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In certain polymer-penetrant ,systems, nonlinear viscoelastic effects dominate those of 
Fickian diffusion. This behavior is often embodied in a memory integral incorporating 
nonlocal time effects into the dynamics; this integral can be derived from an augmented 
chemical potential. The mathematical framework presented is a moving boundary-value 
problem. The boundary separates the polymer into two distinct states: glassy and rub- 
bery, where different physical processes dominate. The moving boundary condition that 
results is not solvable by similarity solutions, but can be solved by perturbation and 
integral equation techniques. Asymptotic solutions are obtained where sharp fronts move 
with constant speed. The resultant profiles are quite similar to experimental results in a 
dissolving polymer. It is then demonstrated that such a model has a limit on the allow- 
able front speed and a self-regulating mass uptake. 

Introduction 
In the last few years, new uses for polymers and other syn- 

thetic materials have revolutionized entire industries and cre- 
ated new ones, holding out promise for further outstanding 
advances. Polymeric adhesives adhere more while weighing 
less (Martuscelli and Marchetta, 1987; Shimabakuro, 1990; 
Pine, 1993). A “smart” polymer gel implanted in a diabetic 
can respond to high blood glucose levels and automatically 
introduce the needed dose of insulin (Travis, 1993). The use 
of polymer substrates for microlithographic patterning has 
emerged as a major industrial tool in very large-scale integra- 
tion (VLSI) chip etching and elsewhere (Thompson et al., 
1983). Polymer films are finding wide use in protective cloth- 
ing, equipment, and sealants (Vrentas et al., 1975). 

In many instances the exact physical mechanisms involved 
are still not understood. It is geFerclly agreed that the stan- 
dard Fickian flux i= - D(C)VC, where D ( d )  is the 
second-order diffusion tensor and k is penetrant concentra- 
tion, is not general enough to model the unusual phenomena 
these new materials exhibit. For instance, unless pathological 
conditions are met, a Fickian front always propagates with 
speed proportional to ?-ID. However, in so-called “case I1 
diffusion” in polymers, sharp concentration fronts often move 
with constant speed (Frisch et al., 1969; Tarche, 1991; Thomas 
and Windle, 1982). However, there is usually no discontinuity 
in d at the phase transition as can be found in other more 
standard chemical systems (Crank, 1984). 
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There is a growing consensus that in these systems, some 
sort of viscoelastic stress plays a major role, sharing domi- 
nance with or robbing control from standard Fickian diffu- 
sion. The type of polymers we model are characterized by 
two distinct phases: glasq and rubbeiy. In the glassy state, 
the polymer has a finite relaxation time associated with the 
length of the polymer in relation to the entanglement net- 
work. This nonlocal effect is related to the “memory”of the 
polymer with respect to its concentration history. In the rub- 
bery state, the polymer swells, making the relaxation time al- 
most instantaneous. Hence, the “memory” of the polymer in 
the rubbery state is very faint (Vieth, 1991). 

By using the ratio of the relaxation times as a dimension- 
less small parameter, we will construct asymptotic results that 
show that the inclusion of memory effects greatly changes the 
character of the solution. In the case of a polymer dissolving 
in the presence of a solvent, a sharp front of width on the 
order of the ratio of the relaxation times develops and moves 
with constant speed. Behind it, there is a region of finite width 
where the polymer changes from glass to rubber as it dis- 
solves. At the end of this region is another sharp front that 
moves initially as t 2  and then with constant speed. At this 
point, the network disentangles and the concentration of the 
solvent increases greatly. These results closely mimic the ex- 
perimental and numerical results of Peppas et al. (1994). Each 
of these behaviors is unobtainable with a standard Fickian 
model. We also derive another unusual result: self-regulating 
mass uptake in the dissolving polymer, where properties of 
the polymer determine the mass uptake in the system, re- 
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gardless of externally imposed boundary conditions. Such re- 
sults mimic those found by Hui et al. (1987a). 

ad _-  - - V - i =  V * [  D ( 6 ) V d ] ,  
a7 

Governing Equations 
There is agreement that the classic Fickian diffusion equa- 

tion 6, = V . ( D ( d ) V 6 )  cannot possibly describe experimental 
observations even when the diffusivity D is a nonlinear func- 
tion of the concentration. This is not surprising when one 
realizes that in addition to molecular diffusion other funda- 
mental physical processes are taking place (often yielding 
changes of phase). 

The chief difficulty in deriving equations of motion is that 
the exact physical processes underlying the behavior of these 
materials are not well understood. Thus, any attempt to de- 
rive equations from the first principles of physics (mechanics, 
thermodynamics, etc.) require postulates or assumptions at 
some level. However, the most important and most com- 
monly mentioned properties of glassy polymers all stem from 
finite mechanical relaxation times resulting from slow re- 
sponse to changing conditions. This observation suggests that 
although the interaction among the fundamental processes is 
not yet known, a global relaxation-type phenomenon can be 
utilized as a physical basis for a model (Frisch, 1980; Losi 
and Knauss, 1992; Paul and Koros, 1976; Thomas and Win- 
dle, 1982; Vieth and Sladek, 1965). 

Our attempt to model this phenomenon is motivated by 
phenomenology and experimentally determinable parame- 
ters. Confidence is high in our model because it works in all 
cases so far (Cohen and White, 1989, 1991; Cox, 1988, 1990; 
Cox and Cohen, 1989; Edwards, 1994, 1995; Edwards and 
Cohen, 1995a,b; Hayes, 1990; Hayes and Cohen, 19921, and 
the mathematical structure used is strongly indicated by ex- 
periments and observations. We feel that if a true derivation 
from first principles (without assumptions) is ever possible, 
application to our problems will yield equations of the same 
form as we are using, and in fact, the few specific applica- 
tions that have been studied are special cases of our theory. 
Our goal is the accurate description of the penetrant concen- 
tration (for either sorption or desorption). While the effects 
of other physical processes on the concentration field are ac- 
counted for, no attempt to track them is made here. 

In relevant notation the classic Fick’s diffusion equation 
comes about as follows. If 6 represents the concentration of 
some diffusing species, and if is, in some sense, the inter- 
nal energy of the system, then a chemical potential pF of the 
diffusing species is defined by 

A gradient of the potential pLF will drive a current Jdefined 
as 

where the diffusivity D ( d )  is given by D(C;>= K(6)&(d) .  
The equation of conservation of mass then becomes 

which is the classical Fickian diffusion equation. 
For our more complicated polymer-penetrant problems, in 

addition to diffusive transport, various phenomena will con- 
tribute to the relaxation processes, which we now recognize 
with explicit dependence. That is, we let 

where 

Here p(6)  is the inverse of the relaxation time, which roughly 
corresponds to the time needed for one part of the polymer 
to respond to changes in neighboring parts, and f(d,di) rep- 
resents the functional dependence on the concentration field 
and its rate of change. Considerable discussion and reasoning 
goes into choosing appropriate forms for p(d)  and f(6;,C,) 
in analogous purely mechanical viscoelastic problems (Chris- 
tensen, 1971; Cohen and White, 1991; Durning, 1985; Flugge, 
1975). Forms appropriate for our problems are discussed in 
detail in Cohen et al. (19951, and a physically realistic intu- 
ition can be applied to choosing functional forms so that the 
models can be used for both descriptive and design purposes. 

now defined by As earlier, the potential /l drives a flux 

Thus, the basic equation of conservation of mass becomes 

where E ( c )  = a,&/&?. 
For theoretical purposes the relaxation behavior inhcrent 

in Eq. 1 has appealing intuitive properties conforming to ex- 
perimental observations. However, for actual analytical and 
numerical use in a given problem it is often preferable to 
note that 6 is the solution of the following equation: 

The simultaneous differential Eqs. 2 and 3 thus replace the 
integrodifferential equation system 1-2. It is shown in Cohen 
and White (1991) that while 6 can be thought of as a physi- 
cal stress in one-dimensional problems, it is actually a non- 
state variable used only as an artifice to simpIify our equa- 
tions. 

This derivation implies the postulation of a generalized flux 
tensor of the form 
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where fl is the region occupied by the polymer, the D,, are 
second-order tensors, the 5, are general differential opera- 
tors on 6 that model the dependency of on different dy- 
namical processes, and the g,, are general nonlinear heredi- 
tary kernels. Each term in the expansion represents a flux 
contribution from a different source, such as molecular diffu- 
sion or viscoelasticity. Simplified versions of Eq. 4 have been 
studied by Cohen and his colleagues (Cohen et al., 1995; Co- 
hen and White, 1989, 1991; Cox, 1988; Cox and Cohen, 1989; 
Edwards, 1994, 1995; Edwards and Cohen, 1995a, b; Hayes, 
1990; Hayes and Cohen, 1992). 

In many polymer-penetrant systems, P(d)  changes greatly 
as the polymer goes from the glassy state to the rubbery state 
(Crank, 1976; Frisch, 1980; Hui et al., 1987a,b; Vieth, 1991). 
However, the differences in P(6) within phases are qualita- 
tively negligible when compared with the differences between 
phases. Hence, we model P(C) by its average in each phase, 
yielding the following functional form: 

where 6. is the conc_entration at which the rubber-glass 
transition occurs and C, is the saturation level for the poly- 
mer. Sub- and superscripts r refer to the rubbery region; sub- 
and superscripts g refer to the glassy region. 

We now let f have a particularly simple form, so Eq. 3 
becomes 

where q and and u are positive constants. More explanation 
of the dependence of stress on d and 6; can be found in 
Knauss and Kenner (1980), Cohen et al. (19951, and Fu and 
Durning (1993). We wish to model the penetration of solute 
imposed at the boundary of an initially dry one-dimensional 
semi-infinite polymer. By using a semiinfinite interval, we are 
able to ignore effects of polymer swelling on the system, which 
complicate the analysis of finite-domain problems (Peppas et 
al., 1994). This penetration will cause the polymer entangle- 
ment network to dissolve. Here d is the concentration of the 
solvent. The polymer is dry initially, and an initial condition 
for 5 is given by Eq. 4: 

We wish to solve Eqs. 2 and 6 subject to Eq. 7. We want to 
incorporate effects of both the glassy and rubbery phases in 
our nondimensionalizations; hence we normalize i by our 
diffusive length scale in the glassy region and i by the relax- 
ation time in the rubbery region, We nondimensionalize con- 
centration by e= and 6 by v c c .  Letting D ( d )  and E ( d )  be 
constants, we have 
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Then Eqs. 2, 6, and 7 reduce to 

(9a) 

(9b) 

Since p(C) is constant on either side of the threshold level 
C = C,, we may combine Eqs. 9 to yield 

where y = uE/D. It can be shown that Eq. 11 also holds for 

Imagine an experiment in which a polymer matrix is ex- 
posed to a infinite well of diluent. Though the concentration 
of the diluent may be 1 at the edge of the polymer matrix, it 
is clear that at the instant that we introduce the polymer into 
the solvent, the Concentration can be no greater than C., 
which is now defined as that concentration at which the en- 
tanglement network dissolves. We would expect that the max- 
imal concentration of the diluent at the boundary will be 
achieved only in the mathematical limit t -+ 00. This motivates 
our boundary condition 

U .  

where r is an O(1) constant. Equation 12 can also be inter- 
preted as a simplification of the surface boundary condition 
given in Hui et al. (1987a). 

Our problem will involve matching the solutions in the two 
regions where P = Pg and P = p,. Thus, it is necessary to 
impose conditions at the moving boundary s ( t )  between the 
two phases. First, it is clear that since C* < 1, our front has 
an initial condition s(0) = 0. In polymer-penetrant systems, 
one does not see a jump in concentration, but rather a sharp 
rise at a moving front (Thomas and Windle, 1982). However, 
the front is still relatively wide when compared with molecu- 
lar length scales, so the continuum model we use is still valid. 
Since there is no jump in concentration, C should be continu- 
ous at the front at the specified transition value C.. In addi- 
tion, we require that the phase transition be complete at this 
point (Alfrey et al., 1966), so we have 
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We also need a condition for the stress at the front. We fol- 
low the work of Knauss and Kenner (1980), where the deriva- 
tive of stress with respect to a state variable has a jump in 
slope at the phase transition, but the actual stress is continu- 
ous: 

Lastly, we need a relationship between the flux J at the 
front and the speed at which the front travels. Edwards (1995) 
has shown that a reasonable condition to impose is 

Edwards and Cohen (1995a) have also shown that the form 
of this equation is motivated by considering a flux condition 
analogous to that in the Stefan problem, where part of the 
flux is used up in the phase transition. Edwards (1995) has 
shown that it follows that 

Further discussion and the derivation of Eq. 15 may be found 
in Edwards (1994, 1995) and Edwards and Cohen (1995a). 

The method of similarity solutions cannot be used to solve 
this moving boundary-value problem, and we need to tackle 
the entire set of partial differential equations in order to get 
results. To get analytical results from which we can track pa- 
rameter dependence, we now wish to solve these equations 
using perturbation methods. 

A Perturbation Approach 
We exploit the fact that Pg & and define E = &/&, 

where 0 < E << 1. In the systems we wish to examine, the 
effects of stress dominate, so we set 7 = q0e-* .  Making these 
substitutions into Eqs. 11 and 9b, we have two sets of equa- 
tions, depending on the region of the polymer: 

K 2  K 2  
u,P + E C T ~  = -CR + Cf, a,' + a' = -C' -+ C:, (17a,b) 

Y Y 

where K~ = voE/&D and a = 1 + y. In addition, Eq. 15 be- 
comes 

and Eq. 9a becomes 

c, = EC, ,  + yEuxx. (19) 

We postulate the following expansions for C and u in E :  

Substituting these expressions and retaining only leading or- 
der terms in Eqs. 16-19, we have 

(22) 

(23) 0 c: = yo,,. 

If there is no boundary layer in the concentration to bal- 
ance the stress term iR Eq. 22, we see that a < 0. Therefore, 
a cannot be considered as directly analogous to a latent heat. 
This result may seem odd at first, but recall that we have now 
defined our total flux to include the gradient of the stress. 
Hence, even though the jump in the concentration flux may 
be positive at the front, the jump in the total flux may not be. 

To solve Eqs. 20-23, we adopt the integral method used by 
Boley (1961). Thus, we introduce new quantities T' and T", 
which extend our equations to the fully semi-infinite region; 
quantities that must satisfy fictitious boundary conditions 
where they are not defined in the true problem. We indicate 
our unknown Dirichlet conditions by the following: 

where the second condition follows from our definition of 
stress. From Eqs. 21b and 23, we have the Neumann bound- 
ary conditions: 

K 2  
(25) T , " ( X , O )  = -C,(x) ,  c , o r ( x , o )  = 0 .  

Y 

We may also solve for the stress at the boundary using Eq. 
21b: 

1-C. 

Y 

We now extend our equations to the entire semi-infinite re- 
gion. Hence, we have 

(29) T"(0, t )  = 1 - (1 - C*)e - r t ,  

The solution of Eqs. 24, 25, 27a, and 29 can be written as 
T" = TCkH( ~f - x ) +  T'", where If(.) is the Heaviside step 
function. Here TCk is the part of the solution arising from 
the boundary condition: 
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where 11(*) is the first modified Bessel function. Tc" is the 
part of the solution arising from the Dirichlet initial condi- 
tion: 

where 

2 = s ( t )  x = nt 

Figure 1. Regions of validity for different outer repre- 
sentations. 

the entanglement network (Alfrey et al., 1966). As the poly- 
mer dissolves, the increase in stress is reduced, which forces 
the front forward. Hence, we expect [a;], to be so negative 
that a < 0. For reasons that will become clear later we wish 
to restrict a to the following range: 

Similarly, the solution of Eqs. 24-27a is T " =  T U k H  ( K t  - 
x )  + T u d ,  where 

(32b) 
(35) - 1 I a I - C.. 

and T U d  is the part of the solution arising from the Neu- 
mann condition: 

Since Eq. 20a is a hyperbolic equation and our initial con- 
dition is Cog ( x ,  0) = C p  ( x ,  0) = 0,  we see that for x > ~t 
the solution is exactly 0, unless there is a boundary layer in 
that region, which our choice of a in Eq. 35 precludes. Hence, 
we expect there to be a discontinuity around the line x = K t .  

For a first guess, we assume that C ( ~ t - , t )  > C,. This means 
that our glass-rubber interface is hidden in a boundary layer 
around x = K t .  However, this leads to an unresolvable con- 
tradiction, and so we conclude that s( t )  < ~ t .  Therefore, we 
will call the line x = K f  the primalyfuont, since it is the first 

where 

(34b) 

Our system is now completely described by Eqs. 31-34. 

Self-Regulating Mass Uptake in a Dissolving Poly- 
mer 

Now we will derive the interesting result that r is deter- 
mined by the material properties of the entanglement net- 
work. Thus, there is actually a selfregulating mass uptake at 
the boundary. We expect that the dominant mechanism by 
which the front moves is the release of stress accumulated in 
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signal to reach a certain point. We define the secondary front 
x = s ( t )  to be the curve where the network is completely dis- 
solved. We see from Eq. 20a that characteristics carry some 
constant value C, forward with speed K ,  so there must exist 
a "mushy region" s ( t )  < x < K t  where C = C,. This is illus- 
trated in Figure 1, which is our solution in the x - f plane. 

In order to retain our smoothing internal layer around x = 
K t ,  we introduce the following scahgs: 

(36) 

where the exponent on E has been chosen to yield a domi- 
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nant balance. Making these substitutions in Eq. 16a, we have 

, (43) I ( K 2  - i2)< 
as 

+{C* -Cor[s ( t ) , t ] )exp  (37) 

where we now have the initial condition where we have used Eq. 13. 
Then, using Eq. 43, Eq. 42 becomes 

Equation 37 is simply the diffusion equation for Cj' on 
an unbounded interval. The solution is 

Note there is no condition associated with Eq. 13. 

for large and small 1. 

In the next section wc will construct asymptotic solutions 
(39) 

Asymptotic Analysis 
Now we find asymptotic estimates for large t. To do this, 

we will need the result that 

where we have used Eq. 38. In order to determine C,, we 
first look for a boundary layer in Cog around our secondary 
front. This again leads to a contradiction. Thus, there is n o  
layer in C"K and Ck must equal C,. 

Next we solve for c, which is immediately found from Eq. 
21 a: 

This follows from using Laplace's method (Bender and 
Orszag, 1978) and the asymptotic expansion for the Bessel 
function (Abramowitz and Stegun, 1972). 

The  other terms in T" are  exponentially decaying, so Eq. 
34 becomes 

Hence, in order for c o g  to stay bounded (which is what we 
expect both on physical and mathematical grounds), we see 
that 

(46) 

where s, > 0 and s , ( t )  + 0 as t - m. Using Eq. 40 evaluated 
at our secondary front, we see that Eq. 22 becomes 

Using Eqs. 46, 40 and 41 in Eq. 14, we have 

To construct our solutions for long time, we postulate the 
following expansion for large x: In addition, we must solve one of the following two sets of 

conditions. If there is n o  boundary layer, then we have two 
conditions at the front that are given by Eqs. 13 and 42. How- 
ever, it can be shown that with two constraints the problem is 
overdetermined. Therefore, there must be a boundary layer 
in Cor around our secondary front. Introducing the following 
scalings: 

from which we have 

For Tc,  all terms but the first in Eq. 32a are exponentially 
decreasing, so we have 

into Eq. 16b, we have 
c. s, 

T ' ( s , t ) - C , , ( ~ t )  and TC(s , t ) - - - - ,  
K 

the solution of which is which yield 
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From the fact that C. I Cor I 1 we have our compatibility 
condition Eq. 35. Physically, we see that if the absolute jump 
in flux needed to move the front is too small, the front will 
try to move faster than K t .  In addition, if the absolute jump 
in the flux needed is larger than the saturation concentration 
(in some appropriate nondimensionalization), the front can- 
not move at all. Thus, the mathematical model has a defi- 
ciency that we believe reflects a physical phenomenon, in the 
same way that the Fickian model is mathematically unstable 
€or nonphysical negative diffusion coefficients. 

Summarizing our results, we have the following: 

1 -  

0 . 8 .  

0.6 - 

0 . 4 .  - 

0.2. 

0 1 0 0  200 300 400 500  

Figure 2. Concentration profiles. 
a=-0.75,C.=0.4,  y = 2 ,  u = 3 ,  ~ = 0 . 0 0 0 1 ,  K = S .  In  de- 
creasing order of darkness: I = 6, 24, 96. 

Figure 3 shows our large-time asymptotic expansion of D 

for the same parameters and times. The gap for t = 6 is due 
to the fact that we are graphing analytical asymptotic expan- 
sions. Once again, we see that these expansions do not hold 
for x near 0; straight lines have been drawn to indicate the 
value of ~ ' ( 0 ,  t )  for the times indicated. Note the steep rise 
of (T over the relatively small scale of the mushy region. Note 
also that in this case there is no peak in o, but that the rise 
in D is much slower once the polymer entanglement network 
has begun to dissolve. It is also difficult to ascertain the posi- 
tion of the secondary front from this graph. That is because 
a> is nearly identical on both sides of that front. 

For small t ,  we postulate the following fictitious initial con- 
dition as x 4 0: 

c, x2 
CJX) - c, + c,x + - + ... 

2 

We then perform small-time asymptotics on Eqs. 31-34, 
keeping only those terms that are 0 ( t 3 )  and larger. We begin 
by expanding Eq. 34, which yields 

Figure 2 shows our large-time asymptotic expansion of C 
for a selected set of parameter values that satisfies Eq. 35. 
Though not quite so pronounced for t = 6, we see the three- 
stage concentration profile we predicted. The concentration 
profile starts out at 0, rises quickly to C. at the primary front, 
remains at C, in the mushy region, which for large time is of 
constant finite width, rises quickly to I a I at d t ) ,  and then 
slowly rises for x < s(t). These sharp fronts are commonly 
seen in polymer-penetrant systems (Alfrey et al., 1966; Hui et 
al., 198%; Peppas et al., 19941, and three-stage profiles also 
have been observed (Herman and Edwards, 1990). Since these 
concentration profiles are good only for x --fa, we see that 
they rise above 1 as x + O .  We would then expect the true 
concentration profile to depart from our longtime asymp- 
totics and converge to 1 at x = 0. 
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0 100 200  300  400 

Figure 3. Stress profiles. 
a = -0.75, C. = 0.4, y = 2 ,  u = 3, c = 0.0001, K = 5. In de- 
creasing order of darkness: t = 6, 24, 96. 
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(52) 

The integral in T U k  does not contribute; the other term is 

where we have used Eq. 26. Substituting Eqs. 52, 53, and 40 
into Eq. 12, we have 

K2C* C,K2 -( t - $) = --( t - $) 
Y 

c, - c* Kt2[r(1 - c.1- c,] 
2 

r(1- C*)+ ____ - 
2 

K[r( I -CA)(1+r)-C.] t3  
6 

- + sc,. (54) 

It is clear that the first terms on each side cancel. 
We now expand our concentration field for small time, re- 

taining only those terms that are O(t2 )  and larger. It can be 
shown that the integral in Tcl' is O(xt), so we have 

Now we use Eq. 55 in Eq. 44. Letting s(t> = sot", we have (to 
leading orders) 

We must strike a balance among the O(t) ,  O(t"), and 
O(t2"-2)  terms. Choosing n=3/2  induces an x4/3 term in 
our expression for CJx) .  Since we expect that our functional 
forms will be everywhere twice differentiable with respect to 
x ,  we conclude that n # 3/2. Thus, the O(t )  terms must bal- 
ance one another. This can happen only if 

r(1- C.) = C,. (57) 

Physically, this mathematical constraint means that in order 
for our dissolution front to propagate, the concentration at 
the interface between the polymer and the reservoir must be 
regulated by the poIymer network itself. Thus r in some sense 

represents the internal dissolution rate of the polymer and 
could be related to the strength of the entanglement net- 
work. Similar results have been found experimentally (Hui et 
al., 1987a). 

Using these results in Eq. 56, we have the following (to 
leading orders): 

from which we have that n = 2. Using Eq. 57 in Eq. 
have 

+ sc, = 0. 

So, we may conclude that C,  = 0. Using the fact that 
and n = 2 in Eq. 58, we have 

54, we 

(59) 

c,, = 0 

K2C? 
= 4asi .  (60) 

2(1- C * )  

We may combine Eq. 60 with Eq. 59 (using the fact that C, 
= 0) to yield 

Summarizing our results, we have the following: 

Figure 4 shows a plot of our superimposed asymptotic ex- 
pansions for the listed set of parameter values. The gray line 
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Figure 4. Front diagram with superimposed asymptotic 
expansions. 
a = -0.75, C .  = 0.4, y = 2, 01 = 3, E = 0.0001, K = 5. 

. 

’ 

is the primary front. The narrow lines are the graphs of our 
actual asymptotic expansions 51a and 62a, while the thicker 
line is simply a sketch of the way the actual front would inter- 
polate between these two expansions. These graphs indicate 
a region of finite width where the polymer is in the dissolu- 
tion process, results seen experimentally by Peppas et al. 
(1994). In their work, they perform both numerical simula- 
tions and experiments of methyl ethyl ketone dissolving 
polystyrene. Neglecting the effects of swelling, their graphs 
are qualitatively similar to ours: a leading penetration front 
moving with constant speed is followed by a dissolution front 
also moving at the same constant speed, tracking a finite width 
behind the leading front. Their simulations involved the use 
of a “dissolution clock”; we have been able to reproduce the 
result by using the fact that the stress cannot become un- 
bounded. 

Note also that there are several important results here from 
an experimental point of view. By simply performing the ex- 
periment heretofore outlined, one can determine K (from the 
front speed), C, (from the concentration in the mushy re- 
gion), and a (from the width of the mushy region). 

Figure 5 shows a graph of C for small times. Note that we 
have made sure that E = o( t )  for all graphed values. While 

CO 

0 . 4  fiL 

1. 
X 0 1 .  ‘. . ‘ . .  

0 . 1  0 . 2  0 . 3  0 . 4  0 . 5  

Figure 5. Concentration profiles. 
a=-0.75,C.=0.4, y = 2 ,  a = 3 ,  ~=0.0001, ~ = 5 .  In  de- 
creasing order of darkness: t = 0,001, 0.01, 0.1. 

z 
\%. 

X ’ .  . . . ’  - - .  . . ’  . . . . . ’  . . . .-.. 
0 . 1  0 . 2  0 . 3  0 . 4  0 . 5  

Figure 6. Stress profiles. 
a=-0.75,  C.=O.4, y = 2 ,  a = 3 ,  ~ = 0 . 0 0 0 1 ,  ~ = 5 .  In de- 
creasing order of darkness: f = 0.001, 0.01, 0.1. 

difficult to ascertain from the graph for I = 0.001, it is clear 
from the other graphs that we have once again reproduced 
our three-stage process. The concentration starts out at 0, 
then rises quickly to C. at the primary front. C remains at C. 
in the mushy region (which for t small is a much larger rela- 
tive area), and then slowly rises for x < s( t ) .  

for the same times and pa- 
rameter values. The graph for t = 0.001 can only be ascer- 
tained as an extra pixel in the lower lefthand corner of the 
graph; the stress is that small for small time. Note that we 
have linear growth in the mushy region, which now encom- 
passes nearly the entire graph. 

Figure 6 shows a graph of 

Remarks 
We have demonstrated that non-Fickian behavior ensues 

in many polymer-penetrant systems where there is a nonneg- 
ligible viscoelastic memory term in the flux. By using pertur- 
bation methods to solve the system, we obtain a difficult mov- 
ing boundary-value problem, which no longer yields to sim- 
plistic similarity-variable techniques. Therefore, more sophis- 
ticated methods, such as that due to Boley (19611, must be 
used. The system of integrodifferential equations that results 
cannot be solved in closed form; thus, an asymptotic solution 
is expedient. Our solutions indicate several key aspects of 
these systems. 

When the effect of state upon polymer memory is consid- 
ered, certain non-Fickian traits immediately become evident. 
We obtain a “dual-front” system, where the polymer is sepa- 
rated by two sharp fronts into regions that are dry, at the 
dissolution concentration, and nearly saturated. For long 
times, both of these fronts move with constant speed. These 
results replicate experiments involving dissolving polymers 
(Peppas et al., 1994; Wu, 1994). 

We choose a < 0; therefore, in cases where the stress is 
important, a cannot be directly related to the latent heat in a 
Stefan problem. However, note that in our problem [C,], > 0. 
The jump in the standard Fickian flux was positive, as found 
in a standard Stefan problem; it was the non-Fickian stress 
contribution to the flux that forced a < 0. 

We also found another unusual result: the self-regulating 
mass uptake of the dissolving polymer. Perhaps related to the 
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strength of the entanglement network, this uptake reflects the 
internal dissolution rate of the polymer. However, note that 
when we derived an expression for r ,  we did so having as- 
sumed the form of C(O+, t )  as in Eq. 12. Though Eq. 12 is 
certainly a reasonable first approximation to the actual kinet- 
ics at the boundary (Hui e t  al., 1987a), certainly other forms 
could be postulated. Uptake models at the boundary incorpo- 
rating other functional forms would also lead to undeter- 
mined constants for which one could solve in a similar fash- 
ion to that outlined herc. 

By properly simplifying the very general equation (Eq. 3) 
using our physical and mathematical knowledge and intuition 
about polymer-penetrant systems, we were able to  obtain re- 
sults that replicate several salient features of such systems. 
By increasing the size of one of our parameters, thereby em- 
phasizing the effects of the nonlinear viscoelastic term, we 
have obtained fronts that move with constant speed. These 
fronts, which are sharper than those found in ordinary diffu- 
sive systems, have been found experimentally to be character- 
istic of certain polymer-penetrant systems (Frisch et al., 1969; 
Fu and Durning, 1993; Hui et al., 1987b). 
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Notation 
Units are listed in terms of length ( L ) ,  mass ( M ) ,  moles 

( N ) ,  or time (T) .  The letter with a tilde has dimensions, while 
the letter without a tilde has none. 

a =coefficient in flux-front speed relationship, Eq. 15 
6( , f )  =concentration of penetrant or diluent at position.and time 

i, units N/L’ 
E =coefficient preceding the stress term in the modified diffu- 

sion equation, units NT/M, Eq. 2 
f =arbitrary function, variously defined 

F ( t )  =integral for asymptotic analysis, Eq. 45 
g( . )  = kernel in solution representations 

.f(*,i)=flux at position-and time i, units N/L2T 
n =indexing variable, Eq. 4, or variable exponent for small-time 

asymptotics 
S ( i )  =position of secondary front, defined as d(S(i), i) = E-,  units 

L ,  Eq. 13 
i =time from imposition of external concentration, units T 
.t =three-dimensional distance coordinate, units L,  Eq. 1 
y =dummy integration variable 
z =dummy integration variable 
Z =the integers 

Greek letters 
LY = nondimensional parameter, value 1 + y ,  Eq. 16a 
E =perturbation expansion parameter, value Pg/pr ,  Eq. 16a 
K =nondimensional parameter, value ,/-. Eq. 16a 

a(f , i)=stress in polymer at position f and time i, units M/LT2,  

T = unstretched boundary-layer variable, analogous to t ,  Eq. 

{ =stretched boundaly-layer variable, Eq. 36 

Eq. 1 

36 

Subscripts and superscripts 
c =characteristic value of a quantity, Eq. 8; concentration, Eq. 

d =part of the solution arising from the fictitious Neumann 
24 

condition, Eq. 34a 
j e 2  =term in an expansion, either in t ,  x, or E 

k =part of the solution arising from explicitly known quanti- 

u =part of the solution arising from the fictitious Dirichlet 

u =stress, Eq. 24 
- =boundary layer in the rubbery region behind the front 
+ =boundary layer in the glassy region ahead of the front, Eq. 

ties, Eq. 31 

condition, Eq. 24 

36 
t =dummy integration variable, Eq. 1. 
. =differentiation with respect to t ,  Eq. 15 or arbitrary argu- 

m = term in an expansion in t or x 
ment 

[.Ii=jumpacross the front S, defined as g[[s+( i ) , i ] -  ‘[S-(j),fI 
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