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SUMMARY

Identification of detailed features of neuronal systems is an important challenge in the biosciences today.
Transduction of an odor into an electrical signal occurs in the membranes of the cilia. The Cl(Ca) channels
that reside in the ciliary membrane are activated by calcium, allow a depolarizing efflux of Cl− and are
thought to amplify the electrical signal to the brain.

In this paper, a mathematical model consisting of partial differential equations is developed to study
two different experiments; one involving the interaction of the cyclic-nucleotide-gated (CNG) and Cl(Ca)
channels and the other, the diffusion of Ca2+ into cilia. This work builds on an earlier study (Mathematical
modeling of the Cl(Ca) ion channels in frog olfactory cilia. Ph.D. Thesis, University of Cincinnati,
Cincinnati, OH, 2006; Math. Comput. Modelling 2006; 43:945–956; Biophys. J. 2006; 91:179–188), which
suggested that the CNG channels are clustered at about 0.28 of the length of a cilium from its open end.
Closed-form solutions are derived after certain reductions in the model are made. These special solutions
provide estimates of the channel distributions. Scientific computation is also used. This preliminary study
suggests that the Cl(Ca) ion channels are also clustered at about one-third of the length of a cilium from
its open end. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We model the behavior of cytoplasmic calcium, buffer and membrane potential in an olfactory
cilium during experiments that involve the Cl(Ca) and cyclic-nucleotide-gated (CNG) channel
types. The primary goal of this work is to elicit information on the distribution of the Cl(Ca) ion
channels.
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The techniques for the experimental procedure have been developed by S. J. Kleene (see
references in [1]). One olfactory cilium of a receptor neuron is drawn into an open-ended
recording pipette. The mouth of the pipette becomes attached to the base of the cilium. Then
the pipette with the cilium inside is excised from the rest of the neuron. The base of the
cilium remains attached to the open end of the pipette with the full length of the cilium inside
the pipette.

We model two distinct experimental protocols, referred to as the diffusion experiment and
the interaction experiment. In order to control the concentration of calcium in the cilium, a
buffered calcium solution is used with BAPTA in both the experiments. In the diffusion experiment,
buffered calcium is allowed to diffuse into the cilium from the bath surrounding the pipette.
As the mixture enters the cilium, some of the calcium molecules bind to Cl(Ca) channels. This
allows the channels to open and initiate a transmembrane Cl− current that is measured with
electrodes placed inside and outside the pipette. The inside of the cilium is held at −50mV,
causing Cl− ions to flow from the inside of the cilium to the outside. cAMP is eliminated from
all of the solutions and so is unavailable to gate the CNG channels, which are also known to
exist in these cilia. Li+ is used in the place of Na+ to disable, at least in part, the Na+/Ca2+
exchanger.

In the interaction experiment, the cilium is immersed in a bath containing 100�M cAMP.
Initially, the membrane potential is held at 0mV while the cAMP solution diffuses into the cilium
and opens the CNG channels. Because the reversal potential is 0mV, there is no current at this
stage. Following this, the membrane potential is rapidly changed to −40, −60 and −80mV. Two
phases of current follow this voltage step. First, there is an instantaneous current carried by Na+
and Ca2+ through the open CNG channels. (The increase in cytoplasmic Ca2+ is also expected to
activate a current through the electrogenic Na+/Ca2+ exchanger.) As Ca+ accumulates, it becomes
sufficiently concentrated to activate the Cl(Ca) channels and a secondary Cl− current gradually
appears.

In this paper we will develop mathematical models for the diffusion and interaction experiments,
form reduced models from which we can derive approximate closed-form solutions and solve
the original equation system numerically using a finite difference method. We note the following
related studies of olfactory cilia: [2–4].

We now outline the rest of this paper. In Section 2 we introduce our mathematical model and
simplify it using the rapid buffer approximation (RBA). In Section 3 we form a reduced model;
the payoff for this is closed-form approximate solutions. In Section 4 we return to the full model
and provide several finite difference Crank–Nicolson computational solutions. There is also a short
discussion section and an Appendix with values for the final constants.

2. MATHEMATICAL MODEL

Our model consists of equations for the membrane potential v=v(x, t) and calcium concentra-
tion c=c(x, t), where 0<x<L . The point where x=0 is the open end of the cilium and x= L
corresponds to the closed end. We assume that time t is in the range of several seconds.

The membrane potential satisfies

1

ra

�2v
�x2

=−JT (1)
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1862 D. BADAMDORJ ET AL.

where ra is ciliary intracellular resistance and JT is the total of the transmembrane currents; for
the diffusion experiments

JT = JCl (2)

and for the interaction experiments

JT = JCNG+ JCl+ JX (3)

where JCNG and JCl are transmembrane current flows through CNG and Cl(Ca) channels and
JX is current through the Na+/Ca2+ exchangers. We have assumed that the capacitance term is
negligible as well as the background conductance (leak current). Physically, the calcium current
is given by

JCNG(x, t)=gCNGPmax�CNG(x)v(x, t)

where gCNG is the single CNG channel conductance and the membrane potential v(x, t) is the
driving force for calcium given that the equilibrium potential for calcium is 0mV. Pmax, maximum
open probability of CNG channels, is used because [cAMP] is always saturating everywhere and
the CNG channel distribution, �CNG(x) is taken to be clustered in a small region [5]. The chloride
current is given by

JCl(x, t)=gCl�Cl(x)F(c(x, t))v(x, t)

where gCl is the single Cl(Ca) channel conductance. The Hill function

F(c)= c2

c2+K 2
1/2

(4)

represents Ca2+ molecules binding and activating the Cl(Ca) channels. We propose the existence
of a Na+/Ca2+ exchanger that is in the same cluster as the CNG channels and has the following
simplified current:

JX =gX�Xv(x, t)

where gX is the exchanger conductance and �X is the exchanger distribution that will be assumed
to be localized near the CNG channels. To complete the description of the membrane potential
problem we append the boundary conditions (BCs) below:

v(0, ·)=vBulk and
�v

�x
(L , ·)=0 (5)

where vBulk is the voltage at which the membrane potential is clamped at the open end.
The behavior of the cytoplasmic calcium and buffer complex b(x, t)=[Ca B] can be modeled

by the following initial/boundary value problems (see [6]):
�c
�t

= DCa
�2c
�x2

+(k−b−k+c(BT −b))−FCa−�
�S
�t

(6)

�b
�t

= DB
�2b
�x2

−(k−b−k+c(BT −b)) (7)
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where FCa is the transmembrane calcium flow. For the diffusion experiments

FCa=0 (8)

and for the interaction experiment

FCa=q( fCNG JCNG+ JX ) (9)

where fCNG reflects the fraction of the CNG current carried by Ca2+ and q=(2FA)−1 is the
factor that converts the local current into a flux of Ca2+. (F is the Faraday constant and A is the
cross-sectional area of the cilium.) We neglect any of the Ca2+ pumps as no ATP is supplied. BT
is the total concentration of buffer (complex plus free buffer) and

S(x, t)= BS�Cl(x)F(c(x, t))

is the number of bound Ca2+ ions (to the Cl(Ca) ion channels) and BS (molecules/channel) is the
number of binding sites. We neglect any reactions with calmodulin; there is no evidence in our
experimental current traces of a strong current decay that would be due to calcium–calmodulin
feedback.

Assuming that the RBA is appropriate (buffer reaction is faster than the other processes involving
calcium) we set K =k−/k+ then combine (6) and (7) to obtain (see [6])

�c
�t

= 1

1+�

[
�2

�x2

(
DCac+DBBT

c

K +c

)
−FCa−�BS�ClF

′(c)�c
�t

]
(10)

where

b= BT c

K +c
and �= BT K

(K +c)2

The model for the evolution of calcium is complete after adding the BCs

c(0, ·)=cBulk and
�c
�x

(L , ·)=0 (11)

and the initial condition (IC)

c(·,0)=0 (12)

We have represented the fact that there is a free calcium concentration cBulk outside of the pipette
(at the open end of the cilium) and initially the concentration inside is so small that we take it to
be zero. We are especially interested in the behavior of the current,

I (t)=
∫ L

0
JT (x, t)dx

which is experimentally measurable.
Continuing to follow [6] we can reformulate our model by defining

w=�−1(c) :=DCac+DBBT
c

K +c
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1864 D. BADAMDORJ ET AL.

where �−1 is a one-to-one function that we can invert by solving an intermediate quadratic equation
in c to obtain

c= −(DCaK −w+DBBT )+√(DCaK −w+DBBT )2+4DCaKw

2DCa

As

�w

�t
=
(

d

dc
�−1(c)

)
�c
�t

=(DCa+DB�)
�c
�t

we have

�w

�t
= DCa+DB�

1+�

[
�2w
�x2

−FCa(�(w),v)−�BS�ClF
′(�(w))

�c
�t

]

or

�w

�t
= DCa+DB�

1+�+�BS�ClF ′(�(w))

[
�2w
�x2

−FCa(�(w),v)

]
(13)

Again we append BCs:

w(0, ·)=�−1(cBulk) and
�w

�x
(L , ·)=0 (14)

and IC

w(·,0)=0 (15)

3. ANALYTICAL SOLUTION

In this section we consider a reduced model. We are then able to construct approximate closed-
form solutions to both the diffusion and interaction inverse problems. Among the simplifications,
we neglect the binding of the cytoplasmic calcium to the Cl(Ca) ion channels, replace the Hill
function in (4) for the Cl(Ca) activation by a Heaviside function and take �CNG=TCNG�(·−xCNG),
�Cl=TCl�(·−xCl) and �X =TX�(·−xCNG), where TCNG, TCl and TX are the total number of the
CNG, Cl(Ca) channels and the Na+/Ca2+ exchangers, respectively, and xCNG and xCl are cluster
points. Our computations in Section 4 indicate that our solutions do provide plausible answers
to the inverse problems. For simplicity, we take DCa=DB =D. In addition, we assume that c
takes on moderate values during the diffusion process before the Cl(Ca) channels are triggered.
Substituting these assumptions into (13) we obtain

�w

�t
=D

[
�2w
�x2

−FCa(�(w),v)

]
(16)
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3.1. The diffusion experiment

Considering (8) in (16) our reformulation becomes the heat equation for w:

�w

�t
=D

�2w
�x2

(17)

with BC (14) and IC (15). For the membrane potential, by substituting these assumptions into (1)
and (2), we have

1

ra

�2v
�x2

=gClTCl�(·−xCl)H(c−K1/2)v (18)

where we also impose (5). Note that the delta function has units of 1/Length. If we neglect the
right end BC for w by assuming that the cilium is long we can derive the following error-function
solution:

w(x, t)=�−1(cBulk)

(
1−erf

(
x√
4Dt

))
where erf(z)= 2√

�

∫ z

0
e−�2 dz

Note that this solution form for w is a nonincreasing function in t for each fixed x . We define tCl
so that w(xCl, tCl)=�−1(K1/2); this is the half activation time for the Cl(Ca) ion channels.

To match the singularity induced by the delta function we require for t>tCl[
�v

�x

]
(xCl, t)=ragClTClvCl therefore, v(x, t)=

{
vBulk−(ragClTClvCl)x for x<xCl

vCl for x>xCl

where [�v/�x] is the jump in �v/�x and vCl is yet to be determined constant such that it makes
v(x, t) continuous. The global current is

I (t)=gClTCl

∫ L

0
�(·−xCl)H(c(·, t)−K1/2)v(·, t)dx=gClTClH(t− tCl)vCl

and thus for t>tCl we have vCl= ICl/(gClTCl). Therefore, we have

v(x, t)=
{

vBulk−ra IClx for x<xCl

ICl/(gClTCl) for x>xCl
(19)

We now estimate xCl from tCl. From our solution formulas we see that

�−1(K1/2)

�−1(cBulk)
=1−erf

(
xCl√
4DtCl

)

To obtain a full closed-form approximation we note that if zCl := xCl/
√
4DtCl�1 then we can

make the linear approximation

erf

(
xCl√
4DtCl

)
∼=erf(0)+erf′(0)zCl= 2√

�
zCl
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1866 D. BADAMDORJ ET AL.

and find that

zCl∼=
√

�

2

(
1− �−1(K1/2)

�−1(cBulk)

)

Now, using the facts that K1/2/BT �DB/DCa, K/cBulk�1 and K/K1/2�1 (for justifications
see the Appendix),

1− �−1(K1/2)

�−1(cBulk)
∼=1− DB/DCa

cBulk/BT +DB/DCa

∼= 1

1+DBBT (DCacBulk)−1

Thus,

xCl∼=
√

�DtCl
1+DBBT (DCacBulk)−1

(20)

Once xCl is known we can find TCl by enforcing the continuity of v at x= xCl:

vBulk−ra IClxCl= ICl
gClTCl

or TCl= ICl
gCl(vBulk−ra IClxCl)

(21)

3.2. The interaction experiment

In this subsection we develop and solve a reduced model for the interaction experiment. Our main
assumption, inspired by Lindemann [3], is to set the exchanger to absorb the considerable influx
of Ca2+. Substituting (9) into (16), we obtain

�w

�t
=D

(
�2w
�x2

−q( fCNGgCNGPmaxTCNG−gXTX )�(·−xCNG)v

)
(22)

with BC (14) and IC (15). For the membrane potential, by substituting the assumptions we made
into (1) and (3), we find

1

ra

�2v
�x2

=((gCNGPmaxTCNG+gXTX )�(·−xCNG)+gClTCl�(·−xCl)H(c−K1/2))v (23)

with BC and IC in (5). When t<tCl the second term in parentheses vanishes. Then matching the
singularity induced by the delta function and continuity of v(x, t), we find

v(x, t)=
{

vBulk−ra(gCNGPmaxTCNG+gXTX )vCNGx for x<xCNG

vBulk−ra(gCNGPmaxTCNG+gXTX )vCNGxCNG for x�xCNG
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Then setting vCNG=v(xCNG, t) we find

vCNG= vBulk

1+ra(gCNGPmaxTCNG+gXTX )xCNG
(24)

If we define

ICNG+ IX =
∫ L

0
(JCNG(x, t)+ JX (x, t))dx=(gCNGPmaxTCNG+gXTX )

∫ L

0
�(·−xCNG)v(·, t)dx

Then

ICNG+ IX =(gCNGPmaxTCNG+gXTX )vCNG (25)

and thus

v(x, t)=
{

vBulk−ra(ICNG+ IX )x for x<xCNG

vBulk−ra(ICNG+ IX )xCNG for x�xCNG

Now when t>tCl the defining equation (23) has two delta functions. Our preliminary results from
the diffusion experiment indicate that typically xCNG<xCl and we assume that from here on. As
above we find

v(x, t)=

⎧⎪⎨
⎪⎩

vbulk−ra[(gCNGPmaxTCNG+gXTX )vCNG+gClvClTCl]x, 0<x<xCNG

vbulk−ra[(gCNGPmaxTCNG+gXTX )vCNGxCNG+gClTClvClx], xCNG<x<xCl

vbulk−ra[(gCNGPmaxTCNG+gXTX )vCNGxCNG+gClTClvClxCl], xCl<x<L

then, vCl=v(xCl, t), we find

vCl= vBulk−ra(gCNGPmaxTCNG+gXTX )vCNGxCNG
1+ragClTClxCl

(26)

and

vCNG= vBulk−ragClTClvClxCNG
1+ra(gCNGTCNG+gXTX )xCNG

(27)

and

v(x, t)=

⎧⎪⎨
⎪⎩

vbulk−ra(ICNG+ IX + ICl)x, 0<x<xCNG

vbulk−ra((ICNG+ IX )xCNG+ IClx), xCNG<x<xCl

vbulk−ra((ICNG+ IX )xCNG+ IClxCl), xCl<x<L

(28)

where ICl=gClTClvCl.
Now, to solve for w in the concentration equation we neglect the BC (14) (here we have

cBulk=0) and view w on the entire real line:

�w

�t
=D

�2w
�x2

+Q(t)�(·−xCNG)

where

Q(t)=−Dq( fCNGgCNGPmaxTCNG−gXTX )v(xCNG, t)

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:1860–1873
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Using the Fourier transform we find

w(x, t)=
∫ t

0
Q(s)

exp

(
− (x−xCNG)2

4D(t−s)

)
√
4�D(t−s)

ds

At t= tCl we have

c(xCl, tCl)=K1/2

As v(xCNG, t) is constant on 0<t<tCl we have

�−1(K1/2)=−Dq( fCNGgCNGPmaxTCNG−gXTX )vCNG

∫ tCl

0

exp

(
− (xCl−xCNG)2

4D(tCl−s)

)
√
4�D(tCl−s)

ds (29)

To simplify the integral in (29) we let

�= �x√
4DtCl

where �x= xCl−xCNG

The computations in Section 4 suggest that typical values are �x=3�m and tCl=0.7s; therefore,
�=0.179�1. Then

∫ tCl

0

exp

(
− (xCl−xCNG)2

4D(tCl−s)

)
√
4�D(tCl−s)

ds=
√

tCl
4�D

∫ tCl

0

exp

(
− �2

1−s/tCl

)
√
1−s/tCl

ds

tCl
=
√

tCl
4�D

∫ 1

0

exp(−�2/s)√
s

ds

Assuming that ��1 and noting that the integrand →0 as s→0 we use

exp(−�2/s)∼=1−�2/s for s>�2 (30)

and estimate

Integral∼=
√

tCl
4�D

∫ 1

�2
(s−1/2−�2s−3/2)ds∼=

√
tCl
�D

(1−�)2

Figure 1 shows how the approximate and exponential integrands above compare for �=0.179.
Therefore, from (29) we now have

�−1(K1/2)∼=−q( fCNGgCNGPmaxTCNG−gXTX )vCNG

√
tClD

�

(
1−

(
�x√
4DtCl

)2
)

(31)

Given data curves from Figure 3, values for vBulk, current values and Cl(Ca) open times tCl, as
well as choice for xCNG=0.28L [1, 5], we can determine estimates for TCNG, xCl and TCl.

Combining (24) and (25) and setting TX =TCNG we can show

vCNG=vBulk−raxCNG(ICNG+ IX )
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DOI: 10.1002/mma



IDENTIFICATION OF CL(CA) CHANNEL DISTRIBUTIONS 1869
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Figure 1. Comparison of true, exp(−�2/s)/
√
s, and approximate, s−1/2−�2s−3/2, integrands for �=0.179

that lead to the simplification in (30).

and

TCNG= ICNG+ IX
(1+ fCNG fX )gCNGPmaxvCNG

Thus, starting with xCNG.28L we can formulate guesses for vCNG and TCNG.
Now, from Equation (31) we can find �x noting that �−1(K1/2)∼=DBBT :

�x=2

(
DtCl

[
1+

√
�

DtCl

(
DBBT

q(1− fX ) fCNGgCNGPmaxTCNGvCNG

)])1/2

and thus xCl= xCNG+�x . Using the solution for v from (28) we can, in turn, determine vCNG,
ICNG+ IX , ICl, vCl and then TCl= ICl/(gClvCl).

4. NUMERICAL AND ANALYTICAL SOLUTION PREDICTIONS

In this section we provide a sampling of finite difference Crank–Nicolson approximate solutions
to (1), (5) and (13)–(15). We choose the channel and exchanger parameters in order to match the
data from our lab under the assumption that the channel distributions (and exchanger distribution
in the interaction experiment) are narrow Gaussian functions (4–5�m). We also use our reduced
model solutions with the data to predict the channel distributions.

In Figure 2 the results for the diffusion experiment are displayed. The channel distributions are
chosen ahead of time to be narrow Gaussian distributions. We determined values for TCl and xCl
by trial and error to obtain close fits to the current data. In the computation we had 100 spatial
subintervals and 100 time steps.
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Figure 2. Plot of experimental (solid lines) and numerical (dashed lines) currents. In this and in Figure 3,
currents are inward but are shown as positive for simplicity. Numerical currents are from the model
with narrow (4–5�m) Cl(Ca) ion channel Gaussian distributions and total channels TCl clustered at xCl:
(a) TCl=2658 channels clustered at xCl=7.5�m with cilium length L=50�m; (b) TCl=2437 channels
clustered at xCl=12.0�m with length L=50�m; and (c) TCl=5184 channels clustered at xCl=12.0�m

with length L=40�m.

Table I. Preliminary experimental data and predictions from the reduced
model for the diffusion experiment.

Figure tCl ICl xCl TCl

2(a) 1.7 83 10.4 2803
2(b) 3.4 75 14.7 2802
2(c) 3.4 110 14.7 5342

Table I has values for the time of the onset of the Cl(Ca) current (tCl) and maximum current level
(ICl), which were estimated from the experimental data above (Figures 2(a)–(c)). The table also
has predictions for the Cl(Ca) channel distribution (xCl and TCl) from Equations (20) and (21).

The predictions made in Table I by the reduced model for xCl and TCl are plausible and close
to those found by trial and error in the computations displayed in Figure 2.

In Figure 3 our computational results for the interaction experiments are displayed on a cilium
of length 50�m. In these examples we took TX =TCNG and xCNG=0.28, L=14�m. Again, we
chose values for the parameters (TCNG, xCl and TCl) by trial and error. Here we had 200 spatial
intervals and the same number of time steps.

In Table II we again set xCNG=14�m for data from [7], which is displayed in Figure 3. Here,
we estimated, from Figure 3, the CNG and X currents (ICNG and IX ) before the Cl(Ca) channel
amplification, the onset time of the Cl(Ca) current (tCl) and the current level from both channel
types and the exchanger (ICNG+ IX + ICl). Then we used the procedure outlined in Section 4 to
estimate TCNG, xCl and TCl as displayed in Table II for the three different data sets. We note that
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Figure 3. Experimental [7] and computational data for the interaction experiment: (a) CNG and
Cl(Ca) channel distributions and (b) Current curves at each of the three clamped membrane
potentials with vBulk=−40mV (bottom), −60mV (middle) and −80mV (top). Here we had

xCNG=14�m, TCNG=4963, xCl=20�m and TCl=8331.

Table II. Preliminary experimental data and predictions from the reduced
model for the interaction experiment.

ICNG+ IX (t�tCl) ICNG+ IX + ICl (t>tCl)
vBulk (mV) (pA) tCl (s) (pA) TCNG (ch) xCl (�m) TCl (ch)

−40 −65 1.0 −115 5078 20 9204
−60 −95 0.4 −170 4883 18 8481
−80 −125 0.30 −220 4787 18 7224

the results in the TCNG, xCl and TCl columns are plausibly close to those found by trial and error
in Figure 3.

5. DISCUSSION

In this paper we have formed mathematical models for two related experiments involving the
diffusion of buffered calcium in an olfactory cilium, the diffusion and interaction experiments.
Because of the two current transitions in the interaction experiment it is sometimes referred to as
the biphasic experiment. Because of the huge influx of current in the interaction experiment through
the CNG channels we, following Lindemann [3], introduce a simple model for an exchanger and
position it with the CNG channel cluster.

We focus on the inverse problems of computing the Cl(Ca) ion channel cluster from the current
versus time data, which provides an extra BC to our evolution problems.

We analyze our models in two different ways. In the first we make several significant reductions.
The payoffs for our simplifications are approximate closed-form solutions from which we can
make predictions on the solutions to the inverse problems. An advantage of the formula is that the
parameter dependencies are known explicitly. Sensitivities could then be estimated directly.
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We also solve the full problems numerically after making guesses on the channel cluster posi-
tions. Predictions for the reduced models based on given experimental data are provided in Tables I
and II. The computational results (and data traces) are provided in Figures 2 and 3. The channel
cluster distributions are estimated using trial and error in the computations. We found that our
reduced model predictions compare favorably with those obtained numerically.

The diffusion problem is well defined as all parameters have been estimated experimentally.
We intend to use this model with an inverse solver to produce a thorough study of the Cl(Ca) ion
channel distribution.

The interaction model is not as well defined as little definitive is known about the exchanger.
We note that adjustment of the exchanger parameters can change the outcomes of our
analysis.

APPENDIX

Below we list the parameters and their definitions.

L length of cilium. 40�m�L�50�m
rc ciliary radius. 0.15�m
Ri ciliary intracellular resistivity. 9.2×105�m/S
ra ciliary intracellular resistance. ra= Ri/�r2c =1.5×10−2/nS�m
gCNG single CNG channel conductance. 5.0×10−4 nS/ch
gCl single Cl(Ca) channel conductance. 8.0×10−4 nS/ch
K1/2 half maximum concentration of Ca2+ to activate Cl(Ca) channels. 4.8�M
Pmax maximum open probability of CNG channels. 0.7 no units
DCa Ca2+diffusion coefficient. 300 (�m)2/s [1]
DB BAPTA diffusion coefficient. 95 (�m)2/s [8]
D approximated diffusion coefficient. 100 (�m)2/s
k+ forward reaction rate constant. 600/�Ms [8]
k− backward reaction rate constant. 100s−1 [8]
BT total concentration of BAPTA (complex plus free). 2000�M
q converting factor of transmembrane current. q=(2�Fr2c )

−1=8.45×104�M�m/pAs [9]
� conversion factor for binding. 2.7×10−2�M�m/molecule
BS number of binding sites. 1 molecule/ch
fCNG fraction of the CNG current carried by Ca2+. 0.4 no units [10]
fX computational parameter. 0.97 no units
gX single Na+/Ca2+ exchanger conductance. gX = fX fCNGgCNGPmax=1.3×10−4 nS/ch
K reaction dissociation constant. K =k−/k+ = 1

6 �M
TCNG total number of CNG channels. Units ch
TCl total number of Cl(Ca) channels. Units ch
TX total number of Na+/Ca2+ exchangers. Units ch
cBulk free calcium concentration at the exposed end of the cilium. cBulk=300�M for the

diffusion experiment and for the interaction experiment cBulk=0�M
vBulk voltage clamp. vBulk=−50mV for the diffusion experiment and for the interaction

experiment vBulk=−40,−60 and −80mV
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