
Chapter 6
An Asymptotic Method to a Financial
Optimization Problem

Dejun Xie, David Edwards, and Giberto Schleiniger

Abstract This paper studies the borrower’s optimal strategy to close the mortgage
when the volatility of the market investment return is small. Integral equation repre-
sentation of the mortgage contract value is derived, then used to find the numerical
solution of the free boundary. The asymptotic expansions of the free boundary are
derived for both small time and large time. Based on these asymptotic expansions
two simple analytical approximation formulas are proposed. Numerical experiments
show that the approximation formulas are accurate enough from practitioner’s point
of view.
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6.1 Introduction

Consider a mortgage with a fixed interest rate of c (year�1). Assume that the under-
lying risk free rate following the CIR model [1], which says drt D k.� � rt /dt C
�

p
rtdWt; where k; �; � are positive constants. According to standard mathemati-

cal finance theory (see [4, 8–10], for instance), the value of the mortgage contract
V.x; t/ at any specified t , the time left to the expiry of the contract, and the corre-
sponding interest rate x , when it is not optimal for prepayment, satisfies

@V

@t
� �2

2
x
@2V

@x2
� k.� � x/@V

@x
C xV D mI (6.1)

and when the borrower decides to terminate the contract prematurely at time t , he
needs to pay the mortgage loan balance

M.t/ D m

c

h
1 � e�ct

i
; (6.2)
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where m denotes the continuous mortgage payment rate, i.e., the borrower pays
mdt (dollars) to the mortgage contract holder (the lender) for each time period dt .
Mathematically we have a free boundary problem where the free boundaryx D h.t/

defines the optimal market interest rate level at which the borrower should terminate
the contract. For the continuation region where x > h.t/, the contract is in effect and
the value of the contract satifies (6.1). For the early exercise region where x � h.t/,
the contract is closed and the lender gets back the loan balance of M.t/. Because
it is the borrower, rather than the lender, who is a proactive player of the game and
has the choice to act in response to the market, so the value of the contract is always
less or equal than the loan balance. Thus the free boundary is where the value of the
contract V.x; t/ first reaches the value of the mortgage loan balanceM.t/. It is easy
to show, using the free of arbitrage argument, that the free boundary starts from c,
i.e., h.0/ D c. And because of the smooth patch is needed for the regularity of the
problem, we have the derivative of V.x; t/ must be 0 on h.t/. Lastly, it is trivially
true that V.x; 0/ D 0, which says that the value of the contract, when the contract is
expired, must be 0. Putting all these condition together, we formulate the problem
as follows: for 8x � 0 and t > 0, find V.x; t/ and h.t/ such that

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

L.V / D m; for x > h.t/; t > 0

V D m

c
Œ1 � e�ct �; for x � h.t/; t > 0

@V

@x
.h.t/; t/ 	 0

V.x; 0/ D 0; for all x � 0

h.0/ D c

(6.3)

where the differential operator L is defined as

L.V / D @V

@t
� �2

2
x
@2V

@x2
�k.� � x/@V

@x
C xV (6.4)

Because of the important role played by mortgage backed securities in real econ-
omy, there has been continuing interest in mortgage pricing and related problems,
especially the prepayment strategies for mortgage borrowers. Most of the studies,
such as [2, 5], are from option-theoretical viewpoint. A similar problem with un-
derlying interest rate following Vasicek model was recently studied with variational
integral equation approach in [3, 7]. In this paper, we focus on the situation where
the volatility � is small. Such an assumption is reasonable for the long term real
economy. More discussions on parameter estimation for risk free market return can
be found in [6].

Herewefirstderive the integral representationofthesolutionwiththefreeboundary
embedded, then prove the monotonocity and boundedness of the free boundary,
then design an effective iteration scheme to solve the problem numerically. Based
on the asymptotic analysis, we drive two analytical approximation formulas for the
optimal prepayment boundary. Numerical simulations are carried out to validate our
approximation formulas.
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6.2 Integral Representation of the Solution

We first derive the characteristic solution. When � ! 0, the PDE (6.1) reduces to

@V

@t
� k.� � x/@V

@x
C xV D m: (6.5)

Lemma 6.2.1 The characteristic solution associated with (6.5) is

V.X.t/; t/ D me�� t� X.t/��
k

Z t

0

e��C X.�/��
k d
; (6.6)

where
X.t/ D � C .X0 � �/ekt (6.7)

for each given X.0/ D X0.

Proof. Starting with each intial point .X.0/; 0/; X.0/ D X0 � 0, we define the
characteristic curve related to (6.5) as

@X

@t
D �k.� �X/; X.0/ D X0;

which gives
X.t/ D � C .X0 � �/ekt : (6.8)

Now on each characteristic curve, we have the following ODE for V.X.t/; t/ de-
fined as

dV

dt
C .� C .X0 � �/ekt /V D m

or equivalently

d

dt

n
Ve� tC

X0��

k
ekt
o

D me� tC
X0��

k
ekt

the solution of which is

V D me�� t� X0��

k
ekt

Z t

t�
e��C X0��

k
ek�

d
 (6.9)

Because of the requirement of V.X.0/; 0/ D 0, we have t	 D 0.

Lemma 6.2.2 The solution to (6.5) is given by

V.x; t/ D me� x��
k

Z t

0

e��sC x��
k
e�ks

ds; (6.10)
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it is strictly decreasing in x, ranges from limx!�1 V.x; t/ D 1 to limx!1
V.x; t/ D 0.

Proof. Reformulate the equation of V.X.t/; t/ in ( 6.6), we have

V.X.t/; t/ D me�� t� X.t/��
k

Z t

0

e��C X.�/��
k d


D me� X.t/��
k

Z t

0

e��sC X.t/��
k

e�ks

ds:

Write x D X.t/, we have the desired form of the solution as in (6.10). To validate
the monotonocity of V in x, we note that, in the set where V satisfies (6.5), Vx WD
@V
@x

satisfies the differential inequality

@Vx

@t
� k.� � x/

@Vx

@x
C .x C k/Vx D �V < 0:

The limits of V as x approaches ˙1 are the results of a simple computation.

6.3 Properties of the Free Boundary

In this section we shall show the monotonocity of the free boundary h.t/ and the
existence of limt!1 h.t/ and limt!0

C

h.t/, namely, we shall prove the following
theorem:

Theorem 6.1. If c < � , then h.t/, starts from h.0/ D c, is continuous and
monotonously decreasing in Œ0;1/, and is lower bounded. If c > � , then h.t/,
starts from h.0/ D c, is continuous and monotonously increasing in Œ0;1/, and is
upper bounded.

Proof. The theorem is a summary of the following Lemmas 6.3.1–6.3.6 and Corol-
laries 1–2. The proof is organized as follows: we first show the existence, unique-
ness, and continuity of h.t/, except possibly for t D 0, then show the boundedness
of h.t/ both from below and above, then the monotonocity, and lastly we find the
limit of h.t/ at t D 0.

Lemma 6.3.1 For each t � 0, h(t) exists and is unique. h(t) is continuous for all
t � 0 except possibly at x D 0.

Proof. The existence and uniqueness is naturally concluded from Lemma 6.2.2. The
continuity of h.t/ for t > 0 is a consequence of the continuity of V in x. The only
thing left to validate is limt!0

C

h.t/ D c, which is to be done after we prove the
boundedness of h.t/.

Lemma 6.3.2 If c > � , � ! 0, the free boundary h.t/ in (6.3) is lower bounded
by c, i.e.,
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h.t/ > c 8t > 0: (6.11)

Proof. Because V.X.t/; t/ is monotoneously decreasing (to 0) in X.t/ for fixed
t > 0, i.e., @V

@X
< 0;8t > 0, which is shown in the Lemma 6.2.2, it suffices to

show V.c; t/ > M.t/, where M.t/ D m
c

h
1 � e�ct

i
is the contract value on the

free boundary. Recall V.x; t/ D e� x��
k

R t
0
e��sC x��

k
e�ks

ds (hereafter, we assume,
WLOG, m D 1), we have

V.c; t/ D e�˛
Z t

0

e.k˛�c/sC˛e�ks

ds;

by letting c��
k

D ˛. Now, noticing ˛ > 0, we have

V.c; t/ �M.t/ D e�˛
�Z t

0

e�cshek˛sC˛e�ks � e˛
i
ds

�
:

Because

k˛s C ˛e�ks D ˛.ks C e�ks/
> ˛

We have

V.c; t/ �M.t/ > 0

and thus completes the proof.

Corollary 6.1. If c < � , � ! 0, the free boundary h.t/ in (6.3) is upper bounded
by c, i.e.,

h.t/ < c 8t > 0:

Proof. Follow the same procedure of the above proof except this time ˛ < 0, and
thus changes the sign of V.c; t/ �M.t/.

Lemma 6.3.3 If c > � , then h.t/ is monotonously increasing in t , i.e., h0.t/ >
0;8t > 0, and limt!1 h0.t/ D 0 .

Proof. Knowing that V.h.t/; t/ D 1
c

h
1 � e�ct

i
, we have, for 8t > 0,

e� h.t/��
k

Z t

0

e��sC h.t/��
k

e�ks

ds D 1

c

h
1 � e�ct

i
;

or equivalently,
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Z t

0

e��s� h.t/��
k

Œ1�e�ks �ds D 1

c

h
1 � e�ct

i
:

Differentiating it with respect to t , we get

�h
0.t/
k

Z t

0

e��s� h.t/��
k

Œ1�e�ks �
h
1 � e�ksids

C e�� t� h.t/��
k

Œ1�e�kt � D e�ct : (6.12)

Notice that the definite integral in above equation is strictly positive. If the second
term is strictly greater than e�ct , then h0.t/ > 0 is necessary for the above equation
to hold. Now the previous Lemma 6.3.2 tells us that h.t/ > c, hence

h.t/ � � > 0;

and also

0 < 1 � e�kt < kt;

we have

h.t/ � �

k
Œ1 � e�kt � <

c � �

k
kt D ct � � t:

So

e�� t� h.t/��
k

Œ1�e�kt � > e�� t�.ct�� t/ D e�ct ;

which is the desired inequality leading the monotonocity of the h.t/. Lastly, if we let
t ! 1 in (6.3), we have both the righthand side and the second term in the left side
vanish, thus forces the first term in the left side vanish too. But the definite integral
itself is strictly positive, so limt!1 h0.t/ D 0 becomes necessary, thus completes
the proof.

Corollary 6.2. If c < � , then h.t/ is monotonously decreasing in t , i.e., h0.t/ <
0;8t > 0, and limt!1 h0.t/ D 0 .

Lemma 6.3.4 If c > � , then limt!1 h.t/ exists. For 8 fixed � > 0, limt!1 h.t/ <	
c � � C c

�
e�.��C1/
 �k

1�e��k C �: In particular, limt!1 h.t/ < c C c
�

Proof. Let limt!1 h.t/ D h	. Knowing the contract value at t infinity is 1
c

, we wish
to balance the following parametric integral of h	

1

c
D
Z 1

0

e��s� h�

��
k

Œ1�e�ks �ds:
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The boundedness of h	 is immediate simply because limV.x; t/x!1 ! 0. Here we
are interested in finding a particular value of the bound. Fix � > 0, let 1�e�k� D �.
Notice that 1 � e�ks > �

�
for 0 < s < � and 1 � e�ks > � for s > �, we have

1

c
<

Z �

0

e��s� h�

��
k

�
�
sds C

Z 1

�

e��s� h�

��
k

�ds D � C ye�.�Cy/�

.� C y/�
;

where y WD h���
k

�
�

. Now we have

�.c � �/
c

>
�

c
y � ye�.�Cy/� ;

since c > � . The condition h	 > c > � here plays its role because otherwise � C y

is not necessarily positive. Notice that the function defined by f .y/ D ye�.�Cy/�
achieves the absolute maximum of e�.��C1/at y D 1

�
, we have

�.c � �/

c
>
�

c
y � e�.��C1/:

Correspondingly, we have

h	 <
h
c � � C c

�
e�.��C1/

i �k

1 � e��k C �:

The righthand side of above inequality is continuous in �. Take limit for � ! 0, we
find Œc � � C c

�
e�.��C1/� �k

1�e��k C � < c C c
�

.

Lemma 6.3.5 If c < � , then limt!1h.t/ exists. For 8 fixed � > 0, limt!1h.t/ >
�
�
1 � k�

1�e�k�

�
� k�

c
1

1�e�k� :

Proof. Again, we wish to balance the following parametric integral of h	

1

c
D
Z 1

0

e��s� h�

��
k

Œ1�e�ks �ds:

Due to Lemma 6.2.2, the lower boundedness of h	 is apparent. Here we are inter-
ested in finding a particular value of the lower bound. Fix � > 0, let 1 � e�k� D �.
Notice that 1 � e�ks > �

�
for 0 < s < � and 1 � e�ks > � for s > �, we have

1

c
>

Z �

0

e��s� h�

��
k

�
�
sds C

Z 1

�

e��s� h�

��
k

�ds

D � � ye�.��y/�

.� � y/�
;

where y WD ��h�

k
�
�

. If � � y � 0, then
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� � .� � h	/
1 � e�k�

k�
;

which is equivalent to

h	 � �

�
1 � k�

1 � e�k�

�
:

If � � y < 0 then we have

1

c
>
� � ye�.��y/�

.� � y/�

D e.y��/� � 1

� � y
C e.y��/�

�

>
�

�
.y � �/;

which gives

h	 � �

�
1 � k�

1� e�k�

�
� k�

1 � e�k�
�

�c
:

Because we are looking for a lower bound, so we take the minimum of the two cases
(for fixed � > 0), and conclude that

h	 � �

�
1 � k�

1 � e�k�

�
� k�

c

1

1 � e�k� :

Lemma 6.3.6 h.t/ is continuous for t 2 Œ0;1/, in particular, limt!0
C

D c.

Proof. Because of Lemma 6.3.1, the only thing left to be justified is limt!0
C

D c.
For t small, e�ks D 1 � ks, we have

lim
t!0

C

V.h.t/; t/ D lim
t!0

C

e� h.t/��
k

Z t

0

e��sC h.t/��
k

e�ks

ds

D lim
t!0

C

e� h.t/��
k

Z t

0

e��sC h.t/��
k

.1�ks/

Because of the continuity and boundedness of h.t/, we can take limit of
limt!0

C

h.t/ inside of the integral and arrive at

lim
t!0

C

V.h.t/; t/ D 1

limt!0
C

h.t/

Compare this with the boundary value of 1
c
Œ1�ect �, we have that limt!0

C

h.t/ D c.
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6.4 Numerical Solution of the Free Boundary

Since @V
@x

¤ 0 we can use Newton method to solve for the free boundary iteratively.
Define

Q.h/ D e� h��
k

Z t

0

e��sC h��
k
e�ks

ds � 1

c

h
1 � ect

i
;

and

f .h/ D e� h��
k

�
� 1
k

� Z t

0

e��sC h��
k
e�ks

ds

Ce� h��
k

Z t

0

e��sC h��
k
e�ks

�
1

k
e�ks

�
ds;

our problem is to find h such that

QŒh�.t/ 	 0; 8t � 0:

For fixed t D T , discretize Œ0; T � uniformly into n subintervals by t0; t1; t2; :::; tn,
where t0 D 0; tn D T . Start with h.t0/ D c and assume h.t1/; h.t2/; :::; h.tn�1/
are known, to compute h.tn/ with Newton’s algorithm, we first assign a reasonable
initial guess for h.tn/ as

h0.tn/ D h.tn�1/; n D 1I
h0.tn/ D 2h.tn�1/� h.tn�2/; n > 1:

For a given error tolerance level, say Tole D 10�7, we have the following Newton’s
iteration scheme

h.tn/
new D h.tn/

old � Q.h.tn/
old /

f .h.tn/old/
:

After each step of iteration, a current error is recorded as

error.k/ D h.tn/
new � h.tn/old :

The iteration is kept running until an integer k is reached such that error.k/ < Tole.
To increase the accuracy of the numerical solution, one can increaseN , the number
of grids for partitioning the time interval Œ0; T �. For typical parameters with T � 25,
our numerical simulations show that N D 4096 is large enough for achieving a
solution with relative error less than 10�7, where relative error is defined as the
difference of numerical values of h.T /’s achieved with different N ’s. Figure 6.1 is
a numerical plot of the free boundaries as we fix one set of parameters at a time
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Fig. 6.1 c = 0.05, k D 0:06; 0:07; :::; 0:12 (top to bottom) � D 0:06 (right), 0:07 (left). The units
for t and h.t/ are years and year�1 , respectively

6.5 Asymptotic Analysis of the Free Boundary

In this section, we derive asymptotic expansions of h.t/ for both small t and large t .

Theorem 6.2. As t ! 0, h.t/ 
 c C ˛t , where ˛ D .c��/k
3

:

Proof. We postulate that as t ! 0, h.t/ 
 c C ˛t , plug this into the contract value
on h.t/, we have that, for t small,

V.h.t/; t/ D
Z t

0

e��s� cC˛t��
k

Œ1�e�ks �ds

D
Z t

0

e
.c��C˛t/k

2
s2�.cC˛t/sds

For a; b > 0, s small, we have the following Taylor expansion

eas
2�bs D

�
1C as2 C a2s4

2Š
C :::

� �
1 � bs C b2s2

2Š
� :::

�

D 1 � bs C
�
a C b2

2

�
s2 �

�
ab C b3

3Š

�
s3 C o.s3/

Integrating it term by term for small t , we have

Z t

0

eas
2�bsds D t � b

2
t2 C 1

3

�
a C b2

2

�
t3

�1
4

�
ab C b3

3Š

�
t4 C o.t4/:

In terms of our problem at hand, we have
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V.h.t/; t/ D t � c C ˛t

2
t2 C 1

3

hc � � C ˛t

2
C .c C ˛t/2

2

i
t3 � o.t3/:

We want to match this, term by term, with the known expression of V.h.t/; t/, which
is

1

c
Œ1 � e�ct � D t � c

2
t2 C 1

3Š
c2t3 � o.t3/:

In the above two series, the coefficients for t and t2 match each other automatically.
To match the t3 terms, we need to have

�˛
2

C 1

3

�
.c � �/k C c2

2

�
D 1

6
c2;

which gives

˛ D .c � �/k

3
:

Theorem 6.3. There exist constants h	 D limt!1 h.t/, 	1 > 0, and 	2 > 0 such
that, as t ! 1,

h.t/ 
 h	 � 	1e�� t ; if c < �;

h.t/ 
 h	 C 	2e
�ct ; if c > �;

where h	 is implicitly given byM
�
1; �
k

C 1;�h���
k

�
D �

c
, where M.p; q; z/ is the

confluent hypergeometric function of the first kind of order p , q, and

	1 D kc.h	 � �/e� h�

��
k

�.h	 � c/ ;

	2 D k.h	 � �/

h	 � c
:

The existence and boundedness of h	 have been previously shown. The main idea
to find the exact value of h	 is to use repeated integration by parts to express the
contract value V at t infinity as a infinite series involving h	, which turns out to be
a confluent hypergeometric function. As in general, given a; b; c > 0, we have

Z 1

0

e�ayCbe�cy

dy D �1
a

Z 1

0

ebe
�cy

Œe�ay �0dy

D 1

a
eb C .�1/bc

a

Z 1

0

e�.aCc/yCbe�cy

dy
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Repeating the integration by parts, using the recursive identity

Z 1

0

e�.aCnc/yCbe�cy

dyD � 1

a C nc
ebC.�1/ bc

aC nc

Z 1

0

e�.aC.nC1/y/Cbe�cy

dy;

where the tail definite integral vanishes as n ! 1, we have

Z 1

0

e�ayCbe�cy

dy D 1

a

nD1X
nD1

.�1/n bn

.a=c C 1/.a=c C 2/:::.a=c C n/
eb

D 1

a
M.1; a=c C 1;�b/:

In terms of our problems, this means

e� h�

��
k

e�ks

Z 1

0

e��sC h�

��
k

e�ks

ds D 1

�
M

�
1; �=k C 1;�h

	 � �

k

�
:

At t infinity, we want

V.h.1/;1/ D e� h�

��
k

e�ks

Z 1

0

e��sC h�

��
k

e�ks

ds D 1

c
;

which means

M

�
1;
�

k
C 1;�h

	 � �

k

�
D �

c
:

To fully understand the asymptotic behavior of the free boundary as t ! 1, we
evaluate the limit of h0.t/ as t ! 1. Start with the equation

Z 1

0

e��s� h.t/��
k

Œ1�e�ks �ds D 1

c

h
1 � e�ct

i
;

take derivative with respect to t along h.t/,

�h
0.t/
k

Z t

0

e��s� h.t/��
k

Œ1�e�ks �
h
1 � e�ks

i
ds D

�e�� t� h.t/��
k

Œ1�e�kt � C e�ct ;

we get

h0.t/
k

D e�� t� h.t/��
k

Œ1�e�kt � � e�ct
1
c
Œ1 � e�ct � � I

;
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where

I WD
Z t

0

e��s� h.t/��
k

Œ1�e�ks �e�ksds;

which can be evaluated using integration by parts. Thus we get

h0.t/
k

D
.h.t/ � �/

n
e�� t� h.t/��

k
Œ1�e�kt � � e�ct

o
h.t/
c
Œ1 � e�ct �C e�� t� h.t/��

k
Œ1�e�kt � � 1

:

When c > � , we can write the above equation into

h0.t/ D F.t/e�� t ;

where

F.t/ D e� h.t/��
k

Œ1�e�kt � � e�.c��/t
h.t/

c.h.t/��/ Œ1 � e�ct �C 1
h.t/��

n
e�� t� h.t/��

k
Œ1�e�kt �

o :

Since it has been shown that limt!1 h.t/ D h	 > � , it is straightforward to show
that F.t/ is uniformly bounded in t and

lim
t!1F.t/ D kc.h	 � �/e� h�

��
k

h	 � c :

Now we postulate

h.t/ 
 h	 � 	1e
�� t ; if c > �:

Compare the limit of h0.t/, we get

	1 D kc.h	 � �/e� h�

��
k

�.h	 � c/
:

On the other hand, if c < � , we can write the same equation into we can write the
above equation into

h0.t/ D G.t/e�ct ;

where

G.t/ D e�.��c/t� h.t/��
k

Œ1�e�kt � � 1
h.t/

c.h.t/��/ Œ1 � e�ct �C 1
h.t/�� fe�� t� h.t/��

k
Œ1�e�kt � � 1g

:
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Since it has been shown that limt!1 h.t/ D h	 < c, it is straightforward to show
that G.t/ is uniformly bounded in t and

lim
t!1G.t/ D kc.h	 � �/

h	 � c :

Now we postulate

h.t/ 
 h	 C 	2e
�ct ; if c < �:

Compare the limit of h0.t/, we get

	2 D k.h	 � �/

h	 � c
:

Corollary 6.3. As t ! 1,

h.t/ 
 h	 � 	1e�� t C 	2e
�ct ;

where h	, 	1, and 	2 are defined in Theorem 3.

6.6 Global Approximation Formulas

We propose that the free boundary h.t/ globally behaves like

h.t/ 
 h	 � .h	 � c/e�ˇt ; (6.13)

where clearly h ! h	 as t ! 1, and ˇ is chosen to match the asymptotic expan-
sion of h.t/ 
 c C ˛t , which means

ˇ D k.c � �/
3.h	 � c/

(6.14)

The accuracy of approximation can be improved if we use a little bit more compli-
cated interpolation formula

h.t/ 
 h	 � .h	 � c/ expŒ1 � eˇt �: (6.15)

We choose a super exponential function to make the free boundary “decay” faster
to the true boundary, when other conditions are matched as previous. And also this
does not alter the asymptotic expansion at t infinity at all. In the same rationale, ˇ is
chosen to match the asymptotic expansion of h.t/ 
 cC˛t for t small, which gives
the same expression of ˇ as defined in (6.14). In Fig. 6.2 we provide a comparison of
our analytical approximations and the true numerical solution of the free boundary.
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Fig. 6.2 The plain curve is the true solution. The top stared curve is the first approximation, and
the bottom dotted curve is the second approximation. c D 0:05; � D 0:06; k D 0:15 (left), 0:10
(right). The units for t and h.t/ are years and year�1 , respectively

In general these approximation formulas are very accurate. Our numerical ex-
periments with a variety of parameters show that the relative error is within 4%
for t < 20 for the second formula. From the financial practitioner’s point of view,
both our numerical method and the approximation formula can provide satisfactory
solutions.

6.7 Conclusion

Assuming the underlying interest rate follows the CIR model, we studied the mort-
gage borrower’s optimal strategy to make prepayments when the volatility of market
return rate is small. We derived the integral equation representation of the solution
and studied the mathematical properties of the free boundary. An efficient iteration
scheme was designed to solve the free boundary numerically. We also found two
useful approximation formulas, the accuracy of which are validated with numerical
simulations.
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