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Steric hindrance effects in thin reaction zones: applications to BIAcore
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Many biological and industrial processes have reactions which occur in thin zones of densely packed
receptors. Understanding the rate of such reactions is important, and the BIAcore surface plasmon reso-
nance biosensor for measuring rate constants has such a geometry. However, interpreting biosensor data
correctly is difficult since large ligand molecules can block multiple receptor sites, thus skewing the ki-
netics. General mathematical principles are presented for handling this phenomenon, and a receptor layer
model is presented explicitly. An integro-partial differential equation results. Using perturbation tech-
niques, the problem can be simplified somewhat. In the limit of small Damköhler number, the non-local
nature of the system becomes evident in the association problem, while other experiments can be mod-
elled using local techniques. Explicit and asymptotic solutions are constructed for large-molecule cases
motivated by experimental design. The analysis provides insight into surface–volume reactions occurring
in various contexts. In particular, this steric hindrance effect can often be quantified with a single dimen-
sionless parameter.

Keywords: biomolecular reactions; rate constants; asymptotics; integrodifferential equations; steric
hindrance effects; BIAcore.

1. Introduction

Many biological and industrial processes include reactions in thin zones adjacent to a solid surface.
In the simplest bimolecular model, one reactant (the ‘ligand’) floats free in solution, while the other
(the ‘receptor’) is embedded in a thin ‘reaction zone’ (such as a gel) near the surface of a channel, cell
membrane, etc.

Often the solution has an imposed flow. For instance, in bubble reactors, gas reacts with the liquid
which impinges on the bubble surfaces (Long & Kalachev, 2000). The creation of alginate gel in the
food industry is enhanced by the addition of a convective flow of reactant (Treml et al., 2003). Flow
reactors are more effective at synthesizing inorganic materials on templates (Mannet al., 1997). In high-
pressure, continuous-flow, fixed-bed reactors, gels are introduced at the reaction surface to minimize
hydrodynamics effects (Jansen & Niemeyer, 2005). Harmful blood clots form when platelets adhere
to foreign objects in the presence of blood flow (Grabowskiet al., 1972). Various biological processes
ensue when ligands floating in the bloodstream bind to cell receptors which occupy a thin reaction zone
about the cell membrane (Goldstein & Dembo, 1995). Immunoglobulins are transmitted to newborns
from mother’s milk through binding to receptors on intestinal epithelial cells (Raghavanet al., 1994).

To control or understand such processes, one needs to know the ‘rate constants’ for any given reac-
tion. If one can obtain real-time measurements of the binding process, these can be translated into such
parameters given an appropriate mathematical model. One popular device for obtaining such data is the
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BIAcore, which is a surface plasmon resonance (SPR) device, and for the purposes of this paper, we
will use the BIAcore as a canonical example of a system where kinetics occur in a thin reaction zone.

The configuration of the BIAcore is described in great detail elsewhere (Karlsson & F̈alt, 1997;
Karlssonet al., 1991; Liedberget al., 1993; Szaboet al., 1995). For our purposes, we consider the
BIAcore to be a rectangular channel through which the ligand is convected in thex̃-direction in standard
2D laminar flow fromx̃ = 0, the inlet position (see Fig.1). Receptors are embedded in a thin dextran
gel of width Hg (where the subscript ‘g’ stands for ‘gel’) attached to the ceiling of the channel. An
evanescent wave is bounced off the channel ceiling and read by a detector. As the experiment progresses,
binding causes refractive changes to the polarized light beam. These changes, when compared to a
control state, can be translated into a ‘sensogram’ of the binding (Garland, 1996).

Most models of the BIAcore to date have assumed that a single binding event will block only one
receptor—the one to which the ligand molecule actually binds. However, in experiments the ligand
molecule can be much larger than the receptors (Zheng & Rundell, 2003). In such cases, a single binding
event can block multiple receptors (the ‘steric hindrance effect’). A naive model which does not include
the effect will underestimate the rate constantk̃a (where the subscript ‘a’ refers to ‘association’) because
receptors which are merely occluded will be counted as receptors which are available, but do not bind
because of the kinetics.

Edwards(2007) proposed a model where the reacting zone is treated as a surface (the limitHg → 0
in our terminology). In this work, we extend this model to include the case of a reacting zone of finite
width. Alternatively, this can be seen as an extension of the work inEdwards(2001) to include occlusion
effects. In Section2, we present some general guidelines to observe when making such extensions.
Using some reasonable assumptions, we then formulate an integro-partial differential equation for the
concentrationB̃g of the bound state. Though the integral term in thex̃-direction can be localized, in the
ỹ-direction it cannot and must be considered.

When the Damk̈ohler number Da is small, we can obtain a perturbation solution to the problem for
all time. Because of the external reservoir of ligand, in the association case the integral equation cannot
be simplified, and we use standard solution techniques in the limit of large molecules. Without such an
external reserve, the dissociation kinetics are much simpler.

FIG. 1. Schematic of BIAcore device.
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When Da= O(1), only short-time solutions can be obtained. Again, since an external supply of lig-
and is not fully developed, both association and dissociation kinetics become straightforward extensions
of the work inEdwards(2001, 2007). The changes occur only in certain dimensionless parameters in the
problem. Such a simplification makes it easy to analyse, interpret and correct errors in the sensogram
data due to steric hindrance effects.

The results presented herein for the BIAcore have wide applicability. The same occlusion effects can
occur in biological contexts, and information about them can lead to the design of more effective phar-
maceuticals. Such information can also help optimize industrial processes by providing upper bounds
on the amount of receptor needed to achieve a certain chemical result.

2. The evolution equation

2.1 General modelling

We treat the reacting zone in the BIAcore as a thin dextran gel layer occupying the region−Hg 6 ỹ 6 0.
This is in contrast to the work inEdwards(2007), where the reacting zone is taken to be a surface.
In the gel, the bound state is created when an available reacting site reacts with a ligand molecule
(concentrationC̃g). The bound state can also dissociate with rate constantk̃d (where the subscript ‘d’
refers to ‘dissociation’). Therefore, the mass balance equation becomes

∂ B̃g

∂ t̃
= k̃a

{
RT

Hg
− S̃[ B̃g]

}
C̃g(x̃, ỹ, t̃)

φ
− k̃dB̃g, −Hg 6 ỹ 6 0, 06 x̃ 6 L , (2.1)

whereL is the length of the channel. In addition:

1. Since the reaction occurs only inside the pores, it is thefluid concentration of̃Cg that is important
in the reaction, so we must divide it by the partition coefficientφ.

2. The total number of (initially) available receptor sitesRT is usually expressed as an area concen-
tration, so we must divide by the width of the gel to obtain a volume concentration.

3. The expressioñS[ B̃g] represents the number of receptor sites occluded by the bound state at a
particular point. Thus, the braced quantity represents the concentration of available (as opposed
to unbound) receptors.

To specialize the general operatorS̃ to a form which we can actually solve, we make the following
additional assumptions:

1. Receptor sites are considered to be points, spaced evenly in a cubic lattice in the dextran gel at a
distancedr from one another, where the subscript ‘r’ stands for ‘receptor’.

2. Ligand molecules are considered to have only one specific binding site. (Generalizing our results
to multiple binding sites is the subject of further research.) The structure is considered to be a
solid sphere of characteristic sizedl , where the subscript ‘l’ stands for ‘ligand’. In practice,dl
will be taken as twice the Stokes radius.

3. As the experiment progresses, molecules will form an optimal packing arrangement. This is
probably the most controversial assumption, though in Section2.2we describe situations where
this can occur. In any event, this assumption will provide a lower bound on the effect (since more
disordered configurations will occlude more reacting sites).

4. In order to transition from discrete receptor sites on individual molecules to the continuum ap-
proximation in (2.1), we rely upon the fact that there is a thirdz̃-direction normal to the flow. All
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the dependent variables are uniform inz̃ (Edwards, 2007), and hencẽBg at some specified̃x∗ can
be thought of as a proportion of receptor sites at(x̃∗, z̃) which have been bound, thus yielding
after some manipulation a concentration.

If the diameter of the ligand molecule exceeds the receptor spacing, the ligand molecules will dis-
place the receptors from their grid, as shown in Fig.2. (This is possible because the dextran is a gel.) In
addition, because the binding sites are on the surface of a sphere, it is possible for two receptors in close
proximity to bind to separate ligand molecules. Note that this behaviour is not possible in the surface
reaction case (Edwards, 2007).

These physical complications engender several mathematical ones. First, there is a question of how
to track the dislocation of the receptor sites by the movement of the ligand sphere. Second, since we
are going to embed this discrete system into a continuum model, we must decide how to identify the
position of the ligand sphere. Fortunately, the BIAcore measures only thespatial averageof the binding,
not its exactlocation. (More details can be found in Section3.1.) Therefore, any approximation without
a directional bias should have errors that average to zero.

These two problems must be treated together. One obvious way to proceed would be to identify the
position of the ligand molecule as its centre, and assume that the ligand molecule centres on the former
position of a receptor molecule and binds to that molecule. However, as shown in Fig.3, this would
lead to ligand molecules ‘above’ the receptor layer participating in binding events, and receptors in the
region−Hg 6 ỹ < dl/2 − Hg never being bound.

To solve these problems, we take the position of the binding site to be the lowest point on the
sphere, as shown in Fig.4. At left is a molecule dislodging receptors from their array. Binding to any
of the white circles would be modelled by the diagram at right. (This effectively allows us to ignore
rotational motion in the analysis.) Moreover, one should think of the case of a 2D reacting surface
treated inEdwards(2007) to be the projection of the 3D reacting zone. Taking the receptor site to be the
lowest point on the sphere allows our results to reduce to the 2D case (where the reacting site is centred
on a disc) in the limit thatHg → 0.

As in the 2D case, spheres cannot overlap. Figure5 shows that when binding occurs, it occludes all
receptors within a sphere of radiusdl from the binding site. Receptors within a radiusdl/2 are directly
occluded by the ligand molecule, while receptors in the spherical annulus between radiidl/2 anddl are
unavailable because another ligand receptor cannot fit to bind.

FIG. 2. 3D schematic of true physical situation, side view. An X represents the binding site; white circles represent dislodged
receptor molecules.
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FIG. 3. 3D schematic of discredited mathematical approximation, side view. A black X represents the physical binding site,
a white X represents the modelled binding site and white circles represent dislodged receptor molecules.

FIG. 4. 3D schematic of accepted mathematical approximation, side view. Left: true physical situation. Right: mathematical model.

FIG. 5. Schematic of occlusion volume.
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FIG. 6. Schematic of occlusion volume, side view.

This discussion motivates the following model forS̃:

S̃[ B̃g](x̃, ỹ, t̃) = S0

∫ dl

−dl

∫
√

d2
l −ỹ′2

−
√

d2
l −ỹ′2

2
√

d2
l − x̃′2 − ỹ′2B̃g(x̃ + x̃′, ỹ + ỹ′, t̃)dx̃′ dỹ′, (2.2)

whereS0 is a normalization factor. Physically, (2.2) just says that the availability of a binding site
is dependent on the bound state in a ball of radiusdl , which corresponds exactly with the graphical
interpretation in Fig.5.

Note from (2.2) that the occlusion volume (and hence the range of integration ofỹ) may extend
outside the receptor layer, as shown in Fig.6. Thus, when using (2.2), one must keep in mind that
B̃g ≡ 0 outside this interval. Alternatively, we adjust theỹ′-limits of integration for the integral as
follows.

On the left of Fig.6 is shown an event with a position and radius such that the occlusion volume
resides entirely in the receptor layer. In such a situation, (2.2) may be used without change. However,
on the right is an event where the occlusion volume protrudes beyond the receptor layer. In such an
instance, the limits of integration would be−ỹ and−(Hg + ỹ). (Note that due to the form of (2.2), the
range of integration corresponds tosigned distance, not ỹ-value.)

In general, (2.2) may be written as

S̃[ B̃g](x̃, ỹ, t̃) = S0

∫ ỹmax

ỹmin

∫
√

d2
l −ỹ′2

−
√

d2
l −ỹ′2

2
√

d2
l − x̃′2 − ỹ′2B̃g(x̃ + x̃′, ỹ + ỹ′, t̃)dx̃′ dỹ′, (2.3a)

ỹmin = − min{dl, Hg + ỹ}, ỹmax = min{dl, −ỹ}. (2.3b)

2.2 Scaling and normalization

To simplify the calculations, we introduce dimensionless variables into the equations. For the physical
variables, we use scalings motivated byEdwards(2001). In particular, we normalizẽx by the channel
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length, ỹ by the width of the receptor layer,t̃ by the forward reaction timescale and the bound state by
the initial receptor density. Thus, we have

x =
x̃

L
, y =

ỹ

Hg
, t = k̃aCut̃, Bg(x, y, t) =

B̃g(x̃, ỹ, t̃)

RT/Hg
, (2.4a)

S[Bg] =
S̃[ B̃g]

RT/Hg
, C̃g(x̃, ỹ, t̃) = φCu[1 − DaCg(x, y, t)], (2.4b)

whereCu is the upstream inlet concentration. Here, Da is the ‘Damköhler number’, given by

Da =
k̃aRT

D̃f/(HfPe−1/3)
=

reaction ‘velocity’

diffusion ‘velocity’ in diffusive boundary layer
, (2.5a)

whereD̃f is the diffusion coefficient of the ligand molecules in the flow (which the subscript ‘f’ repre-
sents),Hf is the height of the channel and Pe is the Péclet number, given by

Pe=
H2

f /D̃f

L/V
=

characteristic diffusion time in flow

characteristic convection time in flow
, (2.5b)

whereV is a typical velocity scale. The importance of the scaling is that the dimensionlessBg now
represents the percentage of receptor sites bound.

Note from (2.4b) that the dimensionlessCg is a scaled displacement ofC̃g from its equilibrium value.
In many experiments, Da is a small parameter (see Sections4–6), and henceCg can be interpreted as
the first term in a perturbation series. However, even in the case where Da= O(1) (see Section7), this
choice of scaling simplifies the algebra later on.

Substituting (2.4) into (2.1), we have the following:

∂ Bg

∂t
= {1 − S[Bg]}[1 − DaCg(x, y, t)] − K Bg, K =

k̃d

k̃aCu
. (2.6)

For the dummy variables in (2.3a), it is more convenient to scale bydl :

x′ =
x̃′

dl
, y′ =

ỹ′

dl
. (2.7)

Substituting (2.4) and (2.7) into (2.3a), we obtain

S[Bg](x, y, t) = 2S0d3
l

∫ ymax

ymin

∫ √
1−y′2

−
√

1−y′2

√
1 − x′2 − y′2Bg(x + δxx′, y + δyy′, t)dx′ dy′, (2.8)

δx =
dl

L
, δy = dl Hg, (2.9a)

ymin = − min{1, δ−1
y (1 + y)}, ymax = min{1, −δ−1

y y}. (2.9b)

To calculateS0, we consider a nearly irreversible reaction by takingK → 0. Physically, we are say-
ing that the backwards reaction proceeds slowly. Rather than affecting the chemistry, the back reaction
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eliminates poorly packed configurations, working only to distribute the bound state uniformly. It will be
shown in Section6 that the steady state ofCg is zero.

Thus, in the small-K limit, the steady state of (2.6) becomes

2S0d3
l

∫ ymax

ymin

∫ √
1−y′2

−
√

1−y′2

√
1 − x′2 − y′2Bg,s(x + δxx′, y + δyy′)dx′ dy′ = 1, (2.10)

where the subscript ‘s’ refers to ‘steady state’. Physically, (2.10) states that for a nearly irreversible
reaction at steady state, all the receptors must be either bound or occluded.

In the continuous limit of averaging with perfect distribution of binding sites,Bg,s will be uniform.
Examining the schematic in Fig.7, wheredl ≈ 2dr, we see that each ligand occludes eight receptors
(neglecting edge effects and considering that the ligands are spheres). Thus, only 1/8 of the receptors
will ever be bound even if the discs were packed optimally. Similarly, as long asdl > dr, the proportion
of receptors bound at steady state is given by(dr/dl)

3. Essentially, we say that a spherical ligand blocks
out all receptors in the cube in which it resides.

This analysis assumes thatdl < Hg. Otherwise, the size of the ‘box’ that the receptor will block is
d2

l Hg since its height must be given by the width of the receptor layer, notdl . Therefore, in this case the
steady state is given by

Bg,s =
d3

r

d2
l min{dl, Hg}

, (2.11)

as long as the receptors are spaced more closely than the ligand diameter. If they are not, then the
concentration of the bound state is trivially equal to 1.

It is simpler algebraically to work with the inverse of this quantity, which we denote byp. (Note that
this is a slightly different notation fromEdwards(2007), where the analogous quantity is calledp2.)
Thus, we have

p = max

{
d2

l min{dl, Hg}

d3
r

, 1

}

, (2.12)

where we use the maximum to take into account the case where the ligand size is smaller than the
receptor spacing.

FIG. 7. Packing withdl = 2dr, side view.
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There may be some concern about the validity of (2.12) because it would seem to ignore various
aspects of geometry, packing, etc. that could affect our results. We present a brief discussion to assuage
those concerns by examining the special case wheredl = dr. Then, a typical packing is shown in
Fig. 8. Note that the fraction of thevolumecovered by the spheres isπ/6 (since we are working in
three dimensions), while the fraction of thereceptorscovered by the spheres is 1. In general, since the
receptors are assumed to occupy a cubic lattice, we have the following:

Bg,s =
6

π
volume fraction=

6

π

πd3
l /6

d3
r

= p−1,

as desired.
In order to apply our theory to a particular experiment, we must know the value ofp. dl is readily

obtainable from the Stokes radius for the ligand molecule, which can be estimated using gel filtration
techniques (Gherardiet al., 2003) or size exclusion chromatography (Sutovsky & Gazit, 2004). The
volume density of receptors is given by dividing the area densityN RT by Hg, whereN is Avogadro’s
number. (Note that this implies closer packing asHg → 0.) Thus, in the case wheredl > dr, we have
that

p =
d2

l min{dl, Hg}

d3
r

=
volume density ofreceptors

volume density of ligands inreceptor layer
= d2

l min{δy, 1}N RT. (2.13)

Sincep is directly proportional toRT, it can be controlled in an experiment.
With Bg,s a constant, the integral in (2.10) is easily computed, and we find

S0(y; dl) =
p

πd3
l






[

y′ −
y′3

3

]ymax

ymin






−1

, (2.14)

where we explicitly list the dependence ofS0 on y (and its parametric dependence ondl ). The normal-
ization factor is not a constant since it is related to the volume of the occluded region in the receptor
layer, which is cut off asy approaches the boundaries of the layer. Note also from (2.8) that with the
choice ofS0 in (2.14),

S[B∗] = pB∗ for any B∗ independent ofy. (2.15)

FIG. 8. Packing withdl = dr, side view.
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2.3 Reduction to previous cases

In order to verify our results, we show that they reduce to previous cases in various physically meaning-
ful limits. In the limit asdl → 0, our results should match those in a receptor layer neglecting occlusion.
In this limit,

δx = 0, δy = 0, ymin = −1, ymax = 1, p = 1, S0 =
3

4πd3
l

. (2.16)

Substituting (2.16) into (2.8), we obtain

lim
dl→0
S[Bg](x, y, t) = lim

dl→0
2

(
3

4πd3
l

)

d3
l

∫ 1

−1

∫ √
1−y′2

−
√

1−y′2

√
1 − x′2 − y′2Bg(x, y, t)dx′ dy′

= Bg(x, y, t),

which is of course the desired result because without occlusion,S[Bg] = Bg.
In the limit thatHg → 0, our results should reduce to the 2D result inEdwards(2007) with occlusion

included. We first note that if̃B(2) is the bound concentration in the 2D case mentioned inEdwards
(2007), then

B̃(2)(x̃, t̃) =
∫ 0

−Hg

B̃g(x̃, ỹ, t̃)dỹ. (2.17)

Introducing the same averaging into (2.1) yields

∂ B̃(2)

∂ t̃
=

k̃a

φ

{

RTC̃g(x̃, 0, t̃) − lim
Hg→0

∫ 0

−Hg

S̃[ B̃g]C̃g dỹ

}

− k̃dB̃(2), (2.18)

where we have used the Mean Value Theorem.
Also in the limit thatHg → 0, we have that

δy → ∞, ymin = −δ−1
y (1 + y), ymax = −δ−1

y y,

ỹmin = −(Hg + ỹ), ỹmax = −ỹ, p = d2
l N RT, (2.19a)

lim
Hg→0

S0 = lim
Hg→0

1

πd3
l

d2
l N RT






[

y′ −
y′3

3

]−δ−1
y y

−δ−1
y (1+y)






−1

=
p(2)

πd2
l

lim
Hg→0

1

Hg
, (2.19b)

wherep(2) is the 2D analog of our normalization factorp.
Substituting (2.19) into (2.3a), we obtain

lim
Hg→0

∫ 0

−Hg

S̃[ B̃g]C̃g dỹ =
2p(2)RT

π

∫ 1

−1

√
1 − x′2B(2)(x + δxx′, t)dx′C̃g(x̃, 0, t̃), (2.20)

where we have used the Mean Value Theorem and the fact that the scaling in the 2D case isB̃(2) =
RT B(2) (Edwards, 2007). Moreover, with the partition coefficient included, continuity of concentration
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at the flow–dextran interface is given byφC̃f(x̃, 0, t̃) = C̃d(x̃, 0, t̃). Using this fact and (2.20) in (2.18),
we find that

∂ B(2)

∂t
=

[

1 −
2p(2)

π

∫ 1

−1

√
1 − x′2B(2)(x + δxx′, t)dx′

]

[1 − DaCf(x, 0, t)] − K B(2), (2.21)

where we have used the scaling forCf in Edwards(2007). Equation (2.21) exactly matches the analogous
result in that work, with ourp(2) being denoted asp2.

3. Additional equations

3.1 The bound state

Since (2.6) is an evolution equation, we need an initial condition forBg. In the experiments under
consideration, it is appropriate to use a constant initial condition

Bg(x, y, 0) = Bi . (3.1)

In the BIAcore, it is not the actual value ofBg which is calculated, but rather its average over some
‘scanning range’xmin 6 x 6 xmax and the width of the receptor layer. Denoting that quantity with a
bar, we have

B̄g(t) =
1

xmax − xmin

∫ xmax

xmin

〈Bg〉dx, 〈Bg〉 =
∫ 0

−1
Bg dy. (3.2)

Lastly, we may simplify our expressions using experimentally appropriate parameter regimes. It can
be shown (Edwards, 2007) thatδx � 1. Thus, expanding the inner integral term in (2.8) for smallδx,
we obtain

S[Bg](x, y, t) = 2S0d3
l

∫ ymax

ymin

π(1 − y′2)

2

[

Bg +
δ2

x(1 − y′2)

8

∂2Bg

∂x2

]

(x, y + δyy′, t)dy′. (3.3)

3.2 Free ligand

To complete the system, we need an expression forCg. With our scalings, the balance is between diffu-
sion ofCg and the reaction, so we have (Edwards, 2001)

∂2Cg

∂y2
= −D

∂ Bg

∂t
,

D =
D̃f/(HfPe−1/3)

φ D̃g/Hg
=

diffusion ‘velocity’ in diffusive boundarylayer

diffusion ‘velocity’ in dextran
, (3.4)

whereD̃g is the diffusion coefficient in the dextran gel. Following the analysis inEdwards(2001), if we
now define

∂2Fy

∂y2
=

∂ Bg

∂t
,

∂Fy

∂y
(x, −1, t) = 0, Fy(x, 0, t) = 0, (3.5)
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thenCg is given by

Cg(x, y, t) = −[DFy + Fx(x, t)], (3.6)

Fx(x, t) = −
1

31/3Γ (2/3)

∫ x

0

∂Fy

∂y
(x − ξ, 0, t)

dξ

ξ2/3
. (3.7)

Note from (3.5) that

∂Fy

∂y
(x, 0, t) =

〈
∂ Bg

∂t

〉
, (3.8)

where we have used the no-flux boundary condition. Hence,Fx represents the average depletion up-
stream due to the reaction.

Substituting (3.6) into (2.6), we obtain

∂ Bg

∂t
= {1 − S[Bg]}[1 + Da(DFy + Fx)] − K Bg. (3.9)

4. Small Da

In order to minimize the effects of transport, experimentalists attempt to force Da� 1. Thus, we treat
it as a small parameter and introduce a standard perturbation series

Bg(x, y, t) = B0(x, y, t) + DaB1(x, y, t) + o(Da). (4.1)

Substituting (4.1) into (3.9), (3.5) and (3.1) while keeping the necessary orders, we have

∂ B0

∂t
=
{

1 − πS0d3
l

∫ ymax

ymin

(1 − y′2)B0(x, y + δyy′, t)dy′
}

− K B0, (4.2a)

∂ B1

∂t
=
{

1 − πS0d3
l

∫ ymax

ymin

(1 − y′2)B0(x, y + δyy′, t)dy′
}

(DFy + Fx)

− πS0d3
l

∫ ymax

ymin

(1 − y′2)

[

B1 +
δ2

x(1 − y′2)

8Da

∂2B0

∂x2

]

(x, y + δyy′, t)dy′ − K B1, (4.2b)

∂2Fy

∂y2
=

∂ B0

∂t
,

∂Fy

∂y
(x, −1, t) = 0, Fy(x, 0, t) = 0, (4.3)

B0(x, y, 0) = Bi, B1(x, y, 0) = 0. (4.4)

Note from (4.2b) that we have assumed thatδ2
x = O(Da).

It can be easily shown using (2.15) that B0 = B0(t) satisfies (4.2a), which becomes

dB0

dt
+ αB0 = 1, α = K + p. (4.5)
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The only difference between (4.5) and the receptor layer work inEdwards(2001) without occlusion is
the redefinition of the parameterα. Note also that in the limit thatdl → 0, p → 1 and we reduce exactly
to the results inEdwards(2001). Since this is the only change at leading order, it is easy to interpret
how neglecting steric hindrance can affect our results. In particular, if we ignore steric hindrance effects
when analysing our data, then the estimated value deviates from the true value in the following way:

Kestimated= Ktrue + p − 1. (4.6)

Therefore, the error will be most apparent whenKtrue is small. Since the dimensionless parameterK
depends on the underlying flow rateCu (as shown in (2.6)), this error is controllable in a physical
experiment even if the diameter of the ligand molecule is unknown.

The solution of (4.5) and (4.4) is given by

B0(x, t) =
1 − e−αt

α
+ Bi e−αt = B̄0(t). (4.7)

SinceB0 is independent ofx andy, the dependence ofCg on the various independent variables separates.
In particular, the solution of (4.3) is

Fy(y, t) =
dB0

dt

y(y + 2)

2
, (4.8a)

which is independent ofx, andFx becomes

Fx(x, t) = −h(x)
dB0

dt
, h(x) =

32/3x1/3

Γ (2/3)
, (4.8b)

where we have used (3.7). Thus,Fx is independent ofy. This decoupling ofx- andy-transport processes
also occurs in the receptor layer model without occlusion (Edwards, 2001).

Substituting (4.8) and the fact thatB0 depends only ont into (4.2b), we obtain

∂ B1

∂t
+ K B1 = [1 − pB0(t)]

dB0

dt

[
D

y(y + 2)

2
− h(x)

]
−πS0d3

l

∫ ymax

ymin

(1− y′2)B1(x, y + δyy′, t)dy′,

(4.9)

where we have used (2.15). (Note that sinceB0 is independent ofy, the term involvingδ2
x does not

appear.) We may continue to exploit the structure to separate variables by defining

B1(x, y, t) = Bx(x, t) + By(y, t), Bx(x, 0) = 0, By(y, 0) = 0. (4.10)

Then, by using (2.15), we see that the evolution equation forBx is

∂ Bx

∂t
+ K Bx = −[1 − pB0(t)]

dB0

dt
h(x) − pBx,

and the solution is given by

Bx(x, t) =
[
(e−αt − 1)pχ

α
− Kt

]
χ e−αt h(x)

α
, χ = 1 − αBi, (4.11)

where we have used (4.10).
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Because of the integral term, the solution forBy is more involved, as can be seen from its evolution
equation

∂ By

∂t
+K By =

Dχ

α
(K + pχ e−αt )e−αt

[
y(y + 2)

2

]
−πS0d3

l

∫ ymax

ymin

(1−y′2)By(y+δyy′, t)dy′. (4.12)

First, we introduce the standard concept of a Laplace transform in thet-direction, as well as an interme-
diate variableY(y):

f̂ (s) =
∫ ∞

0
f (t)e−st dt, f (t) =

1

2π i

∫

C
f̂ (s)est ds,

B̂y =
Dχ

2α

(
K

s + α
+

pχ

s + 2α

)
Y(y), (4.13)

whereC is the Bromwich contour. Substituting (4.13) into the Laplace transform of (4.12), we obtain

Y(s + K ) = y(y + 2) −
πS0d3

l

δy

∫ ξmax

ξmin

[

1 −
(

ξ − y

δy

)2
]

Y(ξ)dξ, (4.14a)

ξmin = max{y − δy, −1}, ξmax = min{y + δy, 0}, (4.14b)

where we have introduced the variable substitutionξ = y + δyy′ for simplicity. Note that the kernel is
both separable (useful for the Fredholm case) and a function ofy − ξ (useful for the Volterra case).

5. Large molecule limit, small Da

5.1 Association experiment

For the purposes of the rest of this manuscript, we focus on the case whereδy > 1, namely, those cases
where the ligand molecule is larger than the dextran layer. (Such a regime is experimentally realizable;
see the Appendix.) Since−16 y 6 0, we can calculate the value ofS0 using (2.9b):

S−1
0 (y; dl) = −

πd3
l

pδ3
y

A(y), A(y) =
(2y + 1)2 − r 2

4
, r 2 = 4δ2

y −
1

3
. (5.1)

From (4.14b), we have thatξmin = −1 andξmax = 0, and hence (4.14a) becomes

Y(s + K ) = y(y + 2) +
p

A(y)
[(δ2

y − y2)Y0 + 2yY1 − Y2], Yj = 〈y j Y〉, (5.2)

where we have used (5.1). Here,Yj is the integral ofY(y) against a test functiony j .
Equation (5.2) is now in a standard Fredholm form with separable kernel. Thus, to solve for theYj ,

we next take the inner product of the whole equation with a test functiony j , j = 0, 1, 2. If we define

Aj =
〈

y j

A(y)

〉
, j = 0, 1, . . . , 4, (5.3)

then by symmetry arguments, all theAj may be expressed as affine functions of

A0 =
2

r
log

(
r − 1

r + 1

)
. (5.4)
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Integrating (5.2) against the test functions, we have the following linear system of equations in
theYj :

(s + K )Y0 = −
2

3
− p

[(
1 +

A0

6

)
Y0 + A0Y1 + A0Y2

]
, (5.5a)

(s + K )Y1 =
5

12
+ p

{(
3

2
+ δ2

y A0

)
Y0 + 2

[
1 +

(
δ2

y +
1

6

)
A0

]
Y1 +

A0

2
Y2

}
, (5.5b)

(s + K )Y2 = −
3

10
− p

{[

3 +

(
7δ2

y

3
−

1

9

)
A0

2

]

Y0 + 3(1 + δ2
y A0)Y1

−
[
1 +

(
δ2

y +
1

6

)
A0

]
Y2

}
. (5.5c)

We note that due to the averaging properties of the BIAcore, we need only the following quantity to
compare to the sensogram signal:

〈B̂y〉 =
Dχ

2α

(
K

s + α
+

pχ

s + 2α

)
Y0, (5.6)

where we have used (4.13) and (5.2). Thus, we quote the solution only forY0:

Y0 = −
1

3(s + α)

[
2 +

pA0

60(s + λ)

]
, λ = α + pA0b, b = δ2

y −
1

6
. (5.7)

Substituting (5.7) into (5.6) and inverting the Laplace transform, we have

〈By〉 =
Dχ

6α

{(
2 +

1

60b

)[
(e−αt − 1)pχ

α
− Kt

]
e−αt +

K (e−αt − e−λt )

60pA0b2
+

pχ(e−2αt − e−λt )

60b(λ − 2α)

}

.

(5.8)

Then, averaging (4.11) and substituting the result along with (5.8) into the average of (4.10), we
obtain

B̄1(t) =
χe−αt

α

[
(e−αt − 1)pχ

α
− Kt

] [
h̄ +

D

6

(
2 +

1

60b

)]

+
Dχ

360αb

[
K (e−αt − e−λt )

pA0b
+

pχ(e−2αt − e−λt )

(λ − 2α)

]

, (5.9a)

h̄ =
35/3(x4/3

max − x4/3
min)

4Γ (2/3)(xmax − xmin)
. (5.9b)
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5.2 Results

As before, we examine the limit thatδy → ∞ to verify our results against previous work. In this limit,
we see from (5.7), (5.1) and (5.4) that

b ∼ δ2
y, r ∼ 2δy, A0 ∼ −

1

δ2
y
, λ ∼ K .

Substituting these results into (5.9a), we have

B̄1(t) =
[
(e−αt − 1)pχ

α
− Kt

]
χ e−αt

α
h̄g, h̄g =

(
h̄ +

D

3

)
. (5.10)

Note that if we replacep by 1, (5.10) becomes the result from the receptor layer case without any
blocking (Edwards, 2001). Physically, this says that in the limit of very largedl , the occlusion effects
due to the ligand’s large size swamp any effect they may have in the thin receptor layer.

Taking the limit Hg → 0 to reduce to the 2D case with blocking means thatD → 0 as well, in
which case (5.10) becomes

B̄1(t) =
[
(e−αt − 1)pχ

α
− Kt

]
χ e−αt

α
h̄, (5.11)

which is exactly the result inEdwards(2007).
Figure9 shows the effect of changingdl on B̄0 as given in (4.7) with the parameters in Table1. Note

that we have chosen to fix the value ofHg at a (high) level, so changingδy and p is accomplished by
changingdl . Note that with no hindrance effects (p = 1) and the value ofK given, the steady state ofB̄0
would be 1/2. Since the fact thatdl > Hg immediately implies thatdl > dr, we are in the case with high
p and large occlusion effects. As expected, increasingdl lowers the steady-state value and decreases the
timescale needed to achieve the maximum value.

Figure10 shows the effect of changingdl on B̄1 as given in (5.9a). Here, the increasingdl values
increaseb, which causes an algebraic decay in the solution. At first blush, it may seem that these are

FIG. 9. B̄0 versust̃ with K = 1 and (in decreasing order of thickness)dl = Hg, 2Hg, 3Hg.
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TABLE 1 Parameter values for Figs9–12

Given Calculated
Parameter Value Parameter Value

Bi 0 t 10−3 t̃/s
Cu (mol/cm3) 10−11 χ 1
D 1.20× 10−1

Da 10−1

Hg (cm) 10−5

k̃a (cm3/mol/s) 108

RT (mol/cm2) 10−12

xmax 7.92× 10−1

xmin 2.08× 10−1

FIG. 10. B̄1 versust̃ with K = 1 and (in decreasing order of thickness)dl = Hg, 2Hg, 3Hg.

large effects since the size ofB̄1 andB̄0 is similar. However, sincēB1 must be multiplied by Da (assumed
small) before contributing to the solution, the relative contribution is O(Da).

We conclude with a note about the effective rate constant (ERC) formulation, which usually can
reduce the small-Da case to an ordinary differential equation for the sensogram signalB̄g (Edwards
et al., 1999). This is customarily done by manipulating (2.6) into the form

∂ Bg

∂t
− Da(1 − pB0)

dB0

dt

{
D

[
y(y + 2)

2

]
− h(x)

}
= 1 − S[Bg] − K Bg + O(Da2) (5.12)

and then averaging. But in this instance, averaging yields a term of theform S[Bg], which cannot be
expressed in terms ofS[ B̄g]. Hence, this approach fails for the association experiment. Nevertheless, it
will be shown to be effective for a dissociation experiment in Section6.

6. Dissociation experiment

A typical run of the BIAcore includes both an association phase and a dissociation phase that begins
when the association experiment reaches steady state. From (3.5), we see that ast → ∞, Fy → 0, so
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from (3.7) we have thatFx → 0 and henceCg → 0. Then, using the same arguments in Section3, we
find that the steady state of (3.9) is

Bg,s =
1

α
, (6.1)

which provides the initial condition for the dissociation problem. In addition, the ligand concentration
is shut off, so the equation analogous to (3.9) is

∂ Bg

∂t
= {1 − S[Bg]}Da(DFy + Fx) − K Bg. (6.2)

The fact that the integral term first appears at O(Da) is critical to explaining the simplifications that
follow.

Substituting (4.1) into (6.1) and (6.2), we have

∂ B0

∂t
= −K B0, B0(x, y, 0) = α−1, (6.3a)

∂ B1

∂t
= {1 − S[B0]}(DFy + Fx) − K B1, B1(x, y, 0) = 0. (6.3b)

Solving (6.3a), we obtain

B0(x, y, t) = B̄0(t) =
e−Kt

α
. (6.4)

Equations (4.8) do not change since all the changes are incorporated into the new value of dB0/dt .
SinceB0 is independent ofx andy, we see from (2.15) that (6.3b) becomes

∂ B1

∂t
+ K B1 = −

(
1 − p

e−Kt

α

)(
−

K e−Kt

α

){
D

[
y(y + 2)

2

]
− h(x)

}
, (6.5)

where we have used (4.8) and (6.4). Thus, the integral term does not appear to first two orders and the
only difference between this result and the 2D occlusion result inEdwards(2007) is the replacement
of −h(x) by the braced term. Solving (6.5) subject to the initial condition in (6.3b), we obtain

B1 = −
K

α

[
t +

p(e−Kt − 1)

Kα

]
e−Kt

{
D

[
y(y + 2)

2

]
− h(x)

}
. (6.6)

Averaging then yields

B̄1(t) =
K e−Kt

α

[
t +

p(e−Kt − 1)

Kα

]
h̄g. (6.7)

To proceed with an ERC formulation, we note that the equation analogous to (5.12) is

∂ Bg

∂t
− Da(1 − pB0)

dB0

dt

{
D

[
y(y + 2)

2

]
− h(x)

}
= −K Bg + O(Da2). (6.8)
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With theS[Bg] term now relegated to lower order, we can take the average of (6.8) to obtain

dB̄g

dt
= −

K B̄g

1 + Da(1 − pB̄g)h̄g
+ O(Da2), (6.9)

which (with the exception of thep term) is exactly the result from the receptor layer work without
occlusion (Edwards, 2001).

Figure11 shows the effect ofp on the dissociation solution. Note that the only difference from the
result inEdwards(2007) for 2D occlusion effects is the introduction of the extraD/3 term, which is
quite small from Table 1. Thus, our plots are quite similar to those inEdwards(2007), except thatp in
our work now plays the role ofp2 in Edwards(2007). In particular, increasingp reduces the binding.

Figure12 shows the same graph forK = 10. Note that though on a relative basis the effect ofp is
about the same, on an absolute basis it is not sinceK dominates theα portion of the denominator of the
steady state. Again, the work is quite similar to the 2D work.

FIG. 11. B̄g versust̃ with K = 1 and (in decreasing order of thickness)p = 1, 2, 4, 8, 16.

FIG. 12. B̄g versust̃ with K = 10 and (in decreasing order of thickness)p = 1, 2, 4, 8, 16.
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7. Moderate Da

7.1 Association experiment

Though it is desirable from an experimental standpoint to make Da small, in some situations (such as
in very fast reactions) such a state is unattainable. Thus, we now present results in the case where Da is
moderate. In this case, (3.9) is non-linear. To linearize the problem, we resort to small-time asymptotics
by assuming a solution of the form

Bg(x, y, t) = Bi + β(x, y)t + o(t). (7.1)

With such a substitution, we define a new variableF1 in the following manner:

∂2F1

∂y2
= β,

∂F1

∂y
(x, −1) = 0, F1(x, 0) = 0. (7.2)

Then, substituting (7.1) and (7.2) into (2.6), we obtain, to leading order int ,

1 − pBi − (β + K Bi) = Da(1 − pBi)

[
1

31/3Γ (2/3)

∫ x

0

∂F1

∂yd
(x − ξ, 0)

dξ

ξ2/3
− DF1

]
. (7.3)

Note in particular that the integral term does not come into play since the leading order is assumed to be
constant. Thus, our work will be quite similar to previous results inEdwards(2001, 2007).

Since the sensogram signal is averaged, we are more interested in the quantity

〈β〉 =
∂F1

∂y
(x, 0), (7.4)

where we have used (7.2). Thus, it is easiest to work directly withF1 in (7.3), which we solve with the
use of Laplace transforms (inx, rather thant):

d2F̂1

dy2
− λ2

aF̂1 =
χ

s
−

ν1/3

s1/3

dF̂1

dy
(0), (7.5a)

ν =
1

3

[
Da(1 − pBi)Γ (1/3)

Γ (2/3)

]3

, λ2
a = DDa(1 − pBi), (7.5b)

which is exactly the equation fromEdwards(2001) with a different definition ofν andλa to include the
occlusion contribution through the parameterp.

Then, we may write the average as

B̄g(t) = Bi + St̃ + o(t), S =
k̃aCu{I[β; xmax] − I[β; xmin]}

xmax − xmin
, (7.6)

I[β; x] =
χ e−νax

νa

tanhλa

λa
[eνax − 1 − |P(4/3, −νax)| + |P(5/3, −νax)|], (7.7a)

νa =
ν tanh3 λa

λ3
a

. (7.7b)
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Here,I is simply the integral of〈β〉:

I[β; x] ≡
∫ x

0
〈β〉dξ (7.8a)

andP is the normalizedlower incomplete gamma function whose definition is

P(m/3, −νax) =
γ (m/3, −νax)

Γ (m/3)
. (7.8b)

We next examine the asymptotic limits of (7.7a), relying heavily on the analysis inEdwards(2001).
In the limit of smallk̃a, the functional dependence ofI onνa andλa vanishes, as the limits are indepen-
dent of those quantities. In particular,

I[β; x] ∼ χx =⇒ S ∼ k̃aCu[1 − (K + p)Bi ] as k̃a → 0. (7.9)

We do not expand the bracketed quantity because we are treatingK as fixed. In typical experiments
(which we shall graph below),Bi = 0, so both dissociation and occlusion effects are absent. However,
in the case whereBi 6= 0, we see that both dissociation (through theK term) and occlusion effects
(through thep term) will slow the initial rate of growth of the sensogram data.

Examining the asymptote for largek̃a, we see that

I[β; x] ∼
χx2/3

ν1/3Γ (5/3)
, (7.10)

and hence there is a finite asymptote forS. This is due to the fact that the reaction rate becomes infinitely
fast, so the system becomes transport limited. Here,

lim
k̃a→∞

χ = 1 − pBi, (7.11)

so we see that occlusion effects will tend to slow the initial rate of growth of the sensogram data at a
rate proportional to the initial number of receptors bound.

In the experiments that we are modelling,Bi = 0, so the dependence onp in (7.10) cancels and we
are left with the result fromEdwards(2007):

S ∼
34/3CuV1/3D̃2/3

f (x2/3
max − x2/3

min)

2Γ (1/3)RTL1/3H1/3
f (xmax − xmin)

, k̃a → ∞. (7.12)

Since the reaction is infinitely fast, the effect ofD is negligible, and hence the two results are identical.
Thus, there is some maximal rate due to transport, and the mode of transport is unimportant.

Figure13shows how the slopeSvaries withk̃a using the parameters in Table2. Note thatp appears
only when multiplied byBi (directly or throughα). SinceBi = 0, p does not affect our results. Physi-
cally, this means that for small times, there has not been enough binding for occlusion effects to play a
role. For the parameters in Table2, the asymptote in Fig.13may be calculated as

S = 2.81× 10−3 s−1, k̃a → ∞. (7.13)
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FIG. 13.Sversusk̃a, association experiment.

TABLE 2 Parameter values for Figs13–15

Given Calculated
Parameter Value Parameter Value
Bi 0 χ 1
Cu (mol/cm3) 10−11

D̃f (cm2/s) 2.8 × 10−7

D 1.20× 10−1

Hf (cm) 5 × 10−3

L (cm) 2.4 × 10−1

RT (mol/cm2) 10−12

V (cm/s) 1
xmax 7.92× 10−1

xmin 2.08× 10−1

7.2 Dissociation experiment

Lastly, we examine the dissociation case. As discussed previously, the initial condition here is the steady
state from the association problem, given in (6.1). Thus, the equation analogous to (7.5a) is

d2F̂1

dy2
− λ2

dF̂1 = −
K

αs
−

μ1/3

s1/3

dF̂1

dy
(0), (7.14a)

μ =
1

3

[
DaKΓ (1/3)

αΓ (2/3)

]3

, λ2
d =

DDaK

α
. (7.14b)

Since (7.14a) is the same as (7.5a) except for the replacement ofχ by −K/α, (7.7a) becomes

I[β1; x] = −
K e−νdx

ανd

tanhλd

λd
[eνdx − 1 − |P(4/3, −νdx)| + |P(5/3, −νdx)|], (7.15a)
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νd =
μ tanh3 λd

λ3
d

. (7.15b)

Since Da→ 0 ask̃a → 0, in this limit νd → 0 andλd → 0, so we may use the expression in (7.9),
simply replacingχ by −K/α. But with k̃d fixed, k̃a → 0 forces this ratio to be−1. Thus, we have

S ∼ −k̃aCu, k̃a → 0, k̃d fixed, (7.16)

which is independent ofp. Physically, since blocking is related to the association process, a smallk̃a
implies that blocking will not have time to develop for smallt .

In the case of largẽka, it can be shown that

lim
k̃a→∞

λd = λ∞ =

(
R̃T Hg

φ D̃g

k̃d

pCu

)1/2

, (7.17a)

lim
k̃a→∞

νd = ν∞ =
1

3Pef

[
Γ (1/3)

Γ (2/3)

R̃T Hf

D̃f

k̃d

pCu

tanhλ∞

λ∞

]3

. (7.17b)

Sinceν∞ decays likep−3, we may use the small-argument asymptotic expansion for theP function to
obtain

I[β1; x] ∼ −
k̃dx

pk̃aCu
, (7.18)

and hence larger values ofp will drive down the value of the asymptote.
As in previous sections, we will examine graphically how the dependence of the solution onk̃a varies

with p. Thus, we must fix a value of̃kd (instead ofK , as in Section7.1).
Figure 14 shows the graph of|S| versusk̃a with k̃d = 8.9 × 10−3 s−1 and varyingp. We have

graphed−S so that easy comparisons can be made with the association diagram. Note that increasing

FIG. 14.|S| versusk̃a with k̃d = 8.9 × 10−3 s−1 and (in decreasing order of thickness)p = 1, 2, 4, 8, 16.
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FIG. 15.|S| versusk̃a with k̃d = 8.9 × 10−2 s−1 and (in decreasing order of thickness)p = 1, 2, 4, 8, 16.

p reduces the initial speed of dissociation, with the most dramatic trends being shown ask̃a gets large.
This makes sense since with largerk̃a, the inherent timescale of the problem decreases.

In Fig. 12, we increasedK by a factor of 10 to illustrate the effect ofp in a different circumstance.
To achieve the same result in this context, we increasek̃d by a factor of 10, as shown in Fig.15. Note
that just as in Section4, the effects ofp are mitigated with increasing̃kd. This is because dissociation
plays a larger role in the reaction, and dissociation is unaffected by steric hindrance.

8. Conclusions

To better analyse and control biological and industrial processes, the underlying kinetic processes must
be well understood. Since the BIAcore SPR device consists of a thin reacting zone abutting a larger fluid
flow, it is a good physical model of many biological and industrial reactions. However, the real-time
kinetic data thus obtained are useless for parameter estimation without a proper mathematical model to
interpret it.

In particular, when the ligand molecules are larger than the spacing of the receptor molecules in the
zone, a single binding event will occlude multiple binding sites. Without taking this steric hindrance
effect into account, one will obtain inaccurate estimates of the underlying rate constants. We presented
some general discussion of the modelling process in Section2.1. In order to obtain a tractable set of
equations, we made several simplifying assumptions about the position and behaviour of the binding
site. However, we expect these assumptions to be unbiased, so the averaging properties of the BIAcore
signal should reduce any associated errors.

Mathematically, we model the occlusion event as a non-local integral term in the evolution equation
for Bg. As in Edwards(2007), the small size of the ligand molecules compared to the channel length
meant that the non-locality in thex-direction can be neglected. However, the ligand molecule can be
comparable in size to the width of the receptor layer, and hence the integral term in they-direction must
be treated fully.

We specialized to the case of large molecules so that the integral term assumed a separable Fredholm
form. (The case of smaller molecules is the object of further research.) Scientists prefer to work in the
regime where Da is small to limit the effects of transport; in this case, we constructed solutions good for
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long times which were accurate to O(Da2). The integral term arose only in the association experiment
since in that case the integral term is non-trivial at the first two orders. Since the average of the integral
term cannot be expressed in terms ofB̄g, we could obtain an ERC solution only in the dissociation case.

In the case of moderate Da, we constructed analytical short-time solutions. Due to the nature of
the dominant balance, the integral term does not contribute. Hence, our results can be interpreted as a
blend of the receptor layer work without occlusion inEdwards(2001) and the surface reaction work in
Edwards(2007).

In the cases without the integral term, the steric hindrance effect is encapsulated in the parameter
p, which measures the ratio of the occluded areas of ligand to receptor. Though the effect can most
easily be seen in (4.6), the parameterp propagates throughout the solutions. The dependence ofp on
dl is quadratic while the dependence onRT is linear, and hencedl is the dominant factor in determining
whether or not blocking will occur.

SinceRT must be kept at a relatively high level to distinguish the BIAcore signal from experimental
noise, it is clear from the Appendix that there will be cases where steric hindrance effects are unavoid-
able. To minimize them, experimentalists can reduceRT as much as possible to reducep and thus
theabsolutesteric hindrance effect. Therelativesize of the steric hindrance effect may be reduced by
increasingK , as seen in (4.6). From (2.6), we see that this may be affected by decreasingCu.

9. Nomenclature

9.1 Variables and parameters

Units are listed in terms of length (L), mass (M), moles (N) or time (T). If the same letter appears
both with and without tildes, the letter with a tilde has dimensions, while the letter without a tilde is
dimensionless. The equation where a quantity first appears is listed, if appropriate.

A(y): function used to characterizeS0 (5.1).

B̃(x̃, ỹ, t̃): bound ligand concentration at position(x̃, ỹ, t̃) and timet̃ , unitsN/L2.

b: dimensionless parameter (5.7).

C̃(x̃, ỹ, t̃): unbound ligand concentration at position(x̃, ỹ) and timet̃ , unitsN/L3 (2.1).

C: the Bromwich contour.

D̃: molecular diffusion coefficient, unitsL2/T (2.5a).

d: spacing between molecules, unitsL.

Da: the Damk̈ohler number, which measures the ratio of reaction and diffusion effects, dimen-
sionless (2.5a).

F(∙, t): function used to characterizeCg (3.5).

f (∙): arbitrary function, variously defined.

H : height, unitsL.

h(x): function used in ERC solution (4.8b).

I[β; x]: integration operator, defined in (7.8a) as

I[β; x] ≡
∫ x

0
〈β〉dξ.

K : dimensionless affinity constant (2.6).

k̃d: dissociation rate, unitsT−1 (2.1).
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k̃a: association rate, unitsL3/(NT).

L: length of the channel, unitsL (2.1).

m: arbitrary integer, variously defined.

N: Avogadro’s number, unitsN−1 (2.13).

P(∙, ∙): normalized lower incomplete gamma function (7.8b).

p: volume ratio of ligand to receptor molecule (2.12).

Pe: Pecĺet number for the system (2.5b).

RT: density of receptor sites, unitsN/L2 (2.1).

r : dimensionless parameter (5.1).

S̃[∙]: steric hindrance operator (2.1).

S: slope of sensogram data for small time, unitsT−1 (7.6).

s: Laplace transform variable.

t̃ : time, unitsT (2.1).

V : characteristic flow velocity, unitsL/T (2.5b).

x̃: length along the channel, unitsL.

Y(y): intermediate variable related tôBy (4.13).

ỹ: height above reacting surface, unitsL (2.1).

Z: the integers.

z̃: distance perpendicular to flow, unitsL.

α: dimensionless constant, defined asK + p (4.2a).

β(x): term in expansion ofB(x, t) for small t (7.1).

δ: ratio of ligand radius to characteristic length (2.9a).

λ: dimensionless parameter, variously defined.

μ: dimensionless parameter in moderate Da case (7.14b).

ν: dimensionless parameter in moderate Da case (7.5b).

ξ : dummy variable, variously defined.

χ : dimensionless constant, value 1− αBi (4.11).

φ: partition coefficient (2.1).

9.2 Other notations

a: as a subscript, used to indicate association.

d: as a subscript, used to indicate dissociation.

f: as a subscript, used to indicate the flow (2.5a).

g: as a subscript, used to indicate the dextran gel layer.

i: as a subscript, used to indicate an initial condition (3.1).

l: as a subscript, used to indicate the ligand.

m ∈ Z: as a subscript, used to indicate a normalization factor (2.2), an expansion (4.1) or integration
against a test function (5.2).

max: as a subscript onx, used to indicate the right end point of the scanning range (3.2); as a
subscript ony or ξ , used to indicate an upper limit of integration (2.3b).
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min: as a subscript onx, used to indicate the left end point of the scanning range (3.2); as a
subscript ony or ξ , used to indicate an upper limit of integration (2.3b).

r: as a subscript, used to indicate the receptor.

s: as a subscript, used to indicate the steady state (2.10).

u: as a subscript onC, used to indicate a characteristic value (2.4a).

x: as a subscript, used to indicate thex-direction (2.9a).

y: as a subscript, used to indicate they-direction (2.9a).

(2): as a superscript, refers to the 2D analog of this problem, described inEdwards(2007)
(2.19b).

*: as a subscript, refers to a constant value.
ˉ : used to denote the BIAcore signal, which is the mean of the bound concentration (3.2).
ˆ : used to denote the Laplace transform of a quantity.

∞: as a subscript, refers to a limiting value ask̃a → ∞ (7.17a).

〈 〉: used to indicate the average in they-direction only (3.2).
′: used to indicate a dummy variable (2.2).

Appendix

We conclude with a brief discussion of the dimensionless parameters used in this work. TableA1
summarizes some extreme values of the parameters found in the literature, which we use to establish
bounds on our dimensionless parameters. Note thatdl is adiameter, while most papers quote the Stokes
radius.

To compute a lower bound forδy, we use the lower bound ondl from Curto et al. (2005) and the
upper bound onHg from Edwardset al. (1995). Similarly, to compute an upper bound forδy, we use
the upper bound ondl from Zheng & Rundell(2003) and the lower bound onHg from Schuck(1996).
The computed range is

8 × 10−3 6 δy 6 50. (A.1)

Therefore, both theδy < 1 and theδy > 1 cases are physically realizable.
For the attainable values ofp, one can trivially attain the lower bound of 1 with very small ligand

molecules or wide receptor spacing. For the upper bound, we note that (2.13) becomes

p = d2
l N RT (A.2)

TABLE A1 Parameter values from the literature

Parameter

Reference dl (10−6 cm) Hg (10−5 cm) RT (10−12 mol/cm2)

Curtoet al. (2005) 0.4
Edwardset al. (1995) 2–5
Schuck(1996) 0.1–1
Yarmushet al. (1996) 0.25–4
Zheng & Rundell(2003) 50 0.065
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for largedl , which is exactly the expression forp2 in Edwards(2007). Thus, we may quote the upper
bound from that work to construct the possible range ofp:

16 p 6 6.02× 103. (A.3)
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