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ABSTRACT Understanding the behaviour of the American put option is one of the classic problems
in mathematical finance. Considerable efforts have been made to understand the asymptotic
expansion of the optimal early exercise boundary for small time near expiry. Here we focus on
the large-time expansion of the boundary. Based on a recent development of the convexity property,
we are able to establish two integral identities pertaining to the boundary, from which the upper
bound of its large-time expansion is derived. The bound includes parameter dependence in the
exponential decay to its limiting value. In addition, these time explicit identities provide very
efficient numerical approximations to the true solution to the problem.
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1. Introduction

When holding a put option, the contract holder has the right to sell, at a preset strike

price K, an underlying asset. Using the assumptions of standard mathematical finance

theory (cf. Etheridge, 2004 or Willmott, 1999), the value of the asset follows geometric

Brownian motion. In an American put option, the contract holder may exercise the

option at any time during the contract. Then the value of the option contract v satisfies

the Kolmogorov equation when it is not optimal for early exercise.
If the holder does decide to exercise, he receives a payoff of

PðsÞ ¼ ðK � sÞþ; (1)

where s is the stock price at the time of exercise. Hence at any time et (measured

backwards from the expiration date), there must be an optimal stock price s ¼ gðet Þ
such that if s � gðet Þ, it is advantageous to exercise the option and receive the payoff.

To determine gðet Þ, we must solve the following free boundary value problem (cf.

Ekström, 2004) for v and g:
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@v

@ t̃
� s2

2
s2 @

2v

@s2
� rs

@v

@s
þ rv ¼ 0; for s > gðet Þ;et > 0

v ¼ PðsÞ ¼ ðK � sÞþ; for s � gðet Þ ;et > 0

@v

@s
ðgð t̃Þ; t̃ Þ ¼ �1;

vðs; 0Þ ¼ PðsÞ ¼ ðK � sÞþ for all s;

:

8>>>>>>><>>>>>>>:
(2)

where r > 0 denotes the risk-free interest rate and s > 0 denotes the volatility.
We introduce the following changes of variables:

t ¼ s2

2
t̃; x ¼ ln

s

K

� �
Vðx; tÞ ¼ vðs; t̃Þ

K
: (3)

Hence we are normalizing both the option and asset prices by the strike price. The time

scale we are choosing is associated with the volatility. Hence, compared with a low-

volatility environment, the same amount of ‘‘real time’’ et will correspond to a larger

value of t in a high-volatility environment. This is because diffusion of the option price
occurs more rapidly in a high-volatility environment.

Substituting Equation (3) into Equation (2), we obtain the following:

@V

@t
� @

2V

@x2
� ðk � 1Þ @V

@x
þ kV ¼ 0; for x > hðtÞ; t > 0

V ¼ 1� ex; for x � hðtÞ; t > 0
@V

@x
ðhðtÞ; tÞ ¼ �ex;

Vðx; 0Þ ¼ ð1� exÞþ; for x 2 R

8>>>>>><>>>>>>:
(4)

where hðtÞ is the free boundary in the new variables and by introducing the scaling, we

have reduced the parameter set to the single dimensionless parameter

k ¼ 2r

s2
:

Note that k measures the relative importance of the risk-free and volatile aspects of

the market. High values of k correspond to low-volatility situations or those with a

high risk-free rate; low values correspond to the opposite situations.

Because of the importance of the American put option in theory and practice, there
exists a considerable literature on the problem, both analytical and numerical, for

example, Barles et al. (1995), Kuske and Keller (1998) and Stamicar et al. (1999). A

recent survey is provided by Barone-Adesi (2005). The well-posedness of Equation (4)

is proved by Chen and Chadam (2007). In addition, Ekström (2004) and Chen et al.

(2008) proved that the free boundary hðtÞ is strictly decreasing and convex.

Previous analytical results have been largely focused on the asymptotic expansion of

the free boundary hðtÞ for t small, that is, near the expiry date. In this article, we are

interested in the behaviour of the early exercise boundary for t large, that is, near the
beginning of the contract. Hence, our results would be of interest to traders who are

holding long-term contracts and wish to know the circumstances under which it would

be advantageous to exercise shortly after the contract is purchased.
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With our scalings in Equation (3), we note that large values ofet may translate only

into moderate values of t. Hence even though our techniques formally hold only in the

limit of large t, they must hold for moderate t to be useful in the marketplace. We will

demonstrate that they are.

Starting with integral equations that hold along the free boundary, we first derive

several useful relations for the key integral operator appearing in the integral repre-
sentation of the solution. These integral relations, together with the convexity of the

free boundary, allow us to derive two explicit inequalities for the upper bound of the

free boundary. In particular, the sharper of the two bounds establishes that hðtÞ decays

to its infinite horizon h� in the following manner:

h� � hðtÞ � h� þH2ðtÞ; t!1; h� ¼ log
k

k þ 1

� �

H2ðtÞ ¼
ð1
t

k þ 1

2
ffiffiffiffiffi
pt
p e

�kt� h�þðk�1Þt
2
ffiffi
t
p

h i2

k � 1ffiffiffiffiffi
pt
p 1þ h�

ðk þ 1Þt

� ��1

e
�kt� h�þðk�1Þt

2
ffiffi
t
p

h i2
24 35�1

dt;

(5)

as described more fully in Section 5.

We remark that Equation (5) can be used as an analytical approximation to the true

solution. The full integral equation defining hðtÞ is highly singular near expiry (t ¼ 0),

hence causing technical difficulty for any standard numerical scheme used to compute

h at any time t. (A discussion of this problem can be found in Peskir (2005) or Rogers

and Talay (2007), for instance.) Because of its analytical nature, we believe our

approach provides an effective alternative way for handling such problems. From a

mathematical perspective, the techniques we use may also provide useful hints for
similar problems involving non-linear integral equations.

The derived upper bound on hðtÞ will also lead to the following bound on VðhðtÞ; tÞ:

1� k

k þ 1
eH2 � VðhðtÞ; tÞ � 1

k þ 1
;

and hence the value of the option contract when it is written. This will provide useful

data to customers looking to purchase such contracts at reasonable prices.

2. Integral Equation Formulation for h0(t)

To solve our problem, we must first determine the solution V of Equation (4), and then

use the conditions at x ¼ hðtÞ to determine an expression for the free boundary.

Following Chen and Chadam (2007), one can rewrite the differential equation in

Equation (4) as

@V

@t
� @

2V

@x2
� ðk � 1Þ @V

@x
þ kV ¼ kHðhðtÞ � xÞ; (6)

valid for all x 2 R ; t > 0, where Hð�Þ is the Heaviside function. Given that the operator

in Equation (6) has a Green’s function
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Gðx; tÞ ¼ 1

2
ffiffiffiffiffi
pt
p exp �kt� ðxþ ðk � 1ÞtÞ2

4t

 !
; (7)

we have the following integral representation of the transformed contract value from

Green’s identity (Friedman, 1982):

Vðx; tÞ ¼
ð0
�1

ð1� eyÞGðx� y; tÞdyþ k

ðt
0

ðhðtÞ
�1

Gðx� y; t� tÞdydt; (8)

where the first integral solves the homogeneous equation with initial conditions (4), and

the second integral solves the inhomogeneous Equation (6) with zero initial conditions.

To simplify our notation, we rewrite Equation (8) as

Vðx; tÞ ¼ I1ðx; tÞ � I2ðx; tÞ þ k

ðt
0

I1ðx� hðt� tÞ; tÞdt; (9)

where

I1ðx� z; tÞ :¼
ðz
�1

Gðx� y; tÞdy ¼ 1

2
e�kt Erfc

x� zþ ðk � 1Þt
2
ffiffi
t
p

� �
; (10)

I2ðx; tÞ :¼
ð0
�1

eyGðx� y; tÞdy ¼ 1

2
ex Erfc

xþ ðk þ 1Þt
2
ffiffi
t
p

� �
; (11)

where in calculating the final integral in V we have reversed the roles of t and t� t. For

further algebraic simplicity, we note that

@I1

@x
� @I2

@x
¼ �I2ðx; tÞ; (12)

@I1

@t
� @I2

@t
¼ �kI1ðx; tÞ þ

1

2
ffiffiffiffiffi
pt
p e

�kt�½xþðk�1Þt
2
ffi
t
p �2

: (13)

Because the second equation in Equation (4) holds at x ¼ hðtÞ, we see that

VðhðtÞ; tÞ ¼ 1� ehðtÞ; kQ ¼ 1� ehðtÞ � I1ðhðtÞ; tÞ þ I2ðhðtÞ; tÞ; (14)

where we define

QðtÞ :¼
ðt
0

I1ðhðtÞ � hðt� tÞ; tÞdt: (15)
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Given an integral identity such as Equation (15), the classical numerical approach is to

implement certain iterative methods (chosen based on the identity’s form) to find hðtÞ
numerically. However, the integral terms appearing in Equation (15) are highly

singular; thus traditional methods such as Gaussian quadratures usually provide low

accuracy and slow convergence. For this reason, in part, we make further manipula-

tions so that integral-free identities may be established.
In particular, we have the following theorem:

Theorem 1 The free boundary hðtÞ obeys the following identity:

1

2
þ k þ 1

2
J ½1� ¼ J ½h0ðtÞ� � 1

2
J hðtÞ � hðtÞ

t� t

� �
; (16)

where

J ½u� :¼
ðt
0

u
@I1

@x
ðhðtÞ � hðt� tÞ; tÞdt; u 2 C1ð½0; t�Þ: (17)

To begin the proof, we consider the derivative condition on hðtÞ:

@V

@x
ðhðtÞ; tÞ ¼ �ehðtÞ;

@I1

@x
ðhðtÞ; tÞ � @I2

@x
ðhðtÞ; tÞ þ k

ðt
0

@I1

@x
ðhðtÞ � hðt� tÞ; tÞdt ¼ �ehðtÞ:

Rewriting the above using our definition of J in Equation (17), we obtain

kJ ½1� ¼ I2ðhðtÞ; tÞ � ehðtÞ; (18)

where we have used Equation (12). Moreover, we note that Equation (14) can be

written as

kQ ¼ 1� I1ðhðtÞ; tÞ þ kJ ½1�: (19)

The problem with using Equation (18) or (19) to determine hðtÞ is that due to the
presence of Q and J , they are still integral equations, which is not desirable. We would

like to reduce our system to algebraic or differential equations, so we must manipulate

Equation (14) to that form. As a first step, we take the derivative of Equation (14) with

respect to t and simplify:

k
dQ

dt
¼ kh0J ½1� þ kI1ðhðtÞ; tÞ �

1

2
ffiffiffiffiffi
pt
p e

�kt�½hðtÞþðk�1Þt
2
ffi
t
p �2

; (20)

where we have used Equations (12) and (13). Then we take the derivative of the integral

directly:
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dQ

dt
¼ I1ðhðtÞ; tÞ þ h0ðtÞJ ½1� � J ½h0ðtÞ�: (21)

Combining Equations (20) and (21), we may obtain an expression for J ½h0ðtÞ�:

J ½h0ðtÞ� ¼ 1

2k
ffiffiffiffiffi
pt
p e

�kt�½hðtÞþðk�1Þt
2
ffi
t
p �2

: (22)

Next we integrate Q by parts:

Q ¼ 1

�2k
e�ktErfc

hðtÞ � hðt� tÞ þ ðk � 1Þt
2
ffiffiffi
t
p

� �� �t

0

�
ðt
0

1

�2k
e�kt h0ðt� tÞ þ k � 1

2
ffiffiffi
t
p � hðtÞ � hðt� tÞ þ ðk � 1Þt

4t3=2

� �
�

� 2ffiffiffi
p
p exp � hðtÞ � hðt� tÞ þ ðk � 1Þt

2
ffiffiffi
t
p

� �2
 !

dt : ð23Þ

We may rewrite Equation (23) in the J notation by switching the roles of t and t in

Equation (17) to obtain

J ½u� ¼
ðt
0

u
@I1

@x
ðhðtÞ � hðtÞ; t� tÞdt;

¼ �
ðt
0

ue�kðt�tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt� tÞ

p e
� hðtÞ�hðtÞþðk�1Þðt�tÞffiffiffiffi

t�t
p

h i2

dt: ð24Þ

Then substituting Equation (24) into Equation (23), we have the following:

kQ ¼ 1

2
� I1ðhðtÞ; tÞ þ J ½h0ðtÞ� þ

k � 1

2
J ½1� � 1

2
J hðtÞ � hðtÞ

t� t

� �
: (25)

Continuing to simplify Equation (25) using Equation (19), we obtain

1

2
þ k þ 1

2
J ½1� ¼ J ½h0ðtÞ� � 1

2
J hðtÞ � hðtÞ

t� t

� �
;

which is exactly Equation (16). Hence our proof is complete.

The secant term J ðhðtÞ � hðtÞÞ=ðt� tÞ½ � in Equation (16) is what makes it an
intractable integral equation. By contrast, the other J terms in Equations (16) are

easily analysable once we use Equations (18) and (22). Hence in the next sections, we

shall bound the secant term in Equation (16) by more tractable expressions to obtain

useful information about the long-term behaviour of hðtÞ.
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3. Integral Inequalities for h0(t)

Ekström (2004) and Chen et al. (2008) have established the convexity of hðtÞ, which
implies that

h0ðtÞ � hðtÞ � hðtÞ
t� t

� h0ðtÞ: (26)

We may also obtain another bound by noting that

h0ðtÞ � hðtÞ � hðtÞ
t� t

� hðtÞ
t
;

but it can be shown that the resulting bound on the large-t behaviour of hðtÞ is weaker

than that obtained from Equation (26).

Because the kernel in J is always negative, the inequality in Equation (26) provides

the proof of the following theorem:

Theorem 2 The free boundary hðtÞ obeys the following inequality:

J ½h0ðtÞ� ¼ h0ðtÞJ ½1� � J hðtÞ � hðtÞ
t� t

� �
� J ½h0ðtÞ�: (27)

We then substitute Equation (27) into the integral identity along the free boundary;

we expect to derive explicit inequalities for hðtÞ, which approach the true hðtÞ very well

for large (and even moderate) t.

Equation (27) also provides the value of h� ¼ hð1Þ. Because h asymptotes to a constant

h� as t!1, we see that the left-hand bound in Equation (27) goes to zero as t!1.

Similarly, we see from Equation (22) that the right-hand bound in Equation (27) goes to
zero as t!1. Thus by the Sandwich Theorem, we have that the middle quantity in

Equation (27) goes to 0 as t!1. Using that fact in Equation (16), we obtain

1

2
þ k þ 1

2k
½I2ðh�;1Þ � eh� � ¼ 0;

or equivalently

h� ¼ log
k

k þ 1

� �
; (28)

a result which is consistent with those obtained with other methods in the existing

literature such as Chen and Chadam (2007).

4. First Upper Bound for h(t)

We shall find that both sides of the inequality in Equation (27) provide upper bounds

on hðtÞ. The first is described in the following theorem:
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Theorem 3 The free boundary hðtÞ obeys the following inequality:

hðtÞ � h� þH1ðtÞ; t � t1 :¼ jh�j
k þ 1

(29)

H1ðtÞ ¼
ðk þ 1Þt� h�

2½ðk þ 1Þtþ h��

	 

1

k
ffiffiffiffiffi
pt
p e

�kt� h�þðk�1Þt
2
ffi
t
p

h i2

: (30)

We begin the proof by substituting the upper bound in Equation (27) into Equation

(16) to obtain

1

2
þ k þ 1

2
J ½1� � J ½h0ðtÞ� � 1

2
J ½h0ðtÞ�;

1

2
þ k þ 1

2

I2ðhðtÞ; tÞ � eh

k

� �
� 1

2

1

2k
ffiffiffiffiffi
pt
p e

�kt� hðtÞþðk�1Þt
2
ffi
t
p

h i2
8<:

9=;:
This expression can be rewritten as

2k � 2ðk þ 1Þeh þ ðk þ 1Þeh Erfc
hþ ðk þ 1Þt

2
ffiffi
t
p

� �
� 1ffiffiffiffiffi

pt
p e

�kt� hðtÞþðk�1Þt
2
ffi
t
p

h i2

� 0: ð31Þ

From Abramowitz and Stegun (1972), 7.1.14, we have that

Erfc
hþ ðk þ 1Þt

2
ffiffi
t
p

� �
� 1ffiffiffi

p
p hþ ðk þ 1Þt

2
ffiffi
t
p

� ��1

e
� hþðkþ1Þt

2
ffi
t
p

h i2

; t � t1; (32)

where t1 is defined in Equation (29) and the restriction on t comes from the fact that the

inequality holds only for positive argument. Substituting Equation (32) into Equation

(31) and rewriting, we obtain

ðk þ 1Þeh � k �
ffiffi
t
p k þ 1

hþ ðk þ 1Þt

� �
� 1

2
ffiffi
t
p

� �
1ffiffiffi
p
p e

�kt� hðtÞþðk�1Þt
2
ffi
t
p

h i2

:

Also, as t!1, we let

hðtÞ ¼ h� þ h0ðtÞ; h0ðtÞ 	 1: (33)

Substituting Equation (33) into the above and simplifying, we obtain
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h0 � H1ðtÞ; (34)

where H1ðtÞ is as defined in Equation (30). In making the simplification, we have used

the facts that, for a and b positive,

ea � 1þ a; ðaþ bÞ�1 � a�1; e�ðaþbÞ � e�a:

Substituting Equation (34) into Equation (33) completes the proof.

We note that H1ðtÞ decays in proportion to

t�1=2 exp �ðk þ 1Þ2t

4

 !
: (35)

Hence the quick exponential decay ensures that H1ðtÞ becomes quite small, even for

moderate values of t. Hence H1ðtÞ is a tight bound. This is particularly useful in the

financial context. Recall that for an actual option, the maximum value ofet possible is

the length T of the contract. Hence for a bound to be useful, it must have quick

convergence for moderate values of t. (Note that this quick convergence also implies

that the asymptote h� is also a good estimate for hðtÞ.)
An important feature of Equation (35) is the inclusion of the parameter value k in

the exponent. This distinguishes our bound from others in the literature, for example,
Hedenmalm (2006), where the bound is proportional to t�3=2e�t. Although the alge-

braic decay is faster in Hedenmalm (2006), the appearance of the parameter k in our

exponent can make our bound tighter under certain conditions. (Although it is

tempting to say that our bound is better when k > 1, in reality scaling differences

make the comparison more subtle.)

The inclusion of k in our bound clarifies the effect of the underlying financial

parameters r and s on our solution. In particular, from our discussion of k above,

we see that the bound is tighter in low-volatility situations.

5. Second Upper Bound for h(t)

Using the lower bound in Equation (27) yields the main result of this article:

Theorem 4 The free boundary hðtÞ obeys the following inequality:

hðtÞ � h� þH2ðtÞ;

H2ðtÞ ¼
ð1
t

k þ 1

2DðtÞ
ffiffiffiffiffi
pt
p e

�kt� h�þðk�1Þt
2
ffiffi
t
p

h i2

dt; t > t2; (36)
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DðtÞ ¼ k � 1ffiffiffiffiffi
pt
p 1þ h�

ðk þ 1Þt

� ��1

e
�kt� h�þðk�1Þt

2
ffiffi
t
p

h i2

; (37)

where t2>t1 is defined by Dðt2Þ ¼ 0.

We begin the proof by substituting the lower bound in Equation (27) into Equation

(16) to obtain

1

2
þ k þ 1

2
J ½1� � 1

2k
ffiffiffiffiffi
pt
p e

�kt� hðtÞþðk�1Þt
2
ffi
t
p

h i2

� 1

2
J ½h0ðtÞ�;

h0 eh � 1

2
ehErfc

hþ ðk þ 1Þt
2
ffiffi
t
p

� �� �
� k

�ðk þ 1Þ eh � 1

2
ehErfc

hþ ðk þ 1Þt
2
ffiffi
t
p

� �� �
� 1ffiffiffiffiffi

pt
p e

�kt� hðtÞþðk�1Þt
2
ffi
t
p

h i2

:ð38Þ

Here we have used Equations (11), (14), (21) and (22). Substituting Equations (32)

and (33) into Equation (38), we obtain

h00 eh1eh0 � 1

2
ffiffiffi
p
p h1 þ ðk þ 1Þt

2
ffiffi
t
p

� ��1

e
�kt�½h1þðk�1Þt

2
ffi
t
p �2

" #
� � 1

2
ffiffiffiffiffi
pt
p e

�kt�½h1þðk�1Þt
2
ffi
t
p �2

:

Note that because we have used Equation (32), the above expression holds only for

t � t1. Continuing to simplify, we obtain

h00 � �
k þ 1

2DðtÞ
ffiffiffiffiffi
pt
p e

�kt� h�þðk�1Þt
2
ffi
t
p

h i2

;

where D is as defined in Equation (37).
We now consider the behaviour of D. For t > t1, D is strictly increasing, because

each of the factors in the second term are strictly decreasing (keeping in mind that

h�< 0). However, as t! tþ1 , the term with h� in it diverges, so Dðt1Þ ! �1. Hence

there must be a unique t2 > t1 for which DðtÞ > 0 for all t > t2. To preserve the

direction of the inequality in the above, we must have that DðtÞ > 0.

This is yet another upper bound as well, because we have

ð1
t

h00ðtÞdt �
ð1
t

� k þ 1

2DðtÞ
ffiffiffiffiffi
pt
p e

�kt� h�þðk�1Þt
2
ffiffi
t
p

h i2

dt:
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Noting that the left-hand side is � h0ðtÞ and the right-hand side is �H2ðtÞ, the

theorem follows.

Because the exponential decay in Equation (36) is the same as that in Equation (30), the

same remarks apply regarding the rapid convergence of the bound for even small t, as

shown in Figure 1. Hence these bounds are useful even for contracts where s2T=2 is small.

Note also from Figure 1 that the bound in Equation (36) is better than the bound in
Equation (30). This result has held for every value of k we have examined. However,

because a proof of this result is beyond the scope of this article, we present both bounds

for practitioners. Although weaker, the bound in Equation (30) is much easier to

calculate, as the expression does not involve performing an integration.

6. The Option Price

Once a bound on the exercise boundary hðtÞ has been obtained, it is trivial to obtain a
bound on V there. Given that h� � hðtÞ � h� þHj, we see that

1� eh�þHj � 1� eh � 1� eh�

1� k

k þ 1
eHj � VðhðtÞ; tÞ � V� :¼ 1

k þ 1
; (39)

where we have used the second equation in Equation (4) evaluated at x ¼ h, as well as

the definition of h� in Equation (28).

Note also that Equation (39) holds for either H1 or H2. Because these are computed

numerically, it is a straightforward calculation to obtain the lower bound in Equation (39).

0

−0.05

−0.10

−0.15

−0.20

h
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1.0

t

Figure 1. Comparison of bounds on hðtÞ for k ¼ 4. For this case, t1 ¼ 0:04 and t2 ¼ 0:07. Dashed
line: expression in Theorem 3. Solid line: expression in Theorem 4. Dotted line: h ¼ h�
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However, if a simpler expression is needed for analytical purposes, we may exploit the

fact that e�Hj � 1�Hj to obtain the following weaker bound:

1� k

ðk þ 1Þð1�HjÞ
� VðhðtÞ; tÞ � V�: (40)

The comparison between the bounds is shown in Figure 2. Note that the bounds are

nearly identical for this parameter regime. From the t-scale in the figure, it is clear that

the rapid decay of H2 forces rapid decay in V. Hence our bounds will be useful in the

financial context, where moderate t can correspond to times near the contract origina-

tion date.

7. Conclusions and Further Research

Because the American version of the put option allows early exercise, the resulting

mathematical formulation takes the form of a free boundary value problem for the

early exercise boundary hðtÞ. The full equation (14) (or equivalently, Equation (16))

governing hðtÞ is an integral equation with singularities that preclude the use of

standard numerical methods. Hence the numerical simulation of these equations,

though useful to examine the true accuracy of our bounds, is beyond the scope of
this article and will form the basis for future research.

The two upper bounds we constructed for hðtÞ exploited its recently proved con-

vexity property (Ekström, 2004; Chen et al., 2008). The bounds have several advan-

tages. For instance, both have analytical expressions. The first bound in Equation (30)

has a particularly simple expression. The second bound in Equation (36) has a more

0.21

0.20

0.19

0.18

0.17

0.16

0.15

0.14

0.13
0.2 0.3 0.4 0.5 0.6 0.7

V
(t

)

t

Figure 2. Comparison of bounds on VðtÞ for k ¼ 4 and H2. For this case, t2 ¼ 0:07. Solid line:
Bound on V from (39). Dashed line: Bound on V from (40). Dotted line: V ¼ V�
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complicated expression, but one which can be easily computed using symbolic math-

ematical software. Although our investigations indicate that Equation (36) is a better

bound than Equation (30), a formal proof of such a result is beyond the scope of this

article and will form the basis of future research.

Our numerical simulations of both bounds verified that these bounds approach the

true value of hðtÞ very quickly due to their exponential decay. Hence, these results are
useful for the analysis of real-world financial contracts, where t̃ doesn’t go to infinity,

but rather is bounded above by T.

By scaling the problem, we were able to reduce the number of parameters to a single

dimensionless combination k. Our bounds show direct dependence on k, both in the

exponential decay term and in the algebraic decay factors. Hence it is easy to see how

the efficacy of our bound depends on the underlying financial parameters r and s.

Once the bounds on hðtÞ are established, it is a trivial exercise to convert them into

bounds on V at the early exercise boundary.
Finally, the analytical techniques we used were not dependent on the particular

mathematical system under consideration. Hence we expect these techniques to be

useful in other problems where the free boundary is known to be convex.
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