wavefunctions (each one having a peak in a different dot) were computed, along with their delocalization lengths.
The delocalization length was computed by measuring the distance at which the threshold value p was reached and
dividing by the length of the dot. Hence the computed values of n were decimals and could be less than 1 (Fig. 14).
The average of each of those N lengths was then computed to produce 〈n〉, the average delocalization length of
the array. This numerical experiment was repeated over many realizations, and the average of all those realizations
was reported in the manuscript.

How then to compute 〈n〉 in our circumstance? Consider the five-dot case diagrammed in Figs. 10 and 11, and
assume that r4 = p. Then the wavefunction in Fig. 10 would have n = 5, the wavefunction in Fig. 11a (and its
mirror image) would have n = 4, and the wavefunction in Fig. 11b (and its mirror image) would have n = 3. Hence
in this case 〈n〉 = 19/5.

Generalizing this result, each wavefunction has n = 2i + 1 unless that width impinges on a boundary. As the
peak approaches the boundary, there will be two wavefunctions (one on the left, one on the right) where the last dot
over which it would be delocalized extends outside the boundary. These two dots would have n = 2i = (2i +1)−1.
Similarly, there will be two with n = (2i + 1) − 2, n = (2i + 1) − 3, etc., until finally, when dot j adjoins the
boundary, those two dots will have n = i + 1 = (2i + 1)− i . Hence we have

〈n〉 = 2i + 1 − 1

N
[2(1)+ 2(2)+ · · · + 2(i)] = 2i + 1 − i(i + 1)

N
, 1 ≤ i ≤ N . (6.7)

Note that letting i = 2, N = 5 in (6.7) yields 〈n〉 = 19/5, consistent with the preceding discussion. If i = 0, then
〈n〉 = 1 (each wavefunction confined to its own dot). Also, as N → ∞, the edge effects become negligible, and
the average quickly approaches the two-sided value.

The derivation of (6.7) implicitly assumed some wavefunctions could be delocalized to their full extent, in other
words, that 2i + 1 ≤ N . However, even in the case where 2i + 1 > N , the formula still holds. That is because the
same overlap calculation applies, but now every wavefunction has an overlap, and some may have overlap on both
sides. But the counting works out the same, and (6.7) still holds.

Again considering the five-dot case as an example, let us assume that r6 = p, so i = 3. In that case, the wave-
function in Fig. 11b (and its mirror image) would have n = 4. The remaining wavefunctions would be delocalized
over the whole array, so they would have n = 5. Hence 〈n〉 = 23/5, which is exactly the result one obtains by
substituting i = 3, N = 5 into (6.7). Moreover, we note that if i = N , then 〈n〉 = N (each wavefunction delocalized
over the whole array). This is also the case if i > N , so we have

〈n〉 = N , i > N . (6.8)

Therefore, to compare our analytical solutions to the numerical results in [11], we first write the corresponding
form of (6.2) for general i (which for the purposes of the plot we treat as a continuous variable):

ΔH̃ = 4Ece−2α0G
(

1 − p1/ i

p1/2i

) [
α0 Mλ2

π(α2
0 + λ2 M2)+ α0 M

]
. (6.9)

Then we simply plot (6.9) on the x-axis and (6.7) on the y-axis, as shown in Fig. 13. There is reasonable agreement
between theory and experiment, even in the unphysical case of infinite side walls.
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In general, for moderate values of 〈n〉 the analytical solutions provide more conservative predictions than
the numerical simulations. This can be explained by noting that while the analytical solution assumes that
every well is offset by ΔH̃ , the numerical simulations have a range of potential levels whose standard devi-
ation is ΔH̃ . Hence most of the dots would have smaller offsets, which would then increase delocaliza-
tion.

For small values of 〈n〉 the numerical solutions are more conservative. This is more pronounced in Fig. 14. In
this graph, ΔH̃ and p are fixed, and 〈n〉 is plotted as a function of the barrier width 2G̃. Note that with the change
in scale, we are now focusing on small values of 〈n〉, which is where the analytical results were overestimates in
Fig. 13.

In such a regime, the delocalization length is going to be highly sensitive to the particular values of ΔH̃ in
the few dots over which the delocalization occurs. Hence a large value of ΔH̃ , randomly selected, can shut down
delocalization entirely. Recall also that due to the way 〈n〉 is calculated in [11], these will contribute values smaller
than 1 to the average, hence reducing it beyond what the analytical results will allow.

7 Finite barriers

A true experimental system will have finite barriers as |z| → ∞. To model such a case, we adapt the previous
problem as shown in Fig. 15. To point out relationships with the infinite-height case, we begin by taking the external
barriers to be of arbitrary (but equal) height H±. The true solar cell has H± = H .

Since (2.11) is now replaced by continuity conditions that match the wells to the external barriers, the expressions
in (2.14) must become more general. To preserve the interpretation of S as an amplitude so that we may continue
to use the interpretation of r in (2.15), we generalize the infinite-barrier solutions through an arbitrary phase
shift φ:

ul = Sl sin λl (z + π + G + φl) , (7.1a)

ur = Sr sin λr (π + G + φr − z) . (7.1b)

As in Sect. 2, the solution to (2.13) in the outer barriers will be an exponential. As in (2.12a), the function values
at z = ±(G + π) must be continuous. Hence we have

Fig. 13 Lines Plot of (6.7) versus (6.9) for N = 50. Points
Results from computations in [11]. Here the x-axis isΔH nor-
malized by the higher value of ΔH̃ given in Table 1

Fig. 14 Lines Plot of (6.7) versus. barrier width for the infi-
nite-barrier case. Points Results from computations in [11].
Note the numerical values with 〈n〉 < 1
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u− = Sl sin λlφl exp (α±(z + π + G)) , α± = √
M(H± − E), (7.2a)

u+ = Sr sin λrφr exp (α±(π + G − z)) , (7.2b)

where u± holds as z → ±∞. As in Sect. 2, we choose these forms to illustrate clearly the symmetry of the problem.
Similar to (2.12b), at the interfaces z = ±(G + π) the derivative of the wavefunction in the GaAs must be M

times the derivative of the wavefunction in the dot. Satisfying these conditions, we obtain

tan λlφl = λl M

α±
, tan λrφr = λr M

α±
. (7.3)

Equations (7.3) then define the phase shifts φ in terms of the other parameters in the problem. In the case of an
infinite wall, H± → ∞, so α± → ∞ and the right-hand side of (7.3) becomes zero, which forces the φ to 0 as in
Sect. 2.

With (7.1) replacing (2.14), the rest of the analysis holds once we insert the phase. In particular, r becomes

r =
∣∣∣∣ (sl + cl) sin λl(π + φl)

(sl − cl) sin λr(π + φr)

∣∣∣∣ , (7.4)

which replaces (2.20). Moreover, sl and cl become

sl = Mλl cos λl(π + φl)+ α coth αG sin λl(π + φl), (7.5a)

cl = Mλl cos λl(π + φl)+ α tanh αG sin λl(π + φl). (7.5b)

Hence the eigenvalue condition (2.19) becomes

αM(coth αG + tanh αG) [λr cos λr(π + φr) sin λl(π + φl)+ λl cos λl(π + φl) sin λr(π + φr)]

+ 2M2λlλr cos λl(π + φl) cos λr(π + φr)+ 2α2 sin λl(π + φl) sin λr(π + φr) = 0. (7.6)

As indicated previously, in a real solar cell, α± = α. In Fig. 16, we demonstrate the effect of finite-height side
walls on our solution. In particular, we plot the left-hand side of (7.6) versus E . The thickest line shows the true
solution in the solar cell, which yields the energy levels

E< = 2.09 × 10−1, E> = 3.40 × 10−1, (7.7)

which are shifted significantly from the infinite-height case in (4.3). We then show the effect of increasing the
side-wall height upon our solutions. Note that when α± = 27α (the thinnest line), we are nearly in the case where
α± = ∞ in Sect. 4, as shown in Fig. 8.

Fig. 15 Dimensionless-variable description of potential in
two-dot array with finite side walls

LHS of (7.6)

Fig. 16 Plot of left-hand side of (7.6) versus E using
the parameters in Table 2. In decreasing order of
thickness: α± = α, 3α, 9α, 27α
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Though the energy levels have shifted, the wavefunctions remain highly localized. Using the lower value of the
energy level in (7.7) in (7.5), we have

sl = 1.6868 × 10−1, cl = 1.6867 × 10−1, (7.8)

which force r to be large from (7.4):

r< = 6.40 × 104, (7.9a)

which corresponds to the wavefunctions being localized in the right dot. Similarly, using the higher energy value
yields

r> = 3.49 × 10−5, (7.9b)

which corresponds to the wavefunctions being localized in the left dot. In fact, the localization is even more
pronounced in the finite-barrier case.

Due to the symmetry in the exterior walls, in the limit δ → 0, φl = φr. Therefore, we write

φ· = φ + φ·,1δ + o(δ). (7.10)

Hence the asymptotic analysis in Sect. 4 holds once we introduce the phase, so (4.9) becomes

λ cot λ(π + φ) = −α0

M
. (7.11)

Moreover, the leading order of (7.3) may be rewritten as

λ cot(λφ) = α0

M
. (7.12)

Continuing to simplify using (7.11), we obtain

λφ = π(1 − λ)

2
. (7.13)

Note that substituting (7.13) into (7.11) yields an equation that, along with our definitions of λ and α0, can be solved
for E . Equation (7.13) could allow us to rewrite the solution in terms of λφ rather than λ(π +φ). To better illustrate
the phase as a displacement from the infinite-barrier case, we leave our results in their current form.

Continuing the analysis as in Sect. 5, we have that (5.3) becomes

r∗ = al

α0ε0 sin λ(π + φ)
, (7.14)

where the definition of al is more complicated than (5.1b) due to the perturbation of the phase itself:

al = {α1 − Mλ[λl,1(π + φ)+ λφl,1]} sin λ(π + φ)+ {
Mλl,1 + α0[λl,1(π + φ)+ λφl,1]

}
cos λ(π + φ). (7.15)

Continuing our analysis requires relating φr,1 to φl,1. The relevant expression may be obtained by expanding (7.3)
for small δ:

(λr,1 − λl,1)φ + λ(φr,1 − φl,1) = c

2λ
, c = Mα0

α2
0 + M2λ2

, (7.16)

where we have used (5.5), (7.11), and (7.12). Substituting (7.16) into (7.15) adapted for ar, Eq. (5.7b) still holds,
but (5.6b) is replaced by

b = 1

2ε0

[
M + α0(π + c)

Mλ2 + M(π + c)

α0

]
, (7.17)

where we have used (7.11). Note that the explicit dependence upon φ vanishes, so the solution depends implicitly
on φ through α0 and λ. The reduction to the previous case may be seen by noting that the c term is generated by
the finite barrier and will tend to zero as α± → ∞. In that limit, b in (7.17) reduces to b in (5.6b).

However, in the experimental case under consideration, we may simply substitute the definition of c in (7.16)
into (7.17), yielding

b = 1

2ε0

(
2M + α0π

Mλ2 + Mπ

α0

)
. (7.18)

Since the equation for r∗ is the same as in the previous case, there are only two differences between the finite- and
infinite-barrier models:
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1. M is replaced with 2M in the first term in the definition of b in (7.18).
2. The values of α0 and λ change because of the introduction of φ in the analysis.

Substituting the parameters in Table 2 into (7.11), we obtain

E = 3.40 × 10−1, (7.19)

which is simply E> in (7.7). Hence a negative perturbation on the right well (with δ > 0) returns a lower energy
value, validating that our approach continues to return physically reasonable results. We may also calculate ε =
2.76 × 10−5, which is small, consistent with our results given previously. Calculating the r values, we substitute
the relevant parameters into (5.7b) to obtain

r< = 4.31 × 104, r> = 3 × 10−5. (7.20)

These values (especially r<) are not as close to the values in (7.9) as one might expect. The discrepancy can be
explained by noting that the approximate theory uses the assumption that ε0 = O(1), while for the actual parameters
we have ε0 = 1.97 × 10−4. Note also that as compared with (5.10), there is a higher degree of localization in the
finite-barrier case.

8 Bounds in finite-height case

We conclude by examining the bound in the finite-barrier case. Substituting (6.1) into (7.18), and rewriting in terms
of p, we obtain

ΔH̃ = 4Ece−2α0G
(

1 − p1/ i

p1/2i

) [
α0 Mλ2

π(α2
0 + λ2 M2)+ 2α0 M

]
, (8.1)

where we have used (6.4b). So the only explicit difference between (8.1) and (6.9) is the extra 2 in the denominator
of the bracketed term. Similarly, the definition of ΔH̃o in (6.6a) changes to

ΔH̃o = 4Ece−2α0G

[
1 − p2/(n−1)

p1/(n−1)

] [
α0 Mλ2

π(α2
0 + λ2 M2)+ 2α0 M

]
, (8.2)

but (6.6b) remains the same.
Figure 17 shows a graph of (8.2) and (6.6b) using (7.19) and various values of G. [Recall that (7.19) is inde-

pendent of G since G is used only to determine the size of ε0.] In this case, the presence of the finite-height barrier
means that the bounds are roughly two times smaller. This then forces the tolerance to only approximately 5 to
10 meV with the thinnest barriers available. This more severe bound to enforce delocalization is consistent with the
enhanced localization for the finite-barrier case, as discussed in Sect. 7.

Fig. 17 Plot of (8.2)
(dashed lines) and (6.6b)
(solid lines) versus p for
n = 10. In increasing order
of thickness: minimum
value of G from Table 2, G
corresponding to a 10-nm
barrier, maximum value of
G from Table 2
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The finite analog to Fig. 13 is Fig. 18. Again note that the bounds are tighter in the finite-barrier case, as the
curves have all shifted to the left. In particular, there is a significant gap between the analytical results and the
computational ones for the 10-nm case. Though the analytical results are more conservative, and hence could be
relied upon to guarantee delocalization, the discrepancy is still noteworthy.

As in Sect. 6, the analytical results assume that each well is offset by ΔH̃ . In contrast, the numerical compu-
tations use a normal distribution with standard deviation ΔH̃ ; hence many of the offsets would be smaller. Since
smaller offsets mean less localization, and the localization itself is highly sensitive to the barrier width G, it is
understandable that the analytical results in the 10-nm case would have a larger discrepancy from the numerical
results.

The analogous graph to Fig. 14 is Fig. 19. Note that the curves have again shifted to the left.

9 Conclusions and further research

9.1 Conclusions

Intermediate-band solar cells have piqued the interest of scientists and engineers because of their potential to enable
a larger portion of the solar spectrum to be converted into electricity. QDAs are a promising avenue for fabricating
intermediate bands, but the nonuniformity of presently achievable arrays leads to localized wavefunctions that are
predicted to enhance thermal relaxation rates and therefore degrade device performance.

To quantify the level of uniformity needed to produce the desired level of delocalization, we adapted the standard
Schrödinger equation to a two-dot QDA system where the effective mass of the electron varies. We solved the
resulting equation using perturbation methods, where the zeroth-order state was the perfectly uniform (symmetric)
case. The perturbation parameter δ characterized the variation in potential from dot to dot due to fabrication issues.

We solved the resulting system in the case of both finite- and infinite-height barriers as |z| → ∞. The two cases
are intimately related and in the experimental case are represented by a single change in the expression for b. The
more realistic case of finite-height barriers leads to lower energy levels and higher localization.

By defining the ratio r between wavefunction amplitudes in each dot, we were able to characterize easily the
amount of delocalization. We discovered that in order for there to be a measurable amount of delocalization,
cl = O(εl) – something not achievable in the experimental system under consideration. Given the result for a
two-dot system, we extended our results to N -dot systems with a simple assumption that agrees reasonably well
with more realistic numerical simulations.

Fig. 18 Lines Plot of (6.7) versus (8.1) for N = 50. Points
Results from computations in [11]. Here the x-axis isΔH nor-
malized by the value in Table 1

Fig. 19 Lines Plot of (6.7) versus barrier width for the finite-
barrier case. Points Results from computations in [11]
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The perturbation approach allowed three separate calculations to characterize delocalization, each of which dem-
onstrated explicit parameter dependence, making the results easier to apply than isolated numerical simulations.
First, we constructed a bound in ΔH̃ necessary to achieve a certain value of r , which can be related to p, the
delocalization probability cutoff. As shown in Fig. 17, with the thinnest barriers currently producible, the bound on
ΔH̃ is approximately an order of magnitude smaller than current technology will allow.

Second, we constructed the average delocalization length of the array 〈n〉 as a function of the potential nonunifor-
mityΔH̃ . This calculation provides an estimate for the delocalization length that would occur whenΔH̃ is reduced.
The analytical estimates are conservative compared to the numerical simulations, as the numerical simulations use
a range of values forΔH̃ , while we use a single value. However, the conservative nature of the analytical estimates
is useful from an application point of view.

Because the barrier width 2G can be adjusted experimentally (subject to strain considerations), we also showed
how 〈n〉 varied with G. Here the analytical calculations were slightly less conservative than the numerical simulations
for small 〈n〉, but still more conservative for the experimentally desirable case of large 〈n〉.

The analytical solutions in this work exhibit explicit dependence on the experimental parameters. Hence they
can provide guidance to experimentalists about the sensitivity of delocalization to various fabrication factors. In
particular, the solution is highly sensitive to G, which is related to the barrier width. Hence making G as small as
possible (subject to strain constraints) is paramount to increasing delocalization.

9.2 Further research

The mathematical model in this paper can be further refined to apply to more realistic systems. Due to alloying
between InAs and GaAs, the true shape of the potential well in the QDs is not square. Though the relative effects
should be small, such a system can certainly be handled analytically for realistic choices of the well shape.

A key shortcoming of this simplified model is that δ (and hence p) is assumed the same for each well. This
limitation explains much of the discrepancy in our graphs. Using stochastic analysis, one should be able to model a
system where δ is chosen randomly from a probability distribution, and produce the expected value of 〈n〉 for such
a system. This could be done by replacing (6.4a) with

p =
i∏

j=1

r2
j ,

where each r j is different depending on the value of δ for that well. This new form of p could then be used in the
ΔH̃ equations [such as (6.9)] to generate more realistic results.

Although we have modeled a specific InAs/GaAs material system, there are a variety of other solar cell device
concepts where delocalized wavefunctions in one-, two-, and three-dimensional arrays of QDs would be advan-
tageous for device performance [17]. The approach developed here provides the starting point for mathematical
analysis of delocalization in more complex QDAs.
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