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a b s t r a c t

The ubiquity of surface-volume reactions in biological and industrial processes makes knowledge of their
kinetics critical. This has spurred technological advances in several biosensors designed to measure rate
constants, such as the Flexchip and the dotLab. These biosensors have multiple reacting zones in a single
flow channel, and hence they also serve as good model systems for biochemical systems with multiple
reacting zones, such as cell membranes. A correct mathematical model for such systems must incorporate
the effects of transport and zone position. A basic unidirectional flow model is developed in general and
solved for typical experimental parameters using perturbation methods. The effect of zone placement
along the channel can be quantified in terms of an effective Damköhler number based upon position.
Moreover, it is established that zone placement across the channel does not affect the measurements.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In many important biological and industrial processes, chemical
reactions occur where one of the reactants is attached to a solid
surface. For instance, in the simplest bimolecular model, one
reactant (the ligand) floats free in solution, while the other (the
receptor) is affixed to the surface of a channel, cell membrane,
etc. For example, immunoglobulins are transmitted to newborns
from mother’s milk through binding to receptors on intestinal
epithelial cells [1]. Unfortunately, such reactions are not described
by standard kinetics, as the components are not well-mixed.

Often these surface-volume reactions occur in the presence of an
imposed flow, which can speed the reaction by continually replen-
ishing the ligand supply. For example, flow reactors are more effec-
tive at synthesizing inorganic materials on templates [2]. In the
food industry, alginate gel creation is enhanced by the addition
of a convective flow of reactant [3]. A canonical biological example
is clotting, where platelets adhere to foreign objects in the pres-
ence of blood flow [4]. In addition, many biological processes ensue
when ligands floating in the bloodstream bind to receptors on the
cell membrane [5].

In many industrial and biological contexts, the receptors are not
confined to a single connected domain on the surface. Catalytic
reactors may have multiple reacting zones on various catalytic
wires [6]. Cell membranes may have multiple reacting zones in
coated pits for the same ligand [7,8]. Lipid rafts are other structures
on cell membranes that serve as localized reacting zones [9].
ll rights reserved.
Creating a simple mathematical model of such complicated bio-
logical structures is daunting. Therefore, as a first attempt we mod-
el an experimental apparatus exhibiting the same geometry and
dynamics: the Flexchip.
1.1. The Flexchip

Scientists have long known the importance of understanding
the kinetics for such surface-volume reactions. To that end, several
competing optical biosensors have appeared on the market to mea-
sure rate constants for a given reaction in real time without dis-
turbing the underlying system. These biosensors have quickly
grown in popularity, as indicated by the fact that over 1000 papers
each year feature their use [10,11]. The configuration of such de-
vices is described in great detail elsewhere [12–14]. For our pur-
poses, it will be convenient to think of such a biosensor as a
device where ligand in solution is convected over a reacting zone,
and the process of the reaction is measured optically so as not to
disturb it.

Over time, the technology has improved so that multiple react-
ing zones can be measured at once, enabling enhanced data collec-
tion of the same or different reactions without resetting the
equipment. As a canonical example of such technology, we will
study the Flexchip made by BIAcore [15,16], though we shall show
in Section 5 that the same mathematical model also applies to the
dotLab, made by Axela [13].

The Flexchip is shown in Figs. 1 and 2. An array of circular zones
of diameter Lr is fabricated on the floor of a channel, which has
length Lf, width W, and height H. For the purposes of this paper,
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Nomenclature

Variables and parameters
Units are listed in terms of length (L), mass (M), moles (N), or time

(T). If the same letter appears both with and without tildes, the let-
ter with a tilde has dimensions, while the letter without a tilde is
dimensionless. The equation where a quantity first appears is listed,
if appropriate.eBð~x;~z;~tÞ bound ligand concentration in reacting zone on surface

~y ¼ 0, units N/L2 (2.11)eCð~x;~y;~z;~tÞ unbound ligand concentration, units N/L3 (2.5)
D molecular diffusion coefficient, units L2/T (2.5)
Da Damköhler number, which measures the ratio of reac-

tion and diffusion effects (2.7)
H height of the channel, units L
h(�) function characterizing the effect of geometry and flow

(3.9)
I(x,zf) indicator function for reacting zone (2.15a)
i indexing variable for the ~x-position of a reacting zone
j indexing variable for the ~z-position of a reacting zone
K normalized affinity constant for system, defined as koff/

konCu (2.13b)
koff dissociation rate, units T�1 (2.11)
kon binding rate, units L3/NT (2.7)
L dimensional length, variously defined, units L
n indexing variableePð~xÞ pressure in channel, units M/LT2 (2.1)
Pe Péclet number for the system, defined as VH2/DLr (2.6b)
Q flow rate through channel, units L3/T
R total number of receptor sites, units N/L2 (2.11)
Re Reynolds number for system (A.1)
Sij½B� sensogram signal from the ijth reacting zone (2.16)
~t dimensional time, units T (2.5)
V four times the (maximal) velocity of flow at center of

channel, units L/T (2.3)

~vð~y;~zÞ flow velocity, units L/T (2.1)
W width of the channel, units L
~x dimensional measure of length along the channel,

units L
~y dimensional measure of height above the binding sur-

face, units L (2.1)
Z the integers
~z dimensional measure of length transverse to channel

flow, units L
a dimensionless constant, defined as 1 + K (2.18a)
b function characterizing z-dependence of signal (4.15)
� aspect ratio of the channel, defined as H/W (2.4)
j ratio of convective time scale to reaction time scale (2.8b)
l bulk viscosity, units M/LT (2.1)
m kinematic viscosity, units L2/T (A.1)
n dummy variable (3.6)

Other notation
f as a subscript, used to indicate the flow channel
n as a subscript, used to indicate a nonreacting zone
n 2 Z as a subscript on B, used to indicate an expansion in Da

(3.7)
r as a subscript, used to indicate the reacting zone (2.11)
s as a subscript, used to indicate a steady state (2.18a)
u as a subscript on C, used to indicate its upstream value

(2.7)
D used to indicate a displacement (2.2)
1 as a subscript on h, used to indicate the outer solution

(3.9)
� as a superscript, used to indicate the lower endpoint of a

range
+ as a superscript, used to indicate the upper endpoint of

a range
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we will consider a rectangular array, as in [15]. However, hexago-
nal arrays are also used [17].

The flow in the Flexchip is laminar (see the Appendix for an esti-
mate of the Reynolds number), and due to its small height, the flow
is parabolic in the cross-section shown in Fig. 2 (see the next sec-
tion for a formal justification). Receptors are attached to the chan-
nel floor in distinct zones, shown in Fig. 2 as ~x 2 ~x�i ; ~x

þ
i

� �
. An

evanescent wave is bounced off the channel floor and read by a
detector. As the experiment progresses, binding causes refractive
changes to the polarized light beam. These changes, when com-
pared to a control state, can be translated into a sensogram of the
binding [12].

This experimental setup can be viewed as a natural generaliza-
tion of earlier-generation BIAcore SPR devices, which had only one
reacting zone. These devices, which we shall refer to as ‘‘1-zone
BIAcore’’, have been widely studied (cf. [18–21]). However, with
the addition of multiple reacting zones, the effects of ligand deple-
tion from upstream zones becomes more subtle.

In the next section we present the general governing equations
that hold in systems of this type. We then specialize to the com-
mon experimental case where the Damköhler number Da is small.
Using a perturbation analysis, we demonstrate that the effects of
zone position in the ~x- and ~z-directions decouple. The floor layer
solution characterizes the effect of the zone’s position along the
channel in the ~x-direction. The effect is related to depletion, and
hence the results are similar to those obtained for the 1-zone BIA-
core. In particular, the effect of position along the channel can be
characterized by a single parameter, the effective Damköhler
number. The wall layer solution characterizes the effect of the
zone’s position across the channel in the ~z-direction, and we estab-
lish that such effects are negligble.
2. Governing equations

2.1. The flow field

Due to the placement of the channel with respect to the inlet
and outlet, in general the flow field in the Flexchip can be quite
complicated [15]. However, as a first approximation we neglect
these effects by treating the channel length Lf as much longer than
the distance from the ends to the inlet and outlet. This leads to a
unidirectional steady velocity field ~v in the ~x-direction. We sum-
marize the evolution equations for such a field; interested readers
may find the details in [22], p. 72, for example.

By conservation of mass, a flow only in the ~x-direction will not
depend on ~x. Also, with no velocity components in the other direc-
tions, the pressure eP will depend only on ~x. Hence only the conser-
vation of ~x-momentum equation contributes to the system:

l
@2 ~v
@~y2 þ

@2 ~v
@~z2

 !
¼ deP

d~x
; ð2:1Þ

where l is the viscosity of the fluid. But the left-hand side of (2.1) is
a function of ~y and ~z, and the right-hand side is a function of ~x.
Hence both sides must be constant and we have
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Fig. 1. Schematic of Flexchip. Though the reacting zones in the device are circles, we shall model them as rectangles for simplicity.
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Fig. 2. Model of Flexchip, side view.
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l @2 ~v
@~y2 þ

@2 ~v
@~z2

 !
¼ �DP

Lf
; ð2:2Þ

where DP is the constant pressure differential that describes the ef-
fect of the pressure on the velocity field; the actual pressure eP is not
needed in the analysis.

In order to simplify the problem, we use dimensionless vari-
ables. Hence we introduce the following scalings:

v fðyf ; zf Þ ¼
~vð~y;~zÞ

V
; V ¼ H2DP

2lLf
; yf ¼

~y
H
; zf ¼

~z
W
: ð2:3Þ

Substituting (2.3) into (2.2), we obtain

@2v f

@y2
f

þ �2 @
2v f

@z2
f

 !
¼ �2; 0 6 yf 6 1; 0 6 zf 6 1; � ¼ H

W
:

ð2:4Þ

The mathematical discussion above may lead one to believe that
once given DP, we would then calculate the appropriate V for scal-
ing purposes. However, in a typical experimental setup we know
neither DP nor V, but rather the flow rate Q. In the next section
we will derive a simple relationship between Q and V; also DP drops
out of our analysis completely once V is known.

2.2. Ligand transport and the floor layer

With our unidirectional flow assumption, the convection–diffu-
sion equation for the ligand in the bulk is given by
@eC
@~t
¼ D

@2eC
@~x2 þ

@2eC
@~y2 þ

@2eC
@~z2

 !
� ~vð~y;~zÞ @

eC
@~x

; ð2:5Þ

where D is the molecular diffusion coefficient for the system. The
scalings for ~v; ~y, and ~z have been given previously. For ~x, the proper
scaling is the one associated with the reacting zones, which we treat
as rectangles. We define the ijth reacting zone to be the one with

~x 2 ~x�i ; ~x
þ
i

� �
;~z 2 ~z�j ;~z

þ
j

h i
, where ~x�1 ¼ 0. We define the length of the

first region as Lr, and consider the dimensions of each region to
be of roughly that size. The reacting regions are separated by non-
reacting regions of characteristic size Ln.

In general the convective time scale is much faster than the dif-
fusive time scale. Hence in order to balance these effects, the flow
region of interest is very near the reacting zones [20]. Thus we
introduce a ‘‘floor layer’’ near yf = 0. So the proper scalings in the
spatial directions are

x ¼
~x
Lr
; y ¼ Pe1=3yf ¼

Pe1=3~y
H

; ð2:6aÞ

where Pe is the Péclet number:

Pe¼ characteristic diffusion time
characteristic convection time across the reacting surface

¼H2=D
Lr=V

:

ð2:6bÞ

Note that with these scalings, xþ1 ¼ 1.
To choose a scale for eC , we note that an ideal experiment would

follow the well-mixed approximation without depletion due to
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infinitely fast replenishment of ligand (V =1). Therefore, it is
experimentally desirable to reduce the size of depletion as much
as possible. Hence we introduce a scaling to make the dimension-
less C into a deviation from the uniform initial value Cu. Since we
are interested in tracking the reaction, we normalize ~t by the for-
ward reaction time scale. Hence these scalings becomeeCð~x; ~y;~z;~tÞ ¼ Cu½1� DaCðx; y; zf ; tÞ�; t ¼ konCu~t; ð2:7Þ

where kon is the forward rate constant for the reaction. Da is the
Damköhler number, to be defined later. With this scaling, it is clear
that in order to minimize the effects of depletion and transport, one
wishes to make Da as small as possible. Fortunately, this is experi-
mentally realizable.

Substituting (2.6a) and (2.7) into (2.5), we obtain

j
@C
@t
¼ H2

L2
r

Pe�2=3 @
2C
@x2 þ

@2C
@y2 þ �

2Pe�2=3 @
2C
@z2

f

� Pe1=3v f ðPe�1=3y; zf Þ
@C
@x

; ð2:8aÞ

j ¼ convective time scale in layer
reaction time scale

¼ LrPe1=3=V

ðkonCuÞ�1 ; ð2:8bÞ

where we have used (2.3), (2.4) and (2.6b). We note from the
Appendix that H/Lr = O(1) and Pe� 1, so we may neglect the first
term on the right-hand side of (2.8a). In addition, we have from
the Appendix that j� 1, so the left-hand side may be neglected
as well, and we obtain

@2C
@y2 þ �

2Pe�2=3 @
2C
@z2

f

¼ Pe1=3v fðPe�1=3y; zfÞ
@C
@x

: ð2:9Þ

Because vf must satisfy the no-slip condition at zf = 0, we expect it to
be linear in the boundary layer, which forces the last term to be
O(1). However, without an explicit form for vf, it is not yet clear
which of the terms in (2.9) form a dominant balance. Hence we de-
lay further simplifications of (2.9) until later.

Since (2.9) is in steady state, no initial condition may be im-
posed. The physical reason for this is that with j ? 0, transport
is much faster than the reaction, so the flow in the layer has equil-
ibrated before the transport begins. Hence the only change to the
ligand concentration will come from coupling to the reaction zone.

Since y is a boundary-layer variable, the solution must obey the
far-field condition

Cðx;1; zf ; tÞ ¼ 0; ð2:10aÞ

since the bulk flow is unaffected by the reaction. Similarly, the reac-
tion has not yet happened at the inflow, so

Cð0; y; zf ; tÞ ¼ 0: ð2:10bÞ
2.3. Kinetic equation

Since the only difference between our model for the Flexchip
and the model in [23] for the 1-zone BIAcore is the number of
reacting zones, the kinetic equation for eB, the (area) concentration
of bound receptors, is the same as in that work:

@eB
@~t
¼ konðR� eBÞeCð~x;0;~z;~tÞ � koff

eB; ð~x;~zÞ 2 @Rr; ð2:11Þ

where koff is the backward rate constant for the reaction. Hence we
follow the analysis in [23]. The only substantive difference here is
that (2.11) holds only in the portion of the floor containing the
reacting zones, which we denote as @Rr. We then normalize eB by
the (uniform) concentration of empty receptors R at the beginning
of the experiment:
Bðx; zf ; tÞ ¼
eBð~x;~z;~tÞ

R
: ð2:12Þ

Substituting (2.7) and (2.12) into (2.11), we obtain

@B
@t
¼ ð1� BÞ½1� DaCðx;0; zf ; tÞ� � KB; ðx; zfÞ 2 @Rr; ð2:13aÞ

K ¼ koff

konCu
: ð2:13bÞ

Here K is a normalized affinity constant.
The (diffusive) flux into the reacting surface must be used up in

the reaction, so we have

D
@eC
@~y
ð~x;0;~z;~tÞ ¼ @

eB
@~t
; ð~x;~zÞ 2 @Rr: ð2:14Þ

Substituting (2.6a), (2.7) and (2.12) into (2.14), we obtain the
following:

@C
@y
ðx;0; zf ; tÞ ¼ �

@B
@t

Iðx; zf Þ; Iðx; zf Þ ¼
1; ðx; zfÞ 2 @Rr;

0; ðx; zfÞ 2 @Rn;

�
ð2:15aÞ

Da¼ konR

D=ðHPe�1=3Þ
¼ reaction “velocity”

diffusion “velocity” in diffusive boundary layer
;

ð2:15bÞ

where we have used the fact that there is no flux through the non-
reacting zone Rn.

The Flexchip measures the average of the bound state within
each reacting zone, returning the result as a sensogram signal,
which depends only on t. Hence we define Sij, the average senso-
gram signal from the ijth reacting zone, as

Sij½B� ¼
1

xþi � x�i
� �

zþj � z�j
� � Z zþ

j

z�
j

Z xþ
i

x�
i

Bðx; zf ; tÞdxdzf : ð2:16Þ

A biosensor experiment normally consists of two parts. In an
association experiment the receptors in the reacting zones are
empty, and (as discussed previously) ligand flows from the left
with input value Cu. Hence the initial condition for B in an associ-
ation experiment is given by

Bðx; zf ;0Þ ¼ 0: ð2:17Þ
2.4. Dissociation experiments

After the association experiment has run to steady state, one
starts a dissociation experiment by shutting off the ligand supply
and allowing the bound state to dissociate over time. Hence the
initial condition for a dissociation experiment is the steady state
Bs of the association experiment. The steady state of (2.15a) implies
that the ligand concentration is uniform in y, which means that
C = 0 to match the far-field condition (2.10a). Substituting this re-
sult into (2.13a) yields

Bs �
1
a
; a ¼ 1þ K; ð2:18aÞ

and hence

Bðx; zf ;0Þ ¼ a�1 ð2:18bÞ

is the initial condition for B for a dissociation experiment.
During the dissocation experiment, there is no ligand flowing

into the channel. However, since Bs (and hence the initial condition



0

Fig. 3. Concentration of the bound state, normalized by initial receptor site density
(B0 as given in (3.8)) vs. ~t for (in decreasing order of thickness) K = 0.1, 0.5, 2.5, 12.5,
62.5.

Table 1
Parameter values for computations.

Parameter Value Parameter Value

Cu (mol/cm3) 10�11 t 10�4~t=s
kon (cm3/mol/s) 107
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(2.18b)) depends on Cu (through a), we keep the same size scaling
as in (2.7), simply replacing it by

eCð~x; ~y;~tÞ ¼ CuDaCðx; y; tÞ: ð2:19Þ

Replacing (2.7) with (2.19) yields the following equations, analo-
gous to (2.13a) and (2.15a):

@B
@t
¼ ð1� BÞDaCðx;0; tÞ � KB; ðx; zf Þ 2 @Rr; ð2:20aÞ

@C
@y
ðx;0; tÞ ¼ @B

@t
Iðx; zfÞ: ð2:20bÞ

Note that the new scaling will not affect (2.9).

3. Outer solution (depletion effects)

In order to solve the problem, we first consider the flow field.
Motivated by the Appendix, we use the fact that �� 1 in (2.4) to
yield

v fðyf ; zf Þ ¼ yfð1� yf Þ; ð3:1Þ

which is exactly the expression we obtain if ignoring the walls en-
tirely [23]. Indeed, this solution will break down only for distances
zf = O(�) from the walls, which corresponds to ~z ¼ OðHÞ. Therefore,
as long as the spots are far enough away from the outer walls, the
effect of their presence may be ignored. (We will explicitly quantify
‘‘far enough’’, which turns out to be much closer than O(H), in the
next section.)

In the floor layer where yf ? 0, we have from (3.1) that

v fðyf ; zf Þ � yf ¼ Pe�1=3y: ð3:2Þ

Substituting (3.2) into (2.9), we obtain the following:

@2C
@y2 ¼ y

@C
@x

: ð3:3Þ

Also, with this approximation, any contributions to the flux
from the boundary layers will be negligible. Hence we can relate
V to the flow rate Q as follows:

Q ¼
Z H

0

Z W

0
~vð~y;~zÞd~zd~y ¼ VWH

6
: ð3:4Þ

Note that by using (3.4) and (2.6b) in (2.15b), we may obtain an
expression for Da in terms of Q:

Da ¼ konR
WH2Lr

6QD2

 !1=3

: ð3:5Þ

Hence increasing the flow rate decreases Da (and hence the effect of
transport), as expected.

3.1. Association experiment

Since there is no explicit zf-dependence in (3.3), C is indepen-
dent of zf away from the walls (since the influx condition is), and
so is B. We may solve (3.3) subject to the boundary and matching
conditions (2.10) via Laplace transforms in x. (We may take x to be
semi-infinite without difficulty because of the placement of the
reacting zones [23].)

The result in Laplace transform space is an Airy function, whose
value at y = 0 must be known in order to obtain the quantity
C(x,0, t), which is the only fact we need in (2.13a). The Laplace
transform of this quantity can be expressed in terms of its y-deriv-
ative, and the entire expression inverted to yield

Cðx;0; tÞ ¼ � 1

31=3Cð2=3Þ

Z x

0

@C
@y
ðn;0; tÞ dn

ðx� nÞ2=3

¼ 1

31=3Cð2=3Þ

Z x

0

@B
@t
ðn; tÞIðnÞ dn

ðx� nÞ2=3 ; ð3:6Þ

where in the last line we have used (2.15a). If there is only a single
reacting zone, I(n) � 1 and we reduce to the case of a single reacting
zone in the BIAcore [24]. Note that the integral in (3.6) has a clear
physical interpretation: namely that C is influenced by depletion ef-
fects upstream (which occur only in the regions where I(n) = 1).

Also note that the influence of @B/@t decays with distance away
from x. Therefore, even though there is no ligand being drawn out
of the system in the nonreacting zones, the concentration is still af-
fected because of this decaying ‘‘memory effect’’. In physical terms,
(3.3) is a balance between convection in the x-direction and diffu-
sion in the y-direction. Hence ligand has a chance to diffuse back to
the surface in the absence of the driving force of the reaction.

As mentioned above, to minimize transport effects scientists
design experiments so Da� 1. Hence we expand B in a perturba-
tion series in Da:

Bðx; tÞ ¼ B0ðx; tÞ þ DaB1ðx; tÞ þ oðDaÞ: ð3:7Þ

Substituting (3.7) into (2.13a) and (2.17) and solving, we obtain, to
leading order,

B0ðx; tÞ ¼
1� e�at

a
: ð3:8Þ

We plot B0 in Fig. 3 using the parameters in Table 1. Here the
parameters are chosen as representative values from the ranges
shown in the Appendix. Note also that by choosing a fixed value
of kon to set the time scale, the variance of K in Fig. 3 is set solely
by varying koff. Varying K (and hence a) changes not only the steady
state, but also the characteristic time of the evolution, consistent
with (3.8).



Fig. 4. Difference between well-mixed normalized bound state solution (3.8) and
the solution to the ERC Eq. (3.14), which incorporates transport effects. In
decreasing order of thickness: i = 1 (1-zone BIAcore), 2, 3, 4, 5. Inset: B0 (thick
line) and S5½B� (thin line).
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Since Da = 0 in the leading-order solution, (3.8) is the solution in
the well-mixed case, and hence is spatially uniform. Thus to lead-
ing order we may pull the @B/@t term out of the integrand in (3.6),
leaving a simple integral we can compute:

Cðx;0; tÞ ¼ 1

31=3Cð2=3Þ
dB0

dt

Z x

0
IðnÞ dn

ðx� nÞ2=3 þ OðDaÞ

¼ dB0

dt
h1ðxÞ þ OðDaÞ; ð3:9Þ

h1ðxÞ ¼
32=3x1=3

Cð2=3Þ ; x 2 ½0;1�; ð3:10aÞ

h1ðxÞ ¼
32=3

Cð2=3Þ
Xi�1

n¼1

x� x�n
� �1=3 � x� xþn

� �1=3
h i

þ x� x�i
� �1=3

( )
;

x 2 x�i ; x
þ
i

� �
; i > 1; ð3:10bÞ

where the1 notation will become clear in the next section. Substi-
tuting (3.7) and (3.9) into (2.13a), we obtain

@B
@t
þ Dað1� B0Þ

dB0

dt
h1 ¼ 1� aBþ OðDa2Þ: ð3:11Þ

In order to analyze the experimental data, expressions for B are
not enough: we must translate them into expressions for the sens-
ogram signal. Since B is independent of zf, we may average (2.16)
immediately in that direction to obtain

Si½B� ¼
1

xþi � x�i

Z xþ
i

x�
i

Bðx; tÞdx ð3:12Þ

for any zone in the ith row.
Using (3.12) to rewrite (3.11) in terms of the signal, we obtain

dSi½B�
dt
þDaið1�Si½B0�Þ

dSi½B0�
dt

¼1�aSi½B�þOðDa2Þ; Dai¼DaSi½h1�:

ð3:13Þ

Here Dai is an effective Damköhler number that now incorporates
the position of the reacting zone along the channel. Since
B = B0 + O(Da), we may simplify (3.13) to obtain

dSi½B�
dt

¼ 1� aSi½B�
1þ Daið1� Si½B�Þ

þ OðDa2Þ; Si½B�ð0Þ ¼ 0; ð3:14Þ

where we have derived the initial condition by averaging (2.17).
A complete model for the Flexchip would be the PDE system

involving (3.3) or the nonlinear integrodifferential equation that
would result upon substituting (3.6) into (2.13a). However, in the
limit of small Da, we may effectively approximate the sensogram
signal by the solution of the simple ODE (3.14), which is much eas-
ier to solve numerically through device software. For this reason,
we denote (3.14) as an effective rate constant (ERC) equation.

For completeness, we compute the general expressions for Dai,
which are as follows:

Da1 ¼
35=3Da

4Cð2=3Þ ; ð3:15aÞ

Dai ¼
Da1

xþi � x�i
xþi � x�i
� �4=3 þ

Xi�1

n¼1

xþi � x�n
� �4=3 � xþi � xþn

� �4=3
h(

� x�i � x�n
� �4=3 þ x�i � xþn

� �4=3
i)
; i > 1: ð3:15bÞ

However, in order to plot results, we specialize to the case of the
Flexchip described in [15]. In that paper, the width of the reacting
zones and the nonreacting zones are all equal (and with our scalings
are normalized to 1), so we have x�i ¼ 2ði� 1Þ, xþi ¼ 2i� 1.
Exploiting these simpler expressions as well as cancellation proper-
ties of the sum, we obtain

Dai ¼ Da1 ð2i� 1Þ4=3 þ 2
X2i�2

n¼1

ð�1Þnþ1n4=3

" #
; ð3:16aÞ

which can be written recursively as

Daiþ1 ¼ Dai þ Da1 ð2i� 1Þ4=3 � 2ð2iÞ4=3 þ ð2iþ 1Þ4=3
h i

: ð3:16bÞ

As zones are placed further downstream, i increases. Upon noting
that the bracketed expression is related to a difference approxima-
tion to the (positive) second derivative of x4/3, it is clear that Dai

(and hence the effect of depletion) increases as the zones are placed
further downstream.

From the form of (3.15b), we see that the effect of zone place-
ment is simply to change the coefficient in front of the experimen-
tal parameter Da. The effect of varying Da on the bound-state
evolution has been well-documented (cf. [20,23,25,26]), and so in
this work we pick a single value of Da and consider only the effects
of zone placement.

In Fig. 4 we plot the difference between the solution of the ERC
equation and the well-mixed solution B0 for various values of i. We
use the parameters in Table 1, the Flexchip model that yielded
(3.16a), and the following additional parameter values:

K ¼ 1; Da ¼ 0:1; ð3:17Þ

which are within the ranges in the Appendix. The quantity plotted is
B0 � Si½B� > 0, so the transport effects slow the pace of the reaction.
As shown in the inset, rather than creating a ‘‘bump’’ or ‘‘dimple’’ in
the sensogram data, depletion simply slows its rise, causing a naïve
user to underestimate the true rate constant.

Also, note that as i increases, the transport effect increases, as
predicted. However, the small size of Da (both mathematically
necessary for the analysis and experimentally desirable) ensures
that the depletion difference between the zone with i = 1 and
downstream zones is quite small. This small variation in the
data between reacting zones has been seen in the literature
(cf. [15,27,28]).

3.2. Dissociation experiment

Since the scaling (2.19) in a dissociation experiment does not af-
fect (2.9), (3.3) also holds. Since the only difference between
(2.15a) and (2.20b) is a minus sign, (3.6) becomes
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Cðx;0; tÞ ¼ � 1

31=3Cð2=3Þ

Z x

0

@B
@t
ðn; tÞIðnÞ dn

ðx� nÞ2=3 : ð3:18Þ

Substituting (3.7) into (2.20a) and (2.18b), we obtain, to leading
order,
B0ðx; tÞ ¼
e�at

a
: ð3:19Þ
Fig. 6. Difference between well-mixed normalized bound state solution (3.19) and
the solution to the ERC Eq. (3.21), which incorporates transport effects. In
We again have a simple spatially uniform exponential analogous to
(3.8) in the association case. The solution is plotted in Fig. 5 using
the same parameters as before. Again note that increasing K reduces
both the initial condition (which is the steady state of the associa-
tion experiment) and the characteristic time scale.

Since the solution for B0 is spatially uniform, we may rewrite
(3.18) as
decreasing order of thickness: i = 1 (1-zone BIAcore), 2, 3, 4, 5.
Cðx;0; tÞ ¼ � dB0

dt
h1ðxÞ þ OðDaÞ; ð3:20Þ

where h1(x) is as defined in (3.10). Substituting (3.7) and (3.20) into
(2.20a), we obtain

@B
@t
þ Dað1� B0Þ

dB0

dt
h1 ¼ �KBþ OðDa2Þ;

which is the same as (3.11) with 1 � aB replaced by �KB. Hence
(3.14) becomes
dSi½B�
dt

¼ �KSi½B�
1þ Daið1� Si½B�Þ

þ OðDa2Þ; Si½B�ð0Þ ¼ a�1; ð3:21Þ

where Dai is defined in (3.15b).
Fig. 6 is the dissociation analog to Fig. 4. In this case

B0 � Si½B� < 0. So dissociation goes faster when Da = 0, and the
transport effects slow the pace of the reaction. Again the size of
the depletion effect moving downstream is small.
4. Inner solution (wall effects)

Obviously the solution (3.1) for the flow does not satisfy the no-
slip conditions on the walls zf = 0, zf = 1. Since in the Flexchip mul-
tiple reacting zones are aligned along the channel width, we must
consider changes in the flow now near the walls to determine
whether they will affect our experimental results.
Fig. 5. Concentration of the bound state, normalized by initial receptor site density
(B0 as given in (3.19)) vs. ~t for (in decreasing order of thickness) K = 0.1, 0.5, 2.5,
12.5, 62.5.
Due to the underlying symmetry of the problem, it is sufficient
to solve only near zf = 0 by defining the following ‘‘wall-layer’’
variable:

z ¼ zf

�
: ð4:1aÞ

Since we are interested in the deviation from the outer solution due
to wall effects, we scale the velocity in that fashion:

v f ðyf ; zfÞ ¼ yfð1� yfÞ � vðyf ; zÞ; zf ! 0; ð4:1bÞ

where we have used (3.1). Note our formulation in (4.1b) indicates
that v is the deviation of the velocity in the wall layer from the
undisturbed outer solution.

Substituting (4.1) into (2.4), we obtain

@2v
@y2

f

þ @
2v
@z2 ¼ 0: ð4:2Þ

The solution to this PDE must satisfy all three no-slip conditions:

vð0; zÞ ¼ vð1; zÞ ¼ 0; vðyf ;0Þ ¼ yfð1� yfÞ; ð4:3aÞ

where the third condition arises from the form of (4.1b). Also given
this form, the matching condition becomes

vðyf ;1Þ ¼ 0; ð4:3bÞ

since as we exit the layer the deviation must go to zero.
The form of the yf boundary conditions in (4.3a) motivates a

sine-series solution. Rewriting (4.2) and (4.3) in transform space
and solving, we obtain the following solution for vf:

v f ðyf ; zfÞ ¼ yfð1� yfÞ �
X1
n¼0

8

ð2nþ 1Þ3p3
expð�ð2nþ 1ÞpzÞ

	 sinð2nþ 1Þpyf ; ð4:4Þ

which in general is difficult to analyze. However, to examine the li-
gand transport Eq. (2.9) we need only the behavior of the function
in the floor layer near yf = 0. Hence we have

v f ðyf ; zfÞ � yf ½1� vDðzÞ�; yf ! 0; zf ! 0; ð4:5aÞ

vDðzÞ ¼
X1
n¼0

8

ð2nþ 1Þ2p2
expð�ð2nþ 1ÞpzÞ: ð4:5bÞ

With (4.5a) replacing (3.2), (2.9) becomes

@2C
@y2 ¼ y½1� vDðzÞ�

@C
@x

; ð4:6Þ

where we have used the fact that Pe� 1 to eliminate the z-deriva-
tive terms. But since z does not appear in the derivatives, we can



Fig. 7. Average concentration depletion across a reacting zone, normalized by the
depletion infinitely far away from the wall, for Dz = 8.33 	 10�1 (thick line) and
Dz = 1.94 (thin line). Here ~z is measured as distance away from the wall.
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transform (4.6) into (3.3) by letting y0 = y[1 � vD(z)]1/3. Hence (3.6)
becomes

Cðx;0; z; tÞ ¼ � 1

31=3Cð2=3Þ½1� vDðzÞ�1=3

Z x

0

@C
@y
ðn; 0; z; tÞ dn

ðx� nÞ2=3

¼ 1

31=3Cð2=3Þ½1� vDðzÞ�1=3

Z x

0

@B
@t
ðn; z; tÞIðnÞ dn

ðx� nÞ2=3

ð4:7Þ

and the effect of the wall simply appears as a factor premultiplying
our previous work.

When Da is small, B0 is still a function of t only and we obtain

Cðx;0; z; tÞ ¼ dB0

dt
hðx; zÞ þ OðDaÞ; hðx; zÞ ¼ h1ðxÞ

½1� vDðzÞ�1=3 ; ð4:8Þ

where h1(x) = h(x,1) is defined in (10). Note that as in [29], the
contributions from transport in the various directions decouple.

But note from (4.5a) that as z ? 0, 1 � vD (z) ? 0 to satisfy
the no-slip condition, and hence C ?1. To explain the paradox,
recall that C is the scaled displacement from the inlet value. In
most of the channel, when the reaction occurs (driving the
concentration down and C up), there is a velocity field that con-
vects new ligand to the receptor sites, reversing that process.
However as z ? 0, there is no velocity field by (4.6), so (in this
scaling) the depletion continues ad infinitum, driving C to
infinity.

Hence our scaling must fail as z ? 0. In particular, as z ? 0, C is
eventually going to become O(Da�1), which would then violate the
assumptions that lead to (4.8). In this case, the true ligand concen-
tration 1 � DaC would go to zero at the reacting zone, driving @B/@t
to zero and making (4.7) well-behaved. Thus in order for (4.8) to be
valid, we must have

½1� vDðzÞ�1=3 � Da: ð4:9Þ

To calculate a value of z corresponding to this bound, we first
obtain a simpler expression for vD by noting that

v 00D ¼
8e�pz

1� e�2pz
; v 0Dð1Þ ¼ 0; vDð1Þ ¼ 0;

the solution of which is given by

vDðzÞ ¼
4
p2 ½dilogð1� e�pzÞ � dilogð1þ e�pzÞ�; ð4:10Þ

where dilog is the dilogarithm function defined by [30]

dilogn ¼
Z n

1

log n0

1� n0
dn0: ð4:11Þ

This can also be determined directly from the sum in (4.5b) ([31],
27.7.2).

Expanding (4.10) for small z, we have that

1� vDðzÞ � �
4z log z

p
� Da3: ð4:12Þ

For the value of Da in (3.17), this yields

z� 8:4	 10�5: ð4:13Þ

In the Flexchip, the distance between a zone and the wall is on the
same order as the width of a zone, which we denote as Dz. Hence
using the lower bound on Dz from the Appendix, we see that
(4.13) is always satisfied.

Eq. (4.13) is a much less restrictive bound than the simple O(H)
bound mentioned at the beginning of Section 3. That is because the
wall layer has a much larger effect on the core flow (where it drives
an O(1) velocity to zero) than it does on the floor layer (where the
velocity is already O(Pe�1/3) to begin with).

To examine the effect of the distance from the wall on the sens-
ogram signal, it is convenient to redefine the z-range of the react-
ing zone as z 2 [zj,zj + Dz]. Hence we have that

Sij½B� ¼
1

ðxþi � x�i ÞDz

Z zjþDz

zj

Z xþ
i

x�
i

Bðx; z; tÞdxdz: ð4:14Þ

To complete the solution, we see from (3.13) that we need the new
value of DaSij½h�. Since the x- and z-dependences separate, the two
integrals decouple and we obtain

DaSij½h� ¼ DaibðzjÞ; bðzjÞ ¼
1
Dz

Z zjþDz

zj

1

½1� vDðzÞ�1=3 dz; ð4:15Þ

where we have used (3.13). To understand the physical meaning of
b, we examine (4.8). Considering the concentration deviation C, we
see that the ratio between the case including and ignoring the walls
is given by

Cðx;0; z; tÞ
Cðx;0;1; tÞ ¼

hðx; zÞ
h1ðxÞ

¼ 1

½1� vDðzÞ�1=3 : ð4:16Þ

Hence by (4.16) we see that b is just the average of this ratio over
the jth spot. b hence quantifies how the bulk concentration (and
hence the concentration of the bound state) is affected by the
changes in flow velocity that occur near the wall. Therefore values
of b near 1 correspond to zone placement where wall effects are
negligible.

Note that the integral must be done numerically for each set
of endpoints, but once computed for one zone, it can be stored
and need not be recalculated. Since the x- and z-effects separate,
it is sufficient to pick a particular i (we select i = 1) and then
graph the relative effects of varying the z-position of the reacting
zone.

Fig. 7 shows a graph of b vs. ~z for the upper and lower bounds on
Dz given in the Appendix. Note that it very quickly approaches the
matching value 1, so in general we do not expect significant wall
effects. In particular, if as described in [15], a 1 cm array of zones
is centered in a 1.3 cm channel, then the closest reacting zone
starts at ~z ¼ 0:15 cm, which is outside the range of Fig. 7. So we
expect wall effects to be negligible.
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Fig. 10. Schematic of dotLab device.
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With the computations in (4.15), we see that (3.14) and (3.21)
become

dSij½B�
dt

¼ 1� aSij½B�
1þ DaibðzjÞð1� Sij½B�Þ

þ OðDa2Þ; Sij½B�ð0Þ ¼ 0; ð4:17aÞ

dSij½B�
dt

¼ �KSij½B�
1þ DaibðzjÞð1� Sij½B�Þ

þ OðDa2Þ; Sij½B�ð0Þ ¼ a�1:

ð4:17bÞ

Fig. 8 shows the difference in the measured sensogram signal
when one takes into account the z-placement of the layer. Note
that the difference is exceedingly small.

These same arguments hold for the dissociation case, as shown
in Fig. 9.
5. Remarks

5.1. The dotLab

The dotLab is another biosensor with multiple reacting zones. A
schematic of the flow cell is shown in Fig. 10. (The optical principle
used to take the measurements is different from that used in the
Flexchip, but that is irrelevant to our analysis.).

As can be seen from the diagram, there are two major differ-
ences between the devices: the relative size of the reacting zones
Fig. 8. Difference between the solution Si½B� of (3.14) (which ignores wall effects)
for the sensogram signal and the solution Sij½B� of (4.17a). Here i = 1. In decreasing
order of thickness: zj = 1, 2.

Fig. 9. Difference between the solution Si½B� of (3.21) (which ignores wall effects)
for the sensogram signal and the solution Sij½B� of (4.17b). Here i = 1. In decreasing
order of thickness: zj = 1, 2.
as compared to the flow cell, and the number of columns of zones.
Hence our discussion from Section 3 holds, and the difference be-
tween zones can be quantified through an effective Damköhler
number. Also, from Section 4 we see that the placement of the
zones in the ~z-direction is unimportant, so the position of the zone
columns is irrelevant.

5.2. Generic flow fields

Given the geometry for the Flexchip indicated in Fig. 1, it is
clear that we have made some simplifying assumptions when
postulating unidirectional flow. Indeed, numerical simulations
have shown [15] that the flow in the Flexchip can be quite com-
plicated. Nevertheless, several aspects of our analysis are relevant
to treatments of geometries and flow fields more similar to the
actual device.

In particular, the differences we found in the x-direction were
caused by depletion from upstream zones. Even in the context of
more complicated flows, there will still be ‘‘upstream’’ and ‘‘down-
stream’’ zones, and the depletion effects will be similar. Fortu-
nately, we found these effects to be small.

Moreover, it has been shown [26] that in the experimentally
important case of small Da, the leading order B0 of the bound state
will always be spatially uniform, as in (3.8) and (3.19). Hence the
time- and space-components of the deviation C from the upstream
ligand concentration will decouple as in (4.8). For a different geom-
etry or flow field, there will just be a different form for h, but the
form (4.8) will still hold. As an added advantage, h is a function
of only the flow field and geometry—parameters associated with
the device, not the experiment. Hence h need be computed only
once for a device, and its value stored for use in analyzing all reac-
tions tested with that device.
6. Discussion

Many biological processes occur in surface-volume geometries.
Because of the complicated structures involved, in many cases the
surface contains multiple reacting zones for the same ligand. In or-
der to devise an appropriate mathematical model for such systems,
we begin by modeling optical biosensors with similar geometry
and dynamics.

These biosensors with multiple reacting zones are designed to
acquire data more quickly and efficiently. This data is then used
to understand the underlying kinetics of both biological mecha-
nisms and industrial processes. However, such data can be used
for parameter estimation only with a proper mathematical model
to interpret it.

In particular, given the imposed flow in such devices, deple-
tion will reduce the amount of ligand available to bind to down-
stream zones. In addition, even though flow throughout most of
the device (and hence most of the zones) is uniform in z, the flow
field will be different near the channel sides, as it must transition
from the bulk flow field to the no-slip condition at the wall.
Hence it is reasonable to consider whether placing zones in these



Table 2
Parameter values from the literature.

Parameter Value Reference

Cu (mol/cm3) 2.98 	 10�12 � 2 	 10�10 [15]
D (cm2/s) 6.94 	 10�6 [15]
H (cm) 1.8 	 10�2 [16]
koff (s�1) 10�5 � 10�2 [16]
kon (cm3 s/mol) 105 � 109 [16]
Lf (cm) 2 [15]
Ln (cm) 2 	 10�2 � 2.44 	 10�2 [15]
Lr (cm) 1.5 	 10�2 � 3.5 	 10�2 [16]
Q (lL/min) 100–1500 [16]
R (mol/cm2) 1.11 	 10�13 � 2.33 	 10�11 [15]
W (cm) 1.3 [15]

Table 3
Calculated parameter values.

Parameter Value Parameter Value

Da 1.06 	 10�6 � 7.28 V (cm/s) 4.27 	 10�1 � 6.41
K 5 	 10�5 � 3.36 	 104 Dz 8.33 	 10�1 � 1.94
Pe 5.70 	 102 � 2.00 	 104 � 1.38 	 10�2

Re 68.01 	 10�1 j 1.89 	 10�8 � 1.36 	 10�1
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areas will affect the measurements. In this paper we examined
both possibilities.

In Section 2 we presented the general governing equations that
hold under a uniform flow assumption. By exploiting its small as-
pect ratio, in Section 3 we established that in most of the channel,
edge effects are negligible and the system can be treated as two-
dimensional with reacting zones aligned in series. Hence the model
is quite similar to that for the one-zone BIAcore device, with one
key difference: namely, the ligand available for any row is reduced
by depletion in the upstream rows.

In Section 4 we examined the boundary layers in the flow near
the channel walls. In this region, the ‘‘core flow’’ away from the
channel floor goes from O(1) to zero at the wall. However, for
the purposes of the reaction, the important region is not the core
flow; rather it is the ‘‘unstirred layer’’ of width O(Pe�1/3) near
y = 0. Using a separation-of-variables technique, we were able to
separate the effects of transport in the x- and z-directions, as
illustrated in (4.7), which differs from (3.6) only through a
z-dependent premultiplier.

In the unstirred layer that is of interest, the velocity is O(Pe�1/3).
Hence the adjustment in the velocity required to satisfy the no-slip
condition at the wall is minimal. This is indicated by the bound
(4.9), which is violated only for values of z so small that the react-
ing zones will never reach them.

6.1. Conclusions

When using an optical biosensor with multiple reacting zones,
geometric considerations can be effectively decoupled into two
categories: those concerned with placement along the channel
length, and those concerned with placement across the channel
width.

Our results show that placement along the channel length does
have an effect on the bound state (cf. Figs. 4 and 6, which echo the
experimental results in [15,27,28]). In particular, the reaction pro-
ceeds more slowly due to depletion of the ligand upstream. For the
experimentally common case of small Da, these effects can be
encapsulated in the effective Damköhler number Dai as defined
in (3.16). Zones placed further down the channel have increased i
(and hence Dai), which slows the reaction, as can be seen from
Eq. (3.14) for the sensogram signal.

Our results show that placement across the channel width
does not have an appreciable effect on the bound state (cf. Figs.
8 and 9). As shown in Fig. 7, the ligand concentration as close
as 0.04 cm to the wall is the same as that in the center of the
channel to within one part in a thousand. Therefore, designers
may push the zones as close to the wall as practicable (allowing
greater array density) without concern about introducing spuri-
ous measurement data.

These results have wider applicability beyond the Flexchip. Not
only does the dotLab device have a similar geometry, but as dis-
cussed in Section 1, other biological and industrial applications ex-
ist in such unidirectional flow regimes. Moreover, due to the
convenient structure of the ERC equation, the effect of the geome-
try manifests itself only through h(x,z), which need be computed
only once for each device.

6.2. Further research

In the context of modeling the Flexchip, several mathematical
systems arise. The first, Eq. (2.4) for the velocity subject to inflow
and non-slip conditions, has been well studied, However, the non-
linear system of boundary conditions (2.13a) and (3.6) makes the
PDE system for C including (3.3) quite nonstandard. The focus of
this manuscript has been constructing the model and solving it
for parameters and boundary conditions specific to the Flexchip.
We delay the interesting question of whether such a system is
well-posed for all such conditions to later work.

Further research will focus on refining our work to model such
biosensors more accurately. In particular, we shall relax the unidi-
rectional flow assumption, consider different geometric array pat-
terns, and model the effect of circular reacting zones.
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Appendix A

In Table 2 we list relevant parameter values for our analysis of
the Flexchip, using product information about the BIAcore when
possible [16] and referencing [15] when not. In [15], the reacting
zones were considered to be circles with diameters equal to Lr

and with closest spacing between the circles equal to Ln. The lower
bound on Ln is from the simulation, while the upper bound comes
from the calculations on Fig. 1A (both from [15]).

Table 3 shows the range of values for parameters used in this
paper. Note that the velocity V is smaller than the typical range
in the BIAcore [23] because of the larger cross-sectional area of
the Flexchip channel. On the other hand, since we scale x by the
length of the reacting zone, the minimum Pe is much larger than
in the BIAcore [23]. The wide range of Da is typical for these sys-
tems, though the larger values are obtained only under extremely
unlikely conditions.

When examining the full three-dimensional model for the Flex-
chip, one finds that the appropriate Reynolds number for the flow
is

Re ¼ VH2=mLf : ðA:1Þ

The value in the table was calculated using m = 10�2 cm2/s, which is
the kinematic viscosity of water at 20 �C [32]. Note that this value
places the system well within the laminar regime.
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