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ABSTRACT: One technique to study electrochemical oxidation phenomena in
thin polymer films is the generation of electrogenerated chemiluminescence
(ECL) waves. Such waves are sharp and easy to image, and recent experiments
have shown both constant-speed and Fickian-style wave behavior. One way to
model such waves mathematically is to track the concentration of the ion
clusters in the polymer film. One such model has a standard Fickian form but
with a highly nonlinear diffusion coefficient. This model is analyzed numerically,
and the results are compared with previous asymptotic analysis. The results
demonstrate that ECL waves corresponding to this model are indeed sharp and
move in a Fickian way. Hence more complicated effects must be included in the
model if constant-speed behavior is to be observed.

1. INTRODUCTION
Electrochemical conjugated polymer films show great promise
for advances in many technologies. These films can be used in
electrochromic “smart” windows that control the level of
transparency as voltage is applied.1 Such films are used in many
types of sensors, including those used for detecting chemicals,
determining humidity and pH, and mimicking human senses.2

They form the basis for organic light-emitting diodes
(OLEDs),3 which are used to create screens for small
electronics and now even televisions.4 Because oxidation and
reduction can change the volume of polymer films, one can
exploit this process to create electrochemical actuators5 or even
artificial muscles.6 A robust knowledge of the behavior of the
underlying kinetics is crucial to controlling and optimizing such
devices.
One useful approach to studying these devices is through

electrogenerated chemiluminescence (ECL),7 which allows
optical study of the reduction and oxidation processes. A key
feature of these processes is the formation of a sharp front in
the concentration of ionic clusters, which causes bright patterns
in ECL experiments.8 This behavior has already been exploited
industrially for use in fingerprinting devices.9

Given a source of clusters, this front propagates with time;
hence these patterns are sometimes referred to as “ECL waves”
or “ECL solitons”.10,11 One key quantity to determine is the
speed at which these waves propagate. For many years,
experiments have shown sharp fronts in such systems;12

however, some experiments show the front moving propor-
tional to √t, as one would expect from a purely diffusive
process,13 whereas others claim to see the front moving with
constant speed,14,15 as one might expect from including the
effects of swelling and other changes in the polymer
matrix.16−18 Still others see the front moving in both ways
depending on experimental parameters.19

Most current models for ECL systems include only diffusive
effects,20 although several have highly nonlinear diffusion

coefficients.21 Because Fickian models allow similarity solutions
depending on x/√t, it is unlikely that such models can capture
constant-speed behavior.21

In Guo et al.,8 the authors study the oxidation of a thin
poly(9,9-dioctylfluorene-co-benzothiadiazole) film. The film is
embedded with an array of Au electrode posts that provide
nucleation sites for ionic clusters that spread through the film,
causing the ECL waves. The authors claim that their numerical
simulations show sharp fronts moving with constant speed;
however, asymptotic analysis of the same model shows that the
sharp fronts move like √t.22 We shall use a numerical scheme
to verify those asymptotic results and explain the discrepancy
between the two groups.

2. RESULTS AND DISCUSSION

2.1. Governing Equations. The full description of the
experiment under consideration is provided in Guo et al.;8

below we summarize the details relevant for analyzing the
resulting system. The ECL wave is modeled through the
concentration C of ionic clusters in a thin (≈ 250 nm) film
made of poly(9,9-dioctylfluorene-co-benzothiadiazole). The
governing (dimensionless) equation is the following:
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where the subscripts “w” and “d” refer to “wet” and “dry”. Here
x measures distance along the film and CT is a saturation
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concentration, so we consider the region where C > CT to be
“wet”. Initially, there are no clusters in the polymer, so

=C x( , 0) 0 (2)

In the experiments by Guo et al.,8 Au posts at x = ± 1 provide
(the same) constant concentration of clusters, which is higher
than the saturation concentration. These boundary conditions
are even in x, as are eqs 1a, 1b, and 2. Hence we may exploit
this symmetry to take the interval as x ∈ [0,1] with

∂
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= <C t C(1, ) 1, 1T (3b)

Note that the interval [0,1] is generic. If the posts were spaced
2L units apart, then we could define a new variable y = x/L and
obtain our previous system with a scaled value of D(C).
With a diffusion coefficient of the form in eq 1b, making κ

large causes a great change in the size of the diffusion
coefficient as the polymer changes from dry to wet. Hence we
would like to examine the solution of eqs 1a and 1b for large κ.
Moreover, Dd is usually quite small; in particular, Guo et al.
indicate that Dd can be up to six orders of magnitude smaller
than Dw.

8 To reduce the number of perturbation parameters
under consideration, we take

κ
= *D

D
Dd
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where D* is considered to be O(1). Substituting eq 4 into eq
1b, we obtain
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which varies only with κ.
A graph of D(C) on a logarithmic scale is shown in Figure 1.

The parameters chosen are similar to those in Guo et al.8 to
replicate the sharp ECL waves seen experimentally.13−15,19 In
particular, we choose

= = * =C D D0.95, 0.1, 0.01T w (6)

Note that with κ = 0, we have D constant. Note also that as κ
increases the curve gets steeper and Dd gets smaller. In fact, for
very large κ, one can think of D(C) as being piecewise constant
(at least to leading order).

2.2. Asymptotic Solution. In Edwards,22 the author
constructs the solution of this system for large κ; we summarize
the results here. First, introduce the similarity variable

ζ = − x
D t

1
2 w (7)

Note that if the solution can be shown to depend only on ζ
(which we do below), then the isoclines of C (which
correspond to ECL waves) will move like √t, as consistent
with standard Fickian behavior. In particular, we define ζ = ζs to
be the isocline corresponding to the saturation value at leading
order:

ζ =C C( )s T (8)

In this formulation, there are five separate regions of interest,
as shown in Figure 2. Note that three of these regions are very

thin, depend on the size of κ, and exist around C = CT, which is
where the diffusion coefficient changes rapidly in Figure 1.
Hence each region corresponds to different behaviors in eq 5:

• In Region I, the concentration is far enough above CT
that the exponential term in the numerator of the first
bracketed term goes to zero. Hence the bracketed term is
∼1, D(C) ≈ Dw, and the evolution proceeds as if the
diffusion coefficient was constant.

• In Region II, the concentration is near enough to CT that
the nonlinear term in eq 5 must be considered but not
the D* term.

• In Region III, both terms in eq 5 are of the same size.
• In Region IV, C is far enough below CT that D(C) ≈ Dd,

and the evolution proceeds as if the diffusion coefficient
is constant. In particular, there is a sharp transition in the
concentration between the saturation value and zero.

• In Region V, C is exponentially small, which means that
the polymer can be considered to be essentially dry.

Figure 1. D(C) versus C on a logarithmic scale. Here CT = 0.95, Dw =
0.1, and D* = 0.01. Dotted line: D(C) given by eq 1b with κ = 0. Solid
curves: D(C) given by eq 5 with κ = 1, 10, and 100 . Note that as κ
increases, the curve steepens and the diffusion coefficient in the dry
region decreases.

Figure 2. Schematic of various regions with different behavior in the
diffusion coefficient.
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Because of the structure discussed above, the similarity-
variable solution is a good approximation only when region V
(with its exponentially small flux) contains the boundary x = 0,
where eq 3a is applied. Hence the similarity transformation will
work only until tmax = (4ζs

2Dw)
−1; after that the wet solution

occupies the entire domain.
Because of the different regions, we must break the solution

into two parts. In the dry region where ζ > ζs, the solution is
given by22

ζ
ζ κ ζ ζ ζ κ ζ ζ

κ
κ

ζ
κ

ζ ζ

= −
−

*
+

−

*

− − >

⎡
⎣⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥⎥C C

D D

u

( ) exp
2 ( ) 2 ( )

log ( )
,

T
s s s s

c
s (9a)

where we must restrict the domain on ζ because the
exponential term in eq 9a will diverge for ζ > ζs. uc may be
defined implicitly through
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or written explicitly in terms of the LambertW function.23 Here
A is a constant yet to be determined.
In the wet region, the solution is given by
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The two solutions 9a and 10 match at ζ = ζs, with a smooth
derivative, as required. ζs itself is given by the following
equation, which arises from balancing the flux at ζ = ζs

ζ ζ π− =ζ−C C(1 )e ( erf )T T s s
s
2

(11)

Note that eq 11 is independent of Dw (because that
dependence is scaled away in the definition of ζ).
2.3. Numerical Simulations. We implement a numerical

solution to check the asymptotic approach. First, we note that if
we define
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and eq 1a becomes

∂
∂

= ∂
∂

C
t

F
x

2

2 (14)

which provides a natural way to discretize the problem using a
conservative scheme. Because we will be applying spatial
differences to F, we need boundary conditions for it:
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where we have used eqs 3a and 3b.

We discretize by letting
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and similarly for C. From the x discretization in eq 16 we have
found that Δx = N−1. Because of the nonlinearity in F, any
implicit method would require a nonlinear solver like Newton’s
method. Instead, we choose the explicit method
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For a diffusion equation with constant D, the following
constraint must be satisfied to guarantee convergence (cf.
Sauer,24 Theorem 8.2):

Δ < Δ
t
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For our problem, the most conservative estimate for eq 18 uses
the largest value taken on by D(C) (namely, Dw + Dd), so to
ensure convergence we take Δt = (3DwN

2)−1.
By using the standard approach of introducing a “phantom

point” at −Δx to take care of the Neumann condition 15a, we
see that the algorithm 17 may be written in matrix-vector
notation as
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Here the last row of M is all zeroes because Cn+1,j = 1 for all t
from the boundary condition 3b.
To validate the algorithm, we began by simulating the case

where κ = 0. In this case, the diffusion coefficient is constant
and an exact solution can be found using separation of
variables. Numerical simulations showed agreement with error
proportional to N−2, as predicted by the theory.24

Next, we check the accuracy of the asymptotic solution for
the full problem against the numerical simulations with N =
100. In particular, with the parameters given in eq 6, we have
found that

ζ = =t0.1608, 96.6552s max (20a)

For κ, motivated by Guo et al.,8 we select a value large enough
to reproduce the sharp ECL waves seen experimentally:13−15,19

κ = ⇒ = −D100 10d
5

(20b)

where we have used eqs 4 and 6.
The final parameter to be identified is A. From standard

asymptotic matching practice, A would be determined by the
next term in the dry solution [which is O(κ−1)]. When
comparing with numerics, an equivalent approach is to require
that the numerical and asymptotic solutions match at the dry
boundary. Hence we matched the asymptotic value of C(0,Δt)
to the numerical value, yielding A = −0.01461.
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Clearly a key question is whether the ECL wave moves with
constant speed, as claimed in Guo et al.,8 or like √t, consistent
with the Fickian theory. In Figure 3, we plot the evolution of

the isocline where C = CT. Because we are now considering the
full asymptotic solution as given by eqs 9a, 9b, and 10, we track
the isocline directly, rather than using the leading-order
approximation 8. The Figure presents the results from numeric
and asymptotic cases; for each, linear interpolation between
grid points was used to estimate the position of s(t), where
C(s(t),t) = CT.
By definition, the isocline for the asymptotic solution

behaves like √t, as shown by the solid curve in Figure 3.
Note the very close agreement with the numerical solution,
showing that the front does indeed behave like√t, at least until
the entire polymer saturates (rightmost data in Figure 3). Note
that the numerically computed front values are the same for
each N, as one would expect from a convergent numerical
scheme.
Although this √t dependence contradicts the conclusion of

Guo et al.,8 it is actually compatible with their results. In Figure
S2 of appendix I in the supporting information to their work,
the authors show that the front speed decreases inversely with
the step size Δx. Suppose that the front s(t) advances Δs =
mΔx over a time step Δt. Then, their data imply that

Δ
Δ

= Δ
Δ

∝
Δ

⇒ Δ
Δ
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t x
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as expected from Fickian dynamics.
Next, we compare the actual solution profiles from the

asymptotic and numerical solutions to see if they show the type
of sharp front profile seen experimentally.13−15,19 In Figure 4,
we plot a series of snapshots in time comparing the numerical
and asymptotic solutions. The time intervals are chosen so that
the front moves a fixed distance between snapshots. Note the
close agreement between the numerical and asymptotic
solutions, with significant differences visible only for the last
time snapshot. Although it is difficult to discern due to the
narrow width of the front, the solutions also exhibit a
“shoulder-like” profile, as a very sharp bend in the wet polymer

transitions to a much wider profile in the dry region,22 which is
reminiscent of experimental data for these systems.13−15,19

3. CONCLUSIONS
One way for scientists to better understand the oxidation
processes in polymer films is through ECL. Although
experimental data consistently show sharp ECL waves in such
systems, there is debate as to whether those waveswhich
correspond to concentration isoclines of ionic clustersmove
like t or √t.14,15,19 Certainly diffusion in polymers can exhibit
sharp fronts moving with constant speed, as found by Thomas
and Windle,18 although typically the mathematical models for
such behavior must include other effects beside nonlinear
Fickian diffusion.16,17

In Guo et al.,8 the authors propose a nonlinear Fickian-type
model for ECL waves and claim that their simulations show the
model allows for constant front speed. In this work, we
examined the model numerically, compared these results with
the asymptotic solutions in Edwards,22 and demonstrated that
although the nonlinear diffusion coefficient does produce sharp
fronts, those fronts still move proportional to √t.
In the limit of large κ, the domain can be divided into several

separate regions, where different processes dominate. Far from
the ionic source, a nearly dry precursor region permits the use
of a similarity-variable solution, which forces the front to
behave like √t. The nearly piecewise-constant behavior of
D(C) for large κ forces a sharp front near the saturation value.
In the bulk of the wet region, the diffusion coefficient is a
constant Dw, and the dynamics are again standard Fickian.
In this work, we implemented a conservatively differenced

explicit numerical method to solve eqs 1a and 1b subject to eqs
2, 3a, and 3b to compare with the theoretical work in
Edwards.22 The results from the asymptotic and numeric
approaches agree, showing a sharp front moving proportional
to √t, profiles that agree well with experimental results.13−15,19

Although the analysis in this article focused on the model
from Guo et al.,8 the conclusions are quite general. Consider
any model of the form 1a subject to eqs 2 and 3a and 3b. As
long as the diffusion coefficient in the dry region is negligible,
an x/√t similarity variable can be used, no matter the exact
functional form of D(C). Hence to capture constant front speed
in ELC waves, one has to incorporate additional effects that

Figure 3. Comparison of asymptotic and numerical solutions (for
various values of N) for the isocline s(t), where C(s(t),t) = CT,
demonstrating that it moves proportional to √t, consistent with
Fickian behavior. 1 − s(t) is plotted because the front moves from
right to left.

Figure 4. Concentration profiles from the numeric (symbol) and
asymptotic (line) solutions for various times. Note the sharp nature of
the front. The time intervals are chosen so that the front moves a fixed
distance between snapshots.
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arise due to the nature of the polymer film, such as viscoelastic
stresses in the polymer.16,17

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: edwards@math.udel.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The author thanks the reviewers for their many insightful
suggestions.

■ REFERENCES
(1) Rauh, R. Electrochromic Windows: An Overview. Electrochim.
Acta 1999, 44, 3165−3176. 3rd International Meeting on Electro-
chromics (IME-3), Imp. Coll., London, Sept 7−9, 1998.
(2) Adhikari, B.; Majumdar, S. Polymers in Sensor Applications. Prog.
Polym. Sci. 2004, 29, 699−766.
(3) Armstrong, N.; Wightman, R.; Gross, E. Light-Emitting
Electrochemical Processes. Annu. Rev. Phys. Chem. 2001, 52, 391−422.
(4) van der Vaart, N.; Lifka, H.; Budzelaar, F.; Rubingh, J.;
Hoppenbrouwers, J.; Dijksman, J.; Verbeek, R.; van Woudenberg,
R.; Vossen, F.; Hiddink, M.; Rosink, J.; Bernards, T.; Giraldo, A.;
Young, N.; Fish, D.; Childs, M.; Steer, W.; Lee, D.; George, D.
Towards Large-Area Full-Color Active-Matrix Printed Polymer OLED
Television. J. Soc. Inf. Disp. 2005, 13, 9−16. International Symposium
of the Society for Information Display (SID 2004), Seattle, WA, May
25−27, 2004.
(5) Jager, E.; Smela, E.; Inganas, O. Microfabricating Conjugated
Polymer Actuators. Science 2000, 290, 1540−1545.
(6) Smela, E. Conjugated Polymer Actuators for Biomedical
Applications. Adv. Mater. 2003, 15, 481−494.
(7) Richter, M. Electrochemiluminescence (ECL). Chem. Rev. 2004,
104, 3003−3036.
(8) Guo, S.; Fabian, O.; Chang, Y.-L.; Chen, J.-T.; Lackowski, W. M.;
Barbara, P. F. Electrogenerated Chemiluminescence of Conjugated
Polymer Films from Patterned Electrodes. J. Am. Chem. Soc. 2011, 133,
11994−12000.
(9) Xu, L.; Li, Y.; Wu, S.; Liu, X.; Su, B. Imaging Latent Fingerprints
by Electrochemiluminescence. Angew. Chem., Int. Ed. 2012, 51, 8068−
8072.
(10) Chang, Y.-L.; Palacios, R. E.; Chen, J.-T.; Stevenson, K. J.; Guo,
S.; Lackowski, W. M.; Barbara, P. F. Electrogenerated Chemilumi-
nescence of Soliton Waves in Conjugated Polymers. J. Am. Chem. Soc.
2009, 131, 14166−14167.
(11) Chen, J.-T.; Chang, Y.-L.; Guo, S.; Fabian, O.; Lackowski, W.
M.; Barbara, P. F. Electrogenerated Chemiluminescence of Pure
Polymer Films and Polymer Blends. Macromol. Rapid Commun. 2011,
32, 598−603.
(12) Aoki, K.; Aramoto, T.; Hoshino, Y. Photographic Measurements
of Propagation Speeds of the Conducting Zone in Polyaniline Films
during Electrochemical Switching. J. Electroanal. Chem. 1992, 340,
127−135.
(13) Tezuka, Y.; Aoki, K.; Ishii, A. Alternation of Conducting Zone
from Propagation-Control to Diffusion-Control at Polythiophene
Films by Solvent Substitution. Electrochim. Acta 1999, 44 1871−1877.
Workshop on the Electrochemistry of Electroactive Polymer Films
(WEEPF97), Dourdan, France, Sept 22−24, 1997.
(14) Tezuka, Y.; Ohyama, S.; Ishii, T.; Aoki, K. Observation of
Propagation Speed of Conductive Front in Electrochemical Doping
Process of Polypyrrole Films. Bull. Chem. Soc. Jpn. 1991, 64, 2045−
2051.
(15) Wang, X.; Shapiro, B.; Smela, E. Visualizing Ion Currents in
Conjugated Polymers. Adv. Mater. 2004, 16, 1605−1609.
(16) Edwards, D. A. Constant Front Speed in Weakly Diffusive Non-
Fickian Systems. SIAM J. Appl. Math. 1995, 55, 1039−1058.

(17) Durning, C. J.; Edwards, D. A.; Cohen, D. S. Perturbation
Analysis of Thomas and Windle’s Model of Case II Transport. AIChE
J. 1996, 42, 2025−2035.
(18) Thomas, N.; Windle, A. A Theory of Case II Diffusion. Polymer
1982, 23, 529−542.
(19) Wang, X.; Smela, E. Experimental Studies of Ion Transport in
PPy(DBS). J. Phys. Chem. C 2009, 113, 369−381.
(20) Lacroix, J.; Fraoua, K.; Lacaze, P. Moving Front Phenomena in
the Switching of Conductive Polymers. J. Electroanal. Chem. 1998, 444,
83−93.
(21) Wang, X.; Shapiro, B.; Smela, E. Development of a Model for
Charge Transport in Conjugated Polymers. J. Phys. Chem. C 2009,
113, 382−401.
(22) Edwards, D. A. Sharp Fickian Fronts in Conjugated Polymer
Films. IMA J. Appl. Math., submitted.
(23) Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, D. On the
Lambert W Function. Adv. Comput. Math. 1996, 5, 329−359.
(24) Sauer, T. Numerical Analysis, 2nd ed.; Pearson: New York, 2012.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp400476m | J. Phys. Chem. C 2013, 117, 6747−67516751

mailto:edwards@math.udel.edu

