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Many biological and industrial processes have reactions which occur in thin zones of densely packed
receptors. Understanding the rate of such reactions is important, and the BlAcore surface plasmon reso-
nance biosensor for measuring rate constants has such a geometry. However, interpreting biosensor data
correctly is difficult since large ligand molecules can block multiple receptor sites, thus skewing the ki-
netics. General mathematical principles are presented for handling this phenomenon, and a receptor layer
model is presented explicitly. An integro-partial differential equation results. Using perturbation tech-
nigues, the problem can be simplified somewhat. In the limit of small [@dutek number, the non-local

nature of the system becomes evident in the association problem, while other experiments can be mod-
elled using local techniques. Explicit and asymptotic solutions are constructed for large-molecule cases
motivated by experimental design. The analysis provides insight into surface—volume reactions occurring
in various contexts. In particular, this steric hindrance effect can often be quantified with a single dimen-
sionless parameter.

Keywords biomolecular reactions; rate constants; asymptotics; integrodifferential equations; steric
hindrance effects; BlAcore.

1. Introduction

Many biological and industrial processes include reactions in thin zones adjacent to a solid surface.
In the simplest bimolecular model, one reactant (the ‘ligand’) floats free in solution, while the other
(the ‘receptor’) is embedded in a thin ‘reaction zone’ (such as a gel) near the surface of a channel, cell
membrane, etc.

Often the solution has an imposed flow. For instance, in bubble reactors, gas reacts with the liquid
which impinges on the bubble surfacé®(g & Kalachey 2000. The creation of alginate gel in the
food industry is enhanced by the addition of a convective flow of reactaatr( et al, 2003. Flow
reactors are more effective at synthesizing inorganic materials on templtesét al, 1997). In high-
pressure, continuous-flow, fixed-bed reactors, gels are introduced at the reaction surface to minimize
hydrodynamics effectslansen & NiemeyerR005. Harmful blood clots form when platelets adhere
to foreign objects in the presence of blood flo@rébowskiet al,, 1972. Various biological processes
ensue when ligands floating in the bloodstream bind to cell receptors which occupy a thin reaction zone
about the cell membran&pldstein & Dembp1995. Immunoglobulins are transmitted to newborns
from mother’s milk through binding to receptors on intestinal epithelial cBliEghavaret al., 1994).

To control or understand such processes, one needs to know the ‘rate constants’ for any given reac-
tion. If one can obtain real-time measurements of the binding process, these can be translated into such
parameters given an appropriate mathematical model. One popular device for obtaining such data is the
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BlAcore, which is a surface plasmon resonance (SPR) device, and for the purposes of this paper, we
will use the BlAcore as a canonical example of a system where kinetics occur in a thin reaction zone.

The configuration of the BlAcore is described in great detail elsewh€aegson & Rlt, 1997,
Karlssonet al, 1991 Liedberget al,, 1993 Szaboet al, 1995. For our purposes, we consider the
BlAcore to be a rectangular channel through which the ligand is convectedfrdiection in standard
2D laminar flow fromx = 0, the inlet position (see Fig). Receptors are embedded in a thin dextran
gel of width Hy (where the subscript ‘g’ stands for ‘gel’) attached to the ceiling of the channel. An
evanescent wave is bounced off the channel ceiling and read by a detector. As the experiment progresses,
binding causes refractive changes to the polarized light beam. These changes, when compared to a
control state, can be translated into a ‘sensogram’ of the binagidnd 1996).

Most models of the BlAcore to date have assumed that a single binding event will block only one
receptor—the one to which the ligand molecule actually binds. However, in experiments the ligand
molecule can be much larger than the recepdnefig & Rundell2003. In such cases, a single binding
event can block multiple receptors (the ‘steric hindrance effect’). A naive model which does not include
the effect will underestimate the rate constapfwhere the subscript ‘a’ refers to ‘association’) because
receptors which are merely occluded will be counted as receptors which are available, but do not bind
because of the kinetics.

Edwards(2007) proposed a model where the reacting zone is treated as a surface (thdglimit0
in our terminology). In this work, we extend this model to include the case of a reacting zone of finite
width. Alternatively, this can be seen as an extension of the wdgklimardg2001) to include occlusion
effects. In Sectior?, we present some general guidelines to observe when making such extensions.
Using some reasonable assumptions, we then formulate an integro-partial differential equation for the
concentratiorBy of the bound state. Though the integral term inthgirection can be localized, in the
y-direction it cannot and must be considered.

When the Dam&hler number Da is small, we can obtain a perturbation solution to the problem for
all time. Because of the external reservoir of ligand, in the association case the integral equation cannot
be simplified, and we use standard solution techniques in the limit of large molecules. Without such an
external reserve, the dissociation kinetics are much simpler.
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FiIG. 1. Schematic of BIAcore device.
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When Da= O(1), only short-time solutions can be obtained. Again, since an external supply of lig-
and is not fully developed, both association and dissociation kinetics become straightforward extensions
of the work inEdwardg2001, 2007). The changes occur only in certain dimensionless parameters in the
problem. Such a simplification makes it easy to analyse, interpret and correct errors in the sensogram
data due to steric hindrance effects.

The results presented herein for the BIAcore have wide applicability. The same occlusion effects can
occur in biological contexts, and information about them can lead to the design of more effective phar-
maceuticals. Such information can also help optimize industrial processes by providing upper bounds
on the amount of receptor needed to achieve a certain chemical result.

2. The evolution equation
2.1 General modelling

We treat the reacting zone in the BIAcore as a thin dextran gel layer occupying the +adjpg § < 0.

This is in contrast to the work iEdwards(2007), where the reacting zone is taken to be a surface.

In the gel, the bound state is created when an available reacting site reacts with a ligand molecule
(concentratiorég). The bound state can also dissociate with rate con&tafwhere the subscript ‘d’

refers to ‘dissociation’). Therefore, the mass balance equation becomes

a_ég_"' &_~ ) ég(y(,y,f)
5 cffr -] 2t

whereL is the length of the channel. In addition:

—kgBy, —Hg<y<0, 0<x<L, (2.1)

1. Since the reaction occurs only inside the pores, it i$ltheconcentration oég that is important
in the reaction, so we must divide it by the partition coefficignt

2. The total number of (initially) available receptor sifRgis usually expressed as an area concen-
tration, so we must divide by the width of the gel to obtain a volume concentration.

3. The expressio&[ég] represents the number of receptor sites occluded by the bound state at a
particular point. Thus, the braced quantity represents the concentration of available (as opposed
to unbound) receptors.

To specialize the general opera®to a form which we can actually solve, we make the following
additional assumptions:

1. Receptor sites are considered to be points, spaced evenly in a cubic lattice in the dextran gel at a
distanced; from one another, where the subscript ‘r’ stands for ‘receptor’.

2. Ligand molecules are considered to have only one specific binding site. (Generalizing our results
to multiple binding sites is the subject of further research.) The structure is considered to be a
solid sphere of characteristic sidg where the subscript ‘I' stands for ‘ligand’. In practia,
will be taken as twice the Stokes radius.

3. As the experiment progresses, molecules will form an optimal packing arrangement. This is
probably the most controversial assumption, though in Se&ti@we describe situations where
this can occur. In any event, this assumption will provide a lower bound on the effect (since more
disordered configurations will occlude more reacting sites).

4. In order to transition from discrete receptor sites on individual molecules to the continuum ap-
proximation in @.1), we rely upon the fact that there is a thirdlirection normal to the flow. All
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the dependent variables are unifornzi(Edwards 2007, and henceég at some specifies, can
be thought of as a proportion of receptor sitegXat z) which have been bound, thus yielding
after some manipulation a concentration.

If the diameter of the ligand molecule exceeds the receptor spacing, the ligand molecules will dis-
place the receptors from their grid, as shown in RigThis is possible because the dextran is a gel.) In
addition, because the binding sites are on the surface of a sphere, it is possible for two receptors in close
proximity to bind to separate ligand molecules. Note that this behaviour is not possible in the surface
reaction caseHdwards 2007).

These physical complications engender several mathematical ones. First, there is a question of how
to track the dislocation of the receptor sites by the movement of the ligand sphere. Second, since we
are going to embed this discrete system into a continuum model, we must decide how to identify the
position of the ligand sphere. Fortunately, the BIAcore measures ongpttel averagef the binding,
not its exactocation (More details can be found in Secti8riL) Therefore, any approximation without
a directional bias should have errors that average to zero.

These two problems must be treated together. One obvious way to proceed would be to identify the
position of the ligand molecule as its centre, and assume that the ligand molecule centres on the former
position of a receptor molecule and binds to that molecule. However, as shown 8, g would
lead to ligand molecules ‘above’ the receptor layer participating in binding events, and receptors in the
region—Hg < ¥ < dj/2 — Hg never being bound.

To solve these problems, we take the position of the binding site to be the lowest point on the
sphere, as shown in Fig. At left is a molecule dislodging receptors from their array. Binding to any
of the white circles would be modelled by the diagram at right. (This effectively allows us to ignore
rotational motion in the analysis.) Moreover, one should think of the case of a 2D reacting surface
treated inEdwardg2007) to be the projection of the 3D reacting zone. Taking the receptor site to be the
lowest point on the sphere allows our results to reduce to the 2D case (where the reacting site is centred
on a disc) in the limit thaHg — 0.

As in the 2D case, spheres cannot overlap. Figskows that when binding occurs, it occludes all
receptors within a sphere of radidsfrom the binding site. Receptors within a radiig2 are directly
occluded by the ligand molecule, while receptors in the spherical annulus betweet fadindd, are
unavailable because another ligand receptor cannot fit to bind.
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FiG. 2. 3D schematic of true physical situation, side view. An X represents the binding site; white circles represent dislodged
receptor molecules.



STERIC HINDRANCE EFFECTS IN THIN REACTION ZONES 869

Fic. 3. 3D schematic of discredited mathematical approximation, side view. A black X represents the physical binding site,
a white X represents the modelled binding site and white circles represent dislodged receptor molecules.

FIG. 5. Schematic of occlusion volume.
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3

:*Hg

FIG. 6. Schematic of occlusion volume, side view.

This discussion motivates the following model r

S[Bgl(%, 9. 1) = So / / J - %2 - g2BeR + K, 9+ 7. DA Ay, (2.2)
/d2 ~/2

where Sp is a normalization factor. Physically2.@) just says that the availability of a binding site
is dependent on the bound state in a ball of radiysvhich corresponds exactly with the graphical
interpretation in Fig5.

Note from @.2) that the occlusion volume (and hence the range of integratioy) afay extend
outside the receptor layer, as shown in Fég.Thus, when using2.2), one must keep in mind that
Bg = 0 outside this interval. Alternatively, we adjust telimits of integration for the integral as
follows.

On the left of Fig.6 is shown an event with a position and radius such that the occlusion volume
resides entirely in the receptor layer. In such a situatiar?) (nay be used without change. However,
on the right is an event where the occlusion volume protrudes beyond the receptor layer. In such an
instance, the limits of integration would bey and—(Hg + ¥). (Note that due to the form o2(2), the
range of integration correspondsdigned distancenot y-value.)

In general, 2.2) may be written as

Ymax
S[Bgl(%, ¥ So/ /\/27 — X2 —§2By(Xx + X,y + ¥, DX dy, (2.3a)
min d 2
Ymin=—min{d, Hy+ ¥},  Ymax= min{d;, —y}. (2.3b)

2.2 Scaling and normalization

To simplify the calculations, we introduce dimensionless variables into the equations. For the physical
variables, we use scalings motivated Bgwards(200J). In particular, we normaliz& by the channel
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length, ¥ by the width of the receptor layerby the forward reaction timescale and the bound state by
the initial receptor density. Thus, we have

Xt y i g Bg()?s )7, t~)
= — = ——, t=kCyt B t)y=— 2.4a
X Ls y Hga av~uts g(X’ y’ ) RT/Hg s ( )
S[B A
STBgl = S09 Gy(x,7,) = pCullL — DaCq(x, v, 1), (2.40)
Rr/Hg
whereC, is the upstream inlet concentration. Here, Da is the ‘Daintdr number’, given by
kaR reaction “elocity’
kaRr y (2.53)

- Dt/ (HiPe1/3) ~ diffusion ‘velocity’ in diffusive boundary layer

whereD; is the diffusion coefficient of the ligand molecules in the flow (which the subscript ‘f’ repre-
sents) Hs is the height of the channel and Pe is tleelet number, given by

Hfz/ Dt __ characteristic diffusion time in flo

L/V characteristic convection time in flow

(2.5b)

whereV is a typical velocity scale. The importance of the scaling is that the dimensioBjesew
represents the percentage of receptor sites bound.

Note from @.4b) that the dimensionles3y is a scaled displacement(ﬁg from its equilibrium value.
In many experiments, Da is a small parameter (see Sedtigd)s and henceCy can be interpreted as
the first term in a perturbation series. However, even in the case whete@@) (see Sectior), this
choice of scaling simplifies the algebra later on.

Substituting 2.4) into (2.1), we have the following:

0By B kg
= {1— S[Bgl}[1 — DaCy(x, y,1)] — KBy, K = . (2.6)

For the dummy variables ir2(39, it is more convenient to scale .

Xy lY
=5 Y=q

Substituting 2.4) and .7) into (2.39, we obtain

Ymax [/ 1-y?
S[Bgl(X, y, t) = 280d|3/ V1=%2—y2By(x + X, y+dyy,tHdx' dy’,  (2.8)

2.7)

_ /1_y/2
d
Ymin = — mMin{1, 6, (1 + Y)},  Ymax = min{1, =5, 'y}. (2.9b)

To calculateSp, we consider a nearly irreversible reaction by takibg> 0. Physically, we are say-
ing that the backwards reaction proceeds slowly. Rather than affecting the chemistry, the back reaction
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eliminates poorly packed configurations, working only to distribute the bound state uniformly. It will be
shown in Sectior6 that the steady state Qf; is zero.
Thus, in the smalK limit, the steady state oR(6) becomes

Ymax 1— /2
2S0d? / V1—x2—y?Bys(X + X, y+dyy)dx'dy =1, (2.10)
yi

min - J —+/1-y?2

where the subscript ‘s’ refers to ‘steady state’. Physicayl@ states that for a nearly irreversible
reaction at steady state, all the receptors must be either bound or occluded.

In the continuous limit of averaging with perfect distribution of binding sit&gs will be uniform.
Examining the schematic in Fig, whered, ~ 2d,, we see that each ligand occludes eight receptors
(neglecting edge effects and considering that the ligands are spheres). Thus, only 1/8 of the receptors
will ever be bound even if the discs were packed optimally. Similarly, as lowg a2, the proportion
of receptors bound at steady state is giveridyyd)3. Essentially, we say that a spherical ligand blocks
out all receptors in the cube in which it resides.

This analysis assumes thét < Hg. Otherwise, the size of the ‘box’ that the receptor will block is
d,2 Hg since its height must be given by the width of the receptor layerindtherefore, in this case the
steady state is given by

d?

—— 2.11
dZ min{d;, H} (@11

Bg’s =
as long as the receptors are spaced more closely than the ligand diameter. If they are not, then the
concentration of the bound state is trivially equal to 1.

Itis simpler algebraically to work with the inverse of this quantity, which we denote. fMote that
this is a slightly different notation frorEdwards(2007), where the analogous quantity is callpd.)

Thus, we have
d2 min{d,, H
p= max[ w, l] , (2.12)
r

where we use the maximum to take into account the case where the ligand size is smaller than the
receptor spacing.
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FIG. 7. Packing withd; = 2dy, side view.
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There may be some concern about the validity21 9 because it would seem to ignore various
aspects of geometry, packing, etc. that could affect our results. We present a brief discussion to assuage
those concerns by examining the special case where d,. Then, a typical packing is shown in
Fig. 8. Note that the fraction of theolumecovered by the spheres 45/6 (since we are working in
three dimensions), while the fraction of theceptorscovered by the spheres is 1. In general, since the
receptors are assumed to occupy a cubic lattice, we have the following:

6 : 67d3/6
Bg,s = = volume fraction= R = ,
as desired.

In order to apply our theory to a particular experiment, we must know the valpe dfis readily
obtainable from the Stokes radius for the ligand molecule, which can be estimated using gel filtration
techniques Gherardiet al, 2003 or size exclusion chromatographgutovsky & Gazit 2004. The
volume density of receptors is given by dividing the area deri$iBt by Hy, whereN is Avogadro’s
number. (Note that this implies closer packingthg— 0.) Thus, in the case whedg > d;, we have
that

B d|2 min{d;, Hg} volume density ofeceptors

= ity of - — d?min(dy, UNRr.  (2.13
d3 volume density of ligands ireceptor layer - minfdy, JNRr. (2.13)

Sincep is directly proportional tdRy, it can be controlled in an experiment.
With Bg s a constant, the integral i2(10) is easily computed, and we find

-1

3 Ymax

So(y; d) = n—z:; “y - y?} l , (2.14)
|

Ymin

where we explicitly list the dependence&jf ony (and its parametric dependenced) The normal-
ization factor is not a constant since it is related to the volume of the occluded region in the receptor
layer, which is cut off ag/ approaches the boundaries of the layer. Note also féaB) that with the
choice ofSp in (2.14),

S[B.] = pB. for any B, independent of. (2.15)
f)\/\//_%\ p
Y . L . o/
L ] ]

. ]

FIG. 8. Packing withd; = d, side view.

- T




874 D. A. EDWARDS

2.3 Reduction to previous cases

In order to verify our results, we show that they reduce to previous cases in various physically meaning-
ful limits. In the limit asd; — 0, our results should match those in a receptor layer neglecting occlusion.
In this limit,

3

ox=0, dy=0, Ymn=-1 Ymax=1 p=1 SO:47rd3-
|

(2.16)

Substituting 2.16) into (2.8), we obtain

1— y’2
I|m S[Bg](x y, 1) = I|m 2 d; / / V1= X2 —y2By(x,y, t)dx' dy’
-0 47rd3

V1-y?

= Bg(X7 Y, t);

which is of course the desired result because without occluSidy] = By.

In the limit thatHg — O, our results should reduce to the 2D resuEdwardg2007) with occlusion
included. We first note that iB@ is the bound concentration in the 2D case mentioneBdwards
(2007, then

0
B@(x, ) = / By(X, ¥, D)dy. (2.17)
_Hg
Introducing the same averaging int1) yields
52 K 3 I - =
i:k—a RrCqy(%, 0, ) — Iim/ S[Bg]Cydy | — kaB®@, (2.18)
ot gb Hg—0 —Hg

where we have used the Mean Value Theorem.
Also in the limit thatHg — 0, we have that

0y = 00, Ymin = —5;1(1 +Y), Ymax= _5;1)’,

Ymin=—(Hg+9), Imax=—9, p=0d?NRr, (2.19a)
- -1
Y3 -0ty _ p®@ 1
lim So= lim —dI NRri|y — % — lim (2.19b)
Hg—0 Hg—0 ”d| 3 itay) nd Hg—0 Hg

wherep@ is the 2D analog of our normalization factpr
Substituting 2.19 into (2.33, we obtain

0 L. 2p@Ry 1 - N
lim / S[By]Cydy = P / V1= x2B@ (x 4 oy, )dx'Cy(X, 0, D), (2.20)
Hg T -1

Hg—0,/_

where we have used the Mean Value Theorem and the fact that the scaling in the 2D B#3e-is
RrB®@ (Edwards 2007). Moreover, with the partition coefficient included, continuity of concentration
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at the flow—dextran interface is given B (X, 0, f) = Cq(X, 0, f). Using this fact andZ.20 in (2.19,
we find that

oB®@
= 1 _—
ot

where we have used the scaling @&rin Edwardg2007. Equation 2.21) exactly matches the analogous
result in that work, with oup® being denoted ap?.

2 (2) 1
P / V1=x2B@(x + 6xx/, t)dx' | [1 — DaCs(x,0,1)] — KB®,  (2.21)
T J-

3. Additional equations
3.1 The bound state

Since @.6) is an evolution equation, we need an initial condition &y. In the experiments under
consideration, it is appropriate to use a constant initial condition

By(X. y, 0) = Bi. (3.1)

In the BlAcore, it is not the actual value &y which is calculated, but rather its average over some
‘scanning rangeXmin < X < Xmax and the width of the receptor layer. Denoting that quantity with a
bar, we have

Xmax 0

- 1
Xmax — Xmin Jxmin -1

Lastly, we may simplify our expressions using experimentally appropriate parameter regimes. It can
be shown Edwards 2007 thatdy <« 1. Thus, expanding the inner integral term g for smalldy,
we obtain

S[Bgl (X, y, 1) = 2S00 /

Ymin

Ymax r(l— y/2) - 5)%(1 _ y/2) 62 Bg
2 9 8 ox2

} (x,y+dyy,tdy. (3.3)

3.2 Free ligand

To complete the system, we need an expressio@§okVith our scalings, the balance is between diffu-
sion of Cy and the reaction, so we havedwards 2001)
"Cy _ 28y
oy? ot”’

b Dt/(HPe /3)  diffusion ‘velocity’ in diffusive boundaryayer
o ¢Dg/Hyg o diffusion ‘velocity’ in dextran

, (3.4)

whereDg is the diffusion coefficient in the dextran gel. Following the analysiEdwardg2001), if we
now define
0%Fy 9By

ol y
ayz ot s ay (Xa g ) ’ y(X, > ) > ( )
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thenCy is given by

Cy(x,y,t) = =[DFy 4+ Fx(x, )], (3.6)

Fe(X, 1) = al:y( X —¢&,0, t) (3.7)

31/3r<2/3> / 52/3'

Note from @.5) that
oFy 8By
ZIx.0t)=(— 3.8
ay(x,,) <6t>’ (3.8)

where we have used the no-flux boundary condition. HeRgegpresents the average depletion up-
stream due to the reaction.
Substituting 8.6) into (2.6), we obtain

2By

~ = 1= S[Bg]}[1 + Da(DFy + F)] - KBy, (3.9)

4. Small Da

In order to minimize the effects of transport, experimentalists attempt to forcg.DaThus, we treat
it as a small parameter and introduce a standard perturbation series

Bg(x, y,t) = Bo(X, y, t) + DaBy(x, y, t) + o(Da). (4.2)

Substituting 4.1) into (3.9), (3.5 and @.1) while keeping the necessary orders, we have

0B, Ymax

a_to = {1 - nSod|3/ 1- y’z) Bo(X, y + dyY’, t)dy’} — K Bg, (4.2a)
Ymin

0B Ymax

6_t1 = {1 - nSodf’/ 1- y’z) Bo(X, Y + dyy’, t)dy’] (DFy + Fx)

Ymax 52(1 _ y/Z) 82 Bo
e /ymin ( Y ) [ Lt 8Da aXZ (X7 y+ yy ’ ) y 1, ( )

8°Fy 0By  OFy
—=—, —X-Lt)=0, Fy(x,01t)=0 4.3
ayz ot H ( ] 9 ) > y( s Y ) > ( )

Bo(X,y,0) = B, Bi(x,y,0)=0. (4.4)

Note from @.2b) that we have assumed tht= O(Da).
It can be easily shown using@.(L5 that By = By(t) satisfies 4.2g, which becomes
dBo
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The only difference betweed 6) and the receptor layer work Edwards(2001) without occlusion is

the redefinition of the parameter Note also that in the limit tha — 0, p — 1 and we reduce exactly

to the results irEdwards(2001). Since this is the only change at leading order, it is easy to interpret
how neglecting steric hindrance can affect our results. In particular, if we ignore steric hindrance effects
when analysing our data, then the estimated value deviates from the true value in the following way:

Kestimated= Kirue+ p — 1. (4.6)

Therefore, the error will be most apparent whegp,e is small. Since the dimensionless paramdter
depends on the underlying flow ra@, (as shown in 2.6)), this error is controllable in a physical
experiment even if the diameter of the ligand molecule is unknown.

The solution of 4.5) and @.4) is given by

—ot

Bo(x,t) = + Bje ' = By(t). 4.7

SinceBg is independent of andy, the dependence @f; on the various independent variables separates.
In particular, the solution of4(3) is

_dBoy(y+2)
which is independent of, andFyx becomes
dBo 32/3y1/3

where we have use@(7). Thus,Fx is independent of. This decoupling ok- andy-transport processes
also occurs in the receptor layer model without occlustewards 2007).
Substituting 4.8) and the fact thaBy depends only ohinto (4.2h), we obtain

0B dB 42 Yrax L

ey =1 pro) G | 0V — oo <o [T yPBack v+ 0y
Ymin

(4.9)

where we have use®(15. (Note that sinceBy is independent of, the term involvings? does not
appear.) We may continue to exploit the structure to separate variables by defining

Bi(X, y,t) = Bx(x,t) + By(y,t), Bx(x,00=0, By(y,0)=0. (4.10)
Then, by usingZ.15), we see that the evolution equation 8y is

0Bx
ot

and the solution is given by

d
+ KBy =—[1— pBo(t)]d—BtOh(X) — PBx

—ot __ —oat
By(x. 1) = [(e . Dpx Kt] xe ah(X)’

x=1—-aB, (4.11)

where we have used (10.
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Because of the integral term, the solution Byris more involved, as can be seen from its evolution
equation
0By
ot

Ymax

D 2
+KBy = TX(K+ py e *He [%} —7rSod|3/y 1-vy? By (y+dyY, tydy'. (4.12)

First, we introduce the standard concept of a Laplace transform indhection, as well as an interme-
diate variabley (y):

f(s) = /O - ft)estdt, f@t)= % /C f(s)e’tds,

~ _ Dx K px
By = 2a (S+a S+2a)Y(y)’ (4.13)
whereC is the Bromwich contour. Substituting.(L3 into the Laplace transform ofl(12), we obtain
S d3 ¢max — 2
Y s+ K)=y(y+2) — T / 1- (5 y) Y(&)dg, (4.14a)
5)’ Smin 6y
Emin = Maxy — dy, —1},  &max = min{y + dy, 0}, (4.14b)

where we have introduced the variable substitufioa y + dyy’ for simplicity. Note that the kernel is
both separable (useful for the Fredholm case) and a functign-of (useful for the Volterra case).

5. Large molecule limit, small Da
5.1 Association experiment

For the purposes of the rest of this manuscript, we focus on the case dyher#&, namely, those cases
where the ligand molecule is larger than the dextran layer. (Such a regime is experimentally realizable;
see the Appendix.) Sincel < y < 0, we can calculate the value 8§ using €.9b):

(y+ 12 —r2

1
2 . rP=48- 2. (5.1)

d3
Syl(yrd) = ——LA®y), A(y) =
O E pég 9 3

From @.14bH, we have thatmi, = —1 andémax = 0, and hence4(143 becomes
P
A(y)

where we have use®(l). Here,Y;j is the integral ofY (y) against a test functiop! .
Equation 6.2) is now in a standard Fredholm form with separable kernel. Thus, to solve fafj the
we next take the inner product of the whole equation with a test fungtion = 0, 1, 2. If we define

Y(s+K)=y(y+2) + ——[(67 - y)Yo+2yV1 - Yo, Y} = (ylV), (5.2)

AN
A,_<A(y)>, j=0,1,....,4, (5.3)

then by symmetry arguments, all thg may be expressed as affine functions of

_2I r—-1 54
AO_Fog(r+1)' (5.4)
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Integrating 6.2) against the test functions, we have the following linear system of equations in
the;:

(s+K)Yo=— g - p[(1+ %) Y0+AoY1+AoYz}, (5.5a)
5 3 1 Ao
(s+K)Y1 =5+ p[(E + 5§A0) Yo+ 2 [1+ (55 + 6) Ao] Y1+ 7YZ] , (5.5b)

702

(s+K)Yo=— 1—30 - p[|:3+(?y - é)%} Yo+ 3(1 4 67A0)Y1
, 1

— |:1—|— (5y + 6) Ao] Y2] . (5.5¢)

We note that due to the averaging properties of the BlAcore, we need only the following quantity to
compare to the sensogram signal:

5 Dx (_K Px
By) = — Y 5.6
Byl 20 (S+a+s+2a) 0 (56)

where we have used (13 and 6.2). Thus, we quote the solution only f¥p:

Yo =

1[2 pA

T 3(s+a) 60(s + 1) ©.7)

}, A =a+ pAb, b=5§,—f—15.

Substituting $.7) into (5.6) and inverting the Laplace transform, we have

—at _ —at _ At —20t _ o—At
(By) = %{(2+ = )[.(e Doy _ Kt] gty KET—e")  pxle e )]'

6 60b a 60p Agh2? 60b(4 — 2a)
(5.8)

Then, averaging4(11) and substituting the result along with.8) into the average of4(10, we

obtain
- €[ —py - D 1
B = -K h+ —{2+ —
1®) a [ a t + 6 + 60b

Dy [K(e*t—et e 2 —eH
L Dr K ) | Px( )| (5.9a)
36ub pAob (4 = 2a)
4/3 4/3
R 35/3(Xm/ax - Xm/in) (59b)

47" (2/3) (Xmax — Xmin)
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5.2 Results

As before, we examine the limit tha} — oo to verify our results against previous work. In this limit,
we see from$%.7), (5.1) and 6.4) that

1

2
b~dy, 1~ 20y, Aow—ﬁ, A~ K.
y
Substituting these results int6.09, we have
_ —ot _ 1 —at _ _ _ D
Bi(t) = |:(e—)p)( - K'[i| X hg, hg= (h + g) (5.10)
o a

Note that if we replacep by 1, 6.10 becomes the result from the receptor layer case without any
blocking Edwards 2001). Physically, this says that in the limit of very large the occlusion effects
due to the ligand’s large size swamp any effect they may have in the thin receptor layer.

Taking the limitHg — O to reduce to the 2D case with blocking means that> 0 as well, in
which case .10 becomes

—at __ —at
Ba(t) = [(e bpx _ Kt] X€ P, (5.11)
a 04

which is exactly the result iedwards(2007).

Figure9 shows the effect of changirdy on By as given in 4.7) with the parameters in Table Note
that we have chosen to fix the valueld§ at a (high) level, so changing, and p is accomplished by
changingd,. Note that with no hindrance effectp & 1) and the value oK given, the steady state 8
would be 1/2. Since the fact thdt > Hg immediately implies thadj > dy, we are in the case with high
p and large occlusion effects. As expected, increadihgwers the steady-state value and decreases the
timescale needed to achieve the maximum value.

Figure 10 shows the effect of changing) on By as given in $.99. Here, the increasing, values
increaseb, which causes an algebraic decay in the solution. At first blush, it may seem that these are

By
0.016 1

0.014
0.012

0.01+
0.008 1
0.006 1

0.004
0.002

0 20 40 60 80 100 ¢

FiG. 9. Bg versusf with K = 1 and (in decreasing order of thickneg)= Hg, 2Hg, 3Hg.
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TABLE 1 Parameter values for Fig8-12

Given Calculated
Parameter Value Parameter alvle
B; 0 t 10-3f/s
Cy (mol/cmd) 10711 x 1
D 1.20x 1071
Da 101
Hg (cm) 105
ka (cm®/mol/s) 108
Rr (mol/cn?) 10712
Xmax 7.92x 1071
Xmin 2.08x 1071

20 40 60 80 100 7

FiG. 10. B versud with K = 1 and (in decreasing order of thicknedgs)= Hg, 2Hg, 3Hg.

large effects since the size Bf andBy is similar. However, sinc8; must be multiplied by Da (assumed
small) before contributing to the solution, the relative contribution(®#).
We conclude with a note about the effective rate constant (ERC) formulation, which usually can

reduce the small-Da case to an ordinary differential equation for the sensogram Bjgfadwards
et al, 1999. This is customarily done by manipulating.§) into the form

0B d 2

a_tg —Da(l-— pBo)d—Bto |D [%} - h(x)] = 1— S[Bg] — KBy + O(D&) (5.12)
and then averaging. But in this instance, averaging yields a term gbtiveS[Bg], which cannot be
expressed in terms & Bg]. Hence, this approach fails for the association experiment. Nevertheless, it
will be shown to be effective for a dissociation experiment in Sediion

6. Dissociation experiment

A typical run of the BIAcore includes both an association phase and a dissociation phase that begins
when the association experiment reaches steady state. Breimwe see that as — oo, Fy — 0, so
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from (3.7) we have thaFy — 0 and henc&€y — 0. Then, using the same arguments in SecBione
find that the steady state &.0) is

1
Bg,s = (6-1)
a

which provides the initial condition for the dissociation problem. In addition, the ligand concentration

is shut off, so the equation analogous 3 is
0By
5t = {1— S[Bg]}Da(DFy + Fx) — KBq. (6.2)

The fact that the integral term first appears &D@) is critical to explaining the simplifications that
follow.
Substituting 4.1) into (6.1) and 6.2), we have

9Bo

E =-K BO, BO(X’ ya 0) = a_19 (633.)
oB1
e {1-S[Bo]}(DFy + Fx) — KB1, Bi(x,y,0) =0. (6.3b)
Solving (6.339, we obtain
B oKt

Equations 4.8) do not change since all the changes are incorporated into the new valBg/alt d
SinceBg is independent ok andy, we see fromZ.15) that 6.3b becomes

—K —K
a_Bl+K81:—(1— pea t) (—Ke t) [D[y(y;a} —h(x)l, (6.5)

a

where we have used @) and 6.4). Thus, the integral term does not appear to first two orders and the
only difference between this result and the 2D occlusion resutidiwards(2007) is the replacement
of —h(x) by the braced term. Solvin@® (5) subject to the initial condition ing(3b), we obtain

~Kt _
B, = _5 |:t + M] e Kt [D [M} — h(x)} ) (6.6)
o Ka 2
Averaging then yields
—Kt —Kt _
Bty = ~© [t+ p(e 1)} Rg. (6.7)
o Ka

To proceed with an ERC formulation, we note that the equation analogobsl®) i6

0By dBg y(y+2)
St~ Dal- PB4 [D[ 2

]— h(x)] = —K By + O(D&). (6.8)
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With the S[Bg] term now relegated to lower order, we can take the averagé 8fto obtain

dBy K By

dt 1+ Da(l— pBghy +0(0a), 6.9

which (with the exception of the term) is exactly the result from the receptor layer work without
occlusion Edwards 2001).

Figure11 shows the effect op on the dissociation solution. Note that the only difference from the
result inEdwards(2007) for 2D occlusion effects is the introduction of the exDa3 term, which is
quite small from Table 1. Thus, our plots are quite similar to thodedwards(2007), except thaip in
our work now plays the role ob? in Edwards(2007). In particular, increasing reduces the binding.

Figure12 shows the same graph f& = 10. Note that though on a relative basis the effecp i§
about the same, on an absolute basis it is not sihdeminates the portion of the denominator of the
steady state. Again, the work is quite similar to the 2D work.

Bg
0.5 1

0.4+
0.3
0.2

0.1

%/

0 500 1060 1500 2000 ¢
Fic. 11. Bg versust with K = 1 and (in decreasing order of thicknegs}= 1, 2, 4, 8, 16.
By

0.08
0.06
0.04

0.02

0 100 200 300 400 500 ¢

FiGc. 12. Bg versust with K = 10 and (in decreasing order of thicknegs}- 1, 2, 4, 8, 16.
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7. Moderate Da
7.1 Association experiment

Though it is desirable from an experimental standpoint to make Da small, in some situations (such as
in very fast reactions) such a state is unattainable. Thus, we now present results in the case where Da is
moderate. In this case3.Q) is non-linear. To linearize the problem, we resort to small-time asymptotics

by assuming a solution of the form

Bg(X, y,t) = Bi + B(X, y)t +o(t). (7.1)
With such a substitution, we define a new variaBlen the following manner:

62F1 o0F1
L /) - -1)=0 E 0) =0. 7.2

Then, substitutingd.1) and (7.2) into (2.6), we obtain, to leading order i

1 X oF1

e
s 0o 09

1-pB —(8+KBj)=Dal- p&)[
Note in particular that the integral term does not come into play since the leading order is assumed to be
constant. Thus, our work will be quite similar to previous result&dmvards(2001, 2007).

Since the sensogram signal is averaged, we are more interested in the quantity

_h
(B = 5 .0, (7.4)

where we have used ). Thus, it is easiest to work directly withy in (7.3), which we solve with the
use of Laplace transforms (iq rather thart):

d2|f1 24 X Ul/sdlfl
1[Dal— pB)r/3)1° 5
v 3[ T3 } , A4 a(l- pB), (7.5b)

which is exactly the equation froldwardg(2001) with a different definition ob> and i, to include the
occlusion contribution through the parameger
Then, we may write the average as

_ IZaCu{I[ﬁ; Xmax] — Z[B; Xmin]}

By(t) = Bi + SL+o(t), S (7.6)
Xmax — Xmin
—VaX
T x) = 25 1A argvex _ 1 _ |P(4/3, —va)| + |P(5/3, a0, (7.72)
a a
by = V1anPda (7.7b)

3
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Here,Z is simply the integral ofg):

X
i = [ e (7.82)
andP is the normalizedowerincomplete gamma function whose definition is
Y (m/39 —l)aX)
P —VgX) = 7.
(M/3, —vax) = = (7.80)

We next examine the asymptotic limits a%.{3, relying heavily on the analysis Edward(2003).
In the limit of smallk,, the functional dependence Bfon vy and/ 4 vanishes, as the limits are indepen-
dent of those quantities. In particular,

T[B; X] ~ xx => S~ kaCy[l — (K + p)Bi] asks — O. (7.9)

We do not expand the bracketed quantity because we are trdétamgfixed. In typical experiments
(which we shall graph belowB; = 0, so both dissociation and occlusion effects are absent. However,
in the case wher®; # 0, we see that both dissociation (through #eerm) and occlusion effects
(through thep term) will slow the initial rate of growth of the sensogram data.

Examining the asymptote for lardg, we see that
yx2/3

(7.10)

and hence there is a finite asymptote $oi his is due to the fact that the reaction rate becomes infinitely
fast, so the system becomes transport limited. Here,

lim y =1-pB, (7.11)

ka— oo

so we see that occlusion effects will tend to slow the initial rate of growth of the sensogram data at a
rate proportional to the initial number of receptors bound.

In the experiments that we are modellifgj,= 0, so the dependence @nin (7.10 cancels and we
are left with the result fronEdwards(2007):

~2/3,.,2/3 2/3
g POV O =) (7.12)
2I'(1/3)RrL1/3 Hfl/s(xmax — Xmin)

Since the reaction is infinitely fast, the effectdfis negligible, and hence the two results are identical.

Thus, there is some maximal rate due to transport, and the mode of transport is unimportant.
Figure13shows how the slop8 varies withk, using the parameters in TateNote thatp appears

only when multiplied byB; (directly or throughn). SinceB; = 0, p does not affect our results. Physi-

cally, this means that for small times, there has not been enough binding for occlusion effects to play a

role. For the parameters in Tatl#gethe asymptote in Figl3 may be calculated as

S=281x103s1, ky— oo. (7.13)
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0.0025 |
0.002
0.0015
0,001

0.0005 -

0 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12 Ka
FIG. 13. Sversuska, association experiment.

TABLE 2 Parameter values for Fig3-15

Given Calculated
Parameter Value Parameter al\e
Bi 0 7 1
Cy (mol/cmd) 10-11
Dr (cn?/s) 2.8x 1077
D 1.20x 1071
H¢ (cm) 5x 1073
L (cm) 24x 1071
Rr (mol/cn?) 10712
V (cm/s) 1
Xmax 7.92x 1071
Xmmin 2.08x 1071

7.2 Dissociation experiment

Lastly, we examine the dissociation case. As discussed previously, the initial condition here is the steady
state from the association problem, givenénlj. Thus, the equation analogous %43 is

- K uY3dF
2. _ U 1

1 [DaKF(1/3)]3 ,  DDaK

=3 0r@s) = (7.14b)

Since {{.149 is the same as/(5g except for the replacement gfby —K /a, (7.79 becomes

K e vdX tanhlig

ovg

I[pux] = — [e" — 1 —|P(4/3, —vax)| + |P(5/3, —vax)ll, (7.15a)
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_ ptank g

vy =g (7.15b)
}”d

Since Da— 0 ask, — 0, in this IimNit vg— 0 andig — 0, so we may use the expression 9,
simply replacingy by —K /a. But with kq fixed, kg — O forces this ratio to be-1. Thus, we have

S~ —kaCu, ka— 0, Kkqfixed, (7.16)

which is independent op. Physically, since blocking is related to the association process, a kgnall
implies that blocking will not have time to develop for siall
In the case of largk,, it can be shown that

5 _ 12
| RrHy Kq
lim g = oo = 92 ) 7.17
b (¢Dg pCu) (r.172)

(7.17b)

lim vy =ve =

1 | I'(1/3) RrHs kq tanhie s
ka— 00 3Pe pCy )

r'e/3) by PG ‘oo

Sincev,, decays likep~3, we may use the small-argument asymptotic expansion foPthection to
obtain
kgqx
plzacu ’
and hence larger values pfwill drive down the value of the asymptote. y
As in previous sections, we will examine graphically how the dependence of the solutgranes
with p. Thus, we must fix a value & (instead ofK, as in SectiorY.1).

Figure 14 shows the graph ofS| versuska with kg = 8.9 x 1073 s1 and varyingp. We have
graphed—S so that easy comparisons can be made with the association diagram. Note that increasing

I[p1; X] ~ — (7.18)

IS

0.002 |

0.0015 ~

0.001 4

0.0005 - —

0 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12 /;7(1

FIG. 14.]9] versuska with kqy = 8.9 x 103 s land (in decreasing order of thicknegsy 1, 2, 4, 8, 16.
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15

0.0025

0.002

0.0015

0.001 +

0.0005 -

0 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12ka

FIG. 15.|S| versuska with ky = 8.9 x 1072 s~ and (in decreasing order of thicknegs}= 1, 2, 4, 8, 16.

p reduces the initial speed of dissociation, with the most dramatic trends being shéwges large.
This makes sense since with lardgr the inherent timescale of the problem decreases.

In Fig. 12, we increasedK by a factor of 10 to illustrate the effect @fin a different circumstance.
To achieve the same result in this context, we incrégdey a factor of 10, as shown in Fig5. Note
that just as in Sectiod, the effects ofp are mitigated with increasinky. This is because dissociation
plays a larger role in the reaction, and dissociation is unaffected by steric hindrance.

8. Conclusions

To better analyse and control biological and industrial processes, the underlying kinetic processes must
be well understood. Since the BIAcore SPR device consists of a thin reacting zone abutting a larger fluid
flow, it is a good physical model of many biological and industrial reactions. However, the real-time
kinetic data thus obtained are useless for parameter estimation without a proper mathematical model to
interpret it.

In particular, when the ligand molecules are larger than the spacing of the receptor molecules in the
zone, a single binding event will occlude multiple binding sites. Without taking this steric hindrance
effect into account, one will obtain inaccurate estimates of the underlying rate constants. We presented
some general discussion of the modelling process in Se2tibrin order to obtain a tractable set of
equations, we made several simplifying assumptions about the position and behaviour of the binding
site. However, we expect these assumptions to be unbiased, so the averaging properties of the BIAcore
signal should reduce any associated errors.

Mathematically, we model the occlusion event as a non-local integral term in the evolution equation
for Bg. As in Edwards(2007), the small size of the ligand molecules compared to the channel length
meant that the non-locality in the-direction can be neglected. However, the ligand molecule can be
comparable in size to the width of the receptor layer, and hence the integral termyhditteetion must
be treated fully.

We specialized to the case of large molecules so that the integral term assumed a separable Fredholm
form. (The case of smaller molecules is the object of further research.) Scientists prefer to work in the
regime where Da is small to limit the effects of transport; in this case, we constructed solutions good for
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long times which were accurate ta@&?). The integral term arose only in the association experiment
since in that case the integral term is non-trivial at the first two orders. Since the average of the integral
term cannot be expressed in termségf we could obtain an ERC solution only in the dissociation case.

In the case of moderate Da, we constructed analytical short-time solutions. Due to the nature of
the dominant balance, the integral term does not contribute. Hence, our results can be interpreted as a
blend of the receptor layer work without occlusionEdwards(2001) and the surface reaction work in
Edwards(2007).

In the cases without the integral term, the steric hindrance effect is encapsulated in the parameter
p, which measures the ratio of the occluded areas of ligand to receptor. Though the effect can most
easily be seen in4(6), the parametep propagates throughout the solutions. The dependenpeoof
d is quadratic while the dependence Bnis linear, and hence, is the dominant factor in determining
whether or not blocking will occur.

SinceRy must be kept at a relatively high level to distinguish the BlAcore signal from experimental
noise, it is clear from the Appendix that there will be cases where steric hindrance effects are unavoid-
able. To minimize them, experimentalists can red&eas much as possible to redupeand thus
the absolutesteric hindrance effect. Thelative size of the steric hindrance effect may be reduced by
increasingK, as seen in4.6). From @.6), we see that this may be affected by decrea€ing

9. Nomenclature
9.1 Variables and parameters

Units are listed in terms of length_§, mass M), moles () or time (T). If the same letter appears
both with and without tildes, the letter with a tilde has dimensions, while the letter without a tilde is
dimensionless. The equation where a quantity first appears is listed, if appropriate.
A(y): function used to characteri&® (5.1).
B(X, ¥, f): bound ligand concentration at positich, ¥, f) and timef, unitsN /L2,
dimensionless parametés. Q).
unbound ligand concentration at positict ¥) and timef, unitsN /L3 (2.1).
the Bromwich contour.
molecular diffusion coefficient, units?/T (2.59.
spacing between molecules, units

Da: the DamBhler number, which measures the ratio of reaction and diffusion effects, dimen-
sionless 2.59.

F (-, t): function used to characterifg (3.5).
f (-): arbitrary function, variously defined.
H: height, unitsL.
h(x): function used in ERC solutior(8h).
Z[p; x]: integration operator, defined i7.89 as

=3

Cx, 9,

—)
~"

a 0o

Ip: x] = /0 Bz,

K: dimensionless affinity constarg.g).
kq: dissociation rate, unit§ —1 (2.1).
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association rate, units3/(NT).

length of the channel, units (2.1).

arbitrary integer, variously defined.

Avogadro’s number, unitdl ~1 (2.13).

normalized lower incomplete gamma functiahgh).
volume ratio of ligand to receptor molecu2.12.

. Pedt number for the systen2 Gh).

. density of receptor sites, unité/L? (2.1).

: dimensionless parameté. {).

-]: steric hindrance operato?2 ().

. slope of sensogram data for small time, ufits' (7.6).
. Laplace transform variable.

. time, unitsT (2.1).

. characteristic flow velocity, unite /T (2.50).

. length along the channel, units

. intermediate variable related ég, (4.13.

: height above reacting surface, unitg2.1).

. the integers.

. distance perpendicular to flow, units

: dimensionless constant, definedkas+ p (4.29.

. term in expansion oB(x, t) for smallt (7.1).

. ratio of ligand radius to characteristic length4g.

. dimensionless parameter, variously defined.

: dimensionless parameter in moderate Da casilf).
: dimensionless parameter in moderate Da cassh).
: dummy variable, variously defined.

: dimensionless constant, value-la B; (4.113).

. partition coefficient2.1).

9.2 Other notations

a: as a subscript, used to indicate association.

d:
f:
(o}
i:
I:
me Z:

max:

as a subscript, used to indicate dissociation.

as a subscript, used to indicate the fl@&gg.

as a subscript, used to indicate the dextran gel layer.

as a subscript, used to indicate an initial conditi8ri).

as a subscript, used to indicate the ligand.

as a subscript, used to indicate a normalization fa@&@,(an expansior4( 1) or integration
against a test functiorb(2).

as a subscript ox, used to indicate the right end point of the scanning ralg®;(as a
subscript ory or &, used to indicate an upper limit of integratich 3b).
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min: as a subscript or, used to indicate the left end point of the scanning rar&yd;(as a
subscript ory or &, used to indicate an upper limit of integratich3b).

: as a subscript, used to indicate the receptor.
. as a subscript, used to indicate the steady stat€)(
. as a subscript 08, used to indicate a characteristic val@edg.
. as a subscript, used to indicate thelirection £.93.
. as a subscript, used to indicate theirection 2.99.
. as a superscript, refers to the 2D analog of this problem, describEdviards(2007)
(2.19h.
*. as a subscript, refers to a constant value.
. used to denote the BlAcore signal, which is the mean of the bound concent@fipn (
. used to denote the Laplace transform of a quantity.
oo: as a subscript, refers to a limiting valuelas— oo (7.173.
( ): used to indicate the average in thlirection only @.2).
' used to indicate a dummy variab2.2).

Ne x c o =

Appendix

We conclude with a brief discussion of the dimensionless parameters used in this workATable
summarizes some extreme values of the parameters found in the literature, which we use to establish
bounds on our dimensionless parameters. Notedihatadiameter while most papers quote the Stokes
radius

To compute a lower bound fak,, we use the lower bound ah from Curtoet al. (2009 and the
upper bound orHg from Edwardset al. (1999. Similarly, to compute an upper bound @y, we use
the upper bound od, from Zheng & Rundel(2003 and the lower bound oHlg from Schuck(1999.
The computed range is

8 x 1073 < dy < 50. (A.1)

Therefore, both théy < 1 and thejy > 1 cases are physically realizable.
For the attainable values @, one can trivially attain the lower bound of 1 with very small ligand
molecules or wide receptor spacing. For the upper bound, we notethdtljecomes

p=d?NRr (A.2)

TABLE A1l Parameter values from the literatir

Parameter
Reference d (10°% cm) Hg (107° cm) Rr (1012 mol/cr?)
Curtoet al. (2005 0.4
Edwardset al. (1995 2-5
Schuck(1996 0.1-1
Yarmushet al. (1996 0.25-4

Zheng & Rundel(2003 50 0065
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for larged,, which is exactly the expression f@? in Edwards(2007). Thus, we may quote the upper
bound from that work to construct the possible rangg:of

1< p<6.02x 10° (A.3)
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